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Abstract

Background: It is common in public health and epidemiology that the outcome of interest is counts of events
occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of
outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count
models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is
to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case
where there’s a high proportion of zero counts.

Methods: The data were collected during a community-based randomised control trial assessing the impact of mass
drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in
Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models
(zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative
binomial logit hurdle) were fitted and compared.

Results: Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative
binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models
performed better than other models.

Conclusion: This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the
analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the
aim and endpoints of the study.
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Background
It is common in public health and epidemiology that the
outcome of interest is counts of occurrence of events. In
human helminth disease research, such as hookworms or
Schistosoma haematobium studies, the outcome of inter-
est includes number of egg counts in a urine or stool
of a human sample. Such count data are typically very
skewed and exhibit many zero count observations [1]. It is
well known that analysing these data using classical linear
models is mostly inappropriate, even after transformation
of outcome variables [1-3].
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The natural choice for count data analysis is the Poisson
regression [4,5]. However, the underlying Poisson distri-
bution has several limitations that are often neglected,
including lack of allowance for over-dispersion [4,5]. One
frequent manifestation of lack of allowance for over-
dispersion is that the incidence of zero counts is greater
than expected for the Poisson distribution. The excess
zeros can occur as a result of clustering. Therefore, it is
worthwhile to consider the mechanism by which over-
dispersion occurs and use more flexible models such
as the heterogeneous Poisson models and zero-modified
models. Themost commonly used heterogeneous Poisson
distribution is the negative binomial [2,6,7] which loosens
Poisson restrictions by allowing the expected number
of events to be a function of some unobserved random
variable that follows a gamma distribution [8]. Alterna-
tively, to overcome this violation we extend the Poisson
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model to have an over-dispersion parameter, through a
hierarchical model that introduces a gamma prior on the
mean parameter [5].
One could also use zero-adjusted mixture models such

as zero-inflated (ZI) and hurdle count models [8,9] which
are applied to count data when over-dispersion exists
and excess zeros are indicated [5,6,10,11]. ZI models
include zero inflated Poisson (ZIP) [12] and zero inflated
negative binomial (ZINB), whereas hurdle models include
Poisson logit hurdle (PLH) and negative binomial logit
hurdle (NBLH) [5]. The PLH is also known as zero
altered Poisson (ZAP). The PLH andNBLH can be consid-
ered asmixture models in which the complete distribution
of the outcome is represented by two separate compo-
nents, a first part modelling the probability of excess
zeros and a second part accounting for the non-excess
zeros and non-zero counts [13], thus estimating two
equations. In contrast to ZImodels, the zero and non-zero
counts are separated in hurdle models. More specifically,
in both zero-modifiedmodels, a logitmodel with binomial
assumption is used to determine which of the two pro-
cesses generates an observation [2]. A further extension
to hurdle models is developed in [14], in which the pro-
cesses generating zeros and positives are not constrained
to be the same, and that hurdles may not be restric-
tively be at zero. The NB regression models have been
widely used to analyse human helminths infection inten-
sity data [15,16], but recently, there is more and more
research that is analysing human helminth data using
zero-modifiedmodels highlighted above. Be that as it may,
these models offer a natural epidemiological interpreta-
tion of disease infectivity and transmission intensity as we
expand below. For instance, one may assume that a pro-
portion of individuals have no chance of being infected,
as they are not exposed. In other words, there is a pro-
cess which determines whether an individual is likely
to be infected at all (infection probability) and a sec-
ond process determining the number of excreted eggs
among those who are at risk of infection (infection inten-
sity) [17]. ZIP models assume that number of excreted
eggs follows a Poisson distribution. ZINB models assume
that the number of eggs among those who are at risk of
infection has a negative binomial distribution [11]. The
hurdle model has an interpretation as a multiple-part
model, the simplest being the two-part model; the first
part as binary outcome model and the second part as a
truncated count model. Such a partition permits the inter-
pretation that positive observations arise from crossing
a zero hurdle or zero threshold. In principle, the thresh-
old need not be at zero; it could be any value. Further,
it need not be treated as known. The zero value has
special appeal, however, because in many situations it
partitions the population into sub-populations in a mean-
ingful way [13]. In contrast to the ZI model, zero and

non-zero counts are separated into hurdle models [1],
a fact that makes them very useful in epidemiological
studies.
The main objective of the research reported in this arti-

cle is to apply zero-adjusted mixture count data models
to analyse risk factors associated with human helminths
(S. haematobium) particularly in a case where there is a
high proportion of zero counts. Two actual data sets, one
fromMalawi and another fromZambia, with different lev-
els of zero counts were used in the current analysis, and
they corresponded to eggs (counts) excreted by an indi-
vidual. Poisson, negative binomial, and two zero modified
(ZI and hurdle) parameterisations for the Poisson and
negative binomial distributions were fitted to both data
sets and results were compared.

Methods
Count datamodels
Various statistical models have been developed to model
S. haematobium disease burden. These are Poisson, neg-
ative binomial (NB), ZI (Poisson and negative binomial),
logit hurdle (Poisson and negative binomial). Below, a
brief outline for each of the models mentioned above is
given.

Poissonmodel
Poisson regression is traditionally conceived as the basic
count model upon which a variety of other count models
are based [5,18]. Poisson distribution is characterized as:

f (k; λ) = P(Y = k) = e−λ
(
λk

)
k!

, k = 0, 1, 2, . . . ; λ > 0

(1)

where random variable k is the count response and param-
eter λ is the mean. Unlike most other distributions,
Poisson does not have a distinct scale parameter.
The standard Poisson distribution, which assumes equal

variance and mean, is not appropriate to fit the observed
egg counts since variance of the counts is much larger
than their mean. Violations of equidispersion indicate
correlation in the data, which affects standard errors
of the parameter estimates. Model fit is also affected.
When such a situation arises, modifications are made
to the Poisson model to account for discrepancies in
the goodness of fit of the underlying distribution. Neg-
ative binomial (NB) is normally used to model overdis-
persed Poisson data. A dispersion parameter is included
in the NB model to cater for overdispersion by allow-
ing the variance to be greater than the mean and
accommodate the unobserved heterogeneity in the count
data.
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Poisson regressionmodel derives fromPoisson distribu-
tion and relates λ, β , and x through:

log(λ) = xβ . (2)

Here, xβ is the linear predictor, which is also symbol-
ized as η within the context of generalized linear models
(GLM).

Negative binomial model
The NB model is employed as a distribution form that
relaxes the equidispersion restriction of the Poissonmodel
[19]. The NB distribution is given by:

P(Y = k) = �(k + τ)

k!�(τ)

(
τ

τ + λ

)τ (
λ

λ + τ

)k

k = 0, 1, 2, . . .
(3)

where random variable Y has a NB distribution with
parameters τ ≥ 0 and λ ≥ 0. Its mean and variance are
given by:

E(Y ) = τλ (4)

and

Var(Y ) = τλ(1 + λ) = E(Y )(1 + λ) (5)

Since λ ≥ 0, the variance of NB distribution generally
exceeds its mean (“over-dispersion”) [20]. It has since been
proposed to model excessive variation in helminth egg
counts [21]. NB regression models have been widely used
to analyse helminths infection intensity data [7,15,16].
However, distributional problems affect both models
(Poisson and NB) such as over-dispersion resulting from
specification errors in the systematic part of the regression
model, hence NB models themselves may be overdis-
persed [5]. Nevertheless, both models can be extended to
accommodate any extra correlation or dispersion in the
data that result in a violation of distributional properties
of each respective distribution. The enhanced Poisson or
NB model can be regarded as a solution to a violation of
distributional assumptions of the primary model (1). For a
better fit, an overdispersedmodel that incorporates excess
zeros should serve as an alternative [6]. Zero modified
models such as ZI and hurdle count models are capable
of incorporating excess zeros. They are applied to count
data when over-dispersion exists and excess zeros are
indicated [5,10].

Zero inflated poisson
In ZIP regression, the counts Yi equal 0 with probability
pi and follow a Poisson distribution with mean λi, with
probability 1 - pi where i = 0, 1, 2, . . . , n. ZIP model can

thus be seen as a mixture of two component distributions,
a zero part and no-zero components, given by:

Pr(Yi = 0) = pi + (1 − pi)exp(−λi) (6)

Pr(Yi = k) = (1 − pi)exp(−λi)λ
k
i /k! , k = 1, 2, 3, . . .

(7)

From Equation (6), zero observations arise from both
zero-component distribution and Poisson distribution.
The zero-component distribution is therefore related to
modeling ‘excess’ or ‘inflated’ zeros that are observed in
addition to zeros that are expected to be observed under
the assumed Poisson distribution. To assess impact of
covariates on the count distribution in a ZIP model, pi and
λi can be explicitly expressed as a function of covariates.
The most natural choice to model probability of excess
zeros is to use a logistic regression model:

logit(pi) = xiβ (8)

where xi represents a vector of covariates and β a vec-
tor of parameters. The effect of covariates on count data
excluding excess zeros can be modeled through Poisson
regression:

log(λi) = ziγ (9)

Mean and variance of ZIP model are:

E(yi|xi, zi) = λi(1 − pi) (10)

V (yi|xi, zi) = λi(1 − pi)(1 + λipi) (11)

Zero inflated negative binomial
The ZINB distribution is a mixture distribution assigning
a mass of p to ‘extra’ zeros and a mass of (1 - p) to a neg-
ative binomial distribution, where 0 ≤ p ≤ 1. The ZINB
distribution is given by:

P(Y = k) =
⎧⎨
⎩
p + (1 − p)

(
τ

τ+λ

)τ
, k = 0

(1 − p)�(τ+k)
k!�(τ)

(
τ

τ+λ

)τ (
λ

λ+τ

)k
k = 1, 2, . . .

(12)

The mean and variance of the ZINB distribution are:

E(Y ) = (1 − p)λ (13)

Var(Y ) = (1 − p)λ
(
1 + pλ + λ

τ

)
(14)

Observe that this distribution approaches the zero
inflated Poisson distribution and the negative binomial
distribution as τ −→ ∞ and p −→ 0, respectively. If both
1
τ
and p ≈ 0 then the ZINB distribution reduces to the
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Poisson distribution. The ZINB regression model relates
p and λ to covariates, that is,

log(λi) = xiβ (15)

and

logit(pi) = ziγ (16)

where i = 1, 2, . . . , n and xi and zi are d- and q-
dimensional vectors of covariates pertaining to the ith
subject, and with β and γ the corresponding vectors of
regression coefficients, respectively.

Poisson logit hurdle
PLH model is a two-component model comprising of a
hurdle component models zero versus non-zero counts,
and a truncated Poisson count component is employed for
the non-zero counts:

Pr(Yi = 0) = pi (17)

Pr(Yi = k) = (1−pi)
exp(−λi)(λi)k/K !
1 − exp(−λi)

, k = 1, 2, 3, . . . .

(18)

pi models all zeros. For PLH model, the most natural
choice to model probability of zeros is to use a logistic
regression model:

logit(pi) = xiβ (19)

while the effect of covariates zi on strictly positive (that
is, censored) count data are modeled through Poisson
regression:

log(λi) = ziγ (20)

Negative binomial logit hurdle
Similarly, for the hurdle models, the NBLH can be
used instead of Poisson distribution above in case of
over-dispersion:

Pr(Yi = 0) = pi (21)

Pr(Yi = k) = (1 − pi)
�(k + τ)

�(k + 1)�(τ)

× (1 + τλ)−(k+τ)τ kλk

1 − (1 + τλ)τ

(22)

where k = 1, 2, 3, ...
The most natural choice to model probability of excess

zeros is to use a logistic regression model:

logit(pi) = xiβ (23)

Impact of covariates on count data modeled throughNB
regression:

log(λi) = xiγ (24)

Given π = Pr(Y > 0), the probability of a nonzero
response with η as given in the follow up to Equation 2,
the expected value and the corresponding variance are
given by:

E(Y ) = η = πλ

1 − p(0; τ)
(25)

Var(Y ) = η(λ − η) + πσ 2

1 − p(0; τ)
(26)

While both ZI and hurdle models need distributional
assumptions for their count component, both classes dif-
fer with respect to their dependencies of estimation of
parameters of “zero” component on these assumptions [1].
Unlike ZI model, estimation of parameters β related to
pi in the hurdle model is not dependent on estimation of
parameters γ related to λi. Hence, if assumptions about
the (truncated) Poisson/negative binomial model are vio-
lated (for example due to extreme outlying observations),
the hurdle model will, in contrast to ZI model, still yield
consistent estimators for parameters in the logit part of
the model (if correctly specified) [1]. Much as the hur-
dle model will be consistent in the absence of a good
model for the non-zero counts, however, one of its weak-
nesses is that it assumes all zeros to come from a single
population.

Model comparison
For comparison of non-nested models based on maxi-
mum likelihood, to choose the best fitting model, Akaike’s
information criterion (AIC) has been proposed for model
selection criteria based on the fitted log-likelihood func-
tion [13,22,23]. As a measure of the relative goodness of fit
of a statistical model, AIC not only rewards goodness of
fit, but also includes a penalty that is an increasing func-
tion of the number of estimated parameters. Since the
log-likelihood is expected to increase as parameters are
added to a model, the AIC criteria penalize models with
larger q. This penalty function may also be a function of n,
the number of observations [13]. This penalty discourages
over-fitting. The AIC is specified as:

AIC = −2 log(L) + 2q (27)

where L is the maximized value of the likelihood function
for the estimated model, with q being equal to number
of degrees of freedom used in the model and 2 is a tun-
ing parameter meant to balance the information in the
model based on the degrees of freedom with information
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in the residuals. A model with lowest AIC is preferred
[22]. Several alternatives of AIC also exist, viz Bayesian
information criteria (BIC) and Consistent Akaike’s infor-
mation criterion (CAIC) [13]. AIC is optimal in selecting
the model with the least mean squared error while BIC
is not asymptotically optimal [24]. An AIC, CAIC or BIC
difference of less than 4 indicates that the two competing
models are indistinguishable, while a value difference of 4
to 10 suggests moderate superiority of one model against
the other, and an AIC, CAIC or BIC difference of greater
than 10 implies that for two competing models, onemodel
is better than the other [23].

Applications
Case data
Two datasets were used as a case study in the analysis
of count data on human helminths. The first data set
came from a study carried out in 2004 in Chikwawa dis-
trict, in the Lower Shire Valley-southern Malawi. The
Chikwawa data were collected from a rural population
mainly engaged in subsistence farming. The area lies
between 100 and 300m above sea level. The rainy sea-
son extends from December to March. Temperatures can
rise up to 50°C in months preceding rainy season. The
design and methods for data collection are described
in [25,26].
Briefly, data were collected in eighteen (18) villages,

purposively selected from the control and intervention
arms of a cluster randomized study design. There was
only one round of treatment following community based
and house to house approaches for mass drug adminis-
tration (MDA). Over 90 percent of the eligible population
were treated. All infected participants in non-intervention
arm received appropriate treatment. After the follow-
up assessment, both arms had mass treatment. In the
study, polyparasitism was considered basing on the num-
ber of species an individual was hosting. The focus was on
S.haematobium, S.mansoni, hookworm and Ascaris. Poly-
parasitism is the epidemiology of multiple species parasite
infections [26]. Ten percent of the households were ran-
domly selected from the villages for baseline survey using
random number tables [25].
Subjects for geo-helminth survey were selected using

a two stage-design. In short, at first stage villages were
selected, then at second stage, sample of households was
listed and chosen. In the selected households, all members
aged one year and above were invited to participate. Con-
senting individuals had their demographic details com-
pleted and were given full body clinical examinations
(except genitals for females) for chronic manifestations of
human helminths. In addition they had anthropometric
measurements taken and were asked to provide a single
fresh stool and urine sample. All individuals (aged >1 year)
were requested to provide a finger prick blood sample

[21]. All body samples were analyzed in the laboratory
using Katz test to determine geohelminth infection and
intensity. Further details are provided in [25].
The second data, was school-based, collected in a cross-

sectional study that was carried out in Kafue and Luangwa
Districts of Lusaka province, Zambia in 2004. The two
districts were selected on the basis of their ecological rep-
resentativeness of the country in general [27]. In each of
these districts, ten (10) primary schools were selected.
Approximately 100 schoolchildren, aged 6 to 15 years,
were recruited from every school. The altitude and geo-
graphical location (longitude, latitude) of the surveyed
schools were obtained from the archives of the Zambian
Survey Department (2003). Further details of the study
design are given elsewhere in [27].
Data on S.haematobium prevalence and intensity were

obtained using a Quantitative Filtration technique [28]
to process duplicate urine samples collected about mid-
morning. Two laboratory technicians prepared and read
specimen filters. Both technicians read each specimen
independently. This was useful in increasing sensitivity
of the technique, particularly where egg intensity was
low. All pupils found infected were treated with prazi-
quantel (40 mg/kg body weight). Individual data sheets
were used to collect ancillary information on each child
examined.
In addition, data on intermediate host snails were

also obtained through field collections and laboratory-
based species identification. Sampling of potential schis-
tosomiasis transmission sites was done based on water
body proximity to respective primary school, that is, the
nearest likely infection source. These water points were
also qualified by relevant local people as the most fre-
quented water contact points for both domestic and/or
livestock [27].
Statistical fitting for all models was carried out using

Political Science Computational Laboratory (PSCL) pack-
age [29] in R statistical software (The R Foundation for
Statistical Computing, Version 2.14.0).

Ethical approval
The study that collected data from Chikwawa, Malawi
received ethical clearance from Malawi’s College of
Medicine Research Ethics Committee (COMREC) [25].
Individual informed consent was orally obtained from
each participant or (if they were aged <16) from one of
their parents or a legal guardian. COMREC approved oral
informed consent because the study was determined to be
of minimal risk. The consent process was a four stage pro-
cess. First stage, oral informed consent was obtained at
the traditional authority (TA) level. Second stage, at village
head level and third stage at the household level from the
head of the household and fourth at individual level from
each individual in the household (if applicable) else from
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parent/guardian if an individual was aged <16. Registers
were kept for documentation whereby, for each individual
in the selected household, a column was kept to indicate
whether an individual had orally consented to participate
in the study or not. Similarly, in the Zambia study, ethical
approval for data collection on urinary Schistosomiasis in
school children was received from University of Zambia
Ethics Committee [27].

Results
S. haematobium in Chikhwawa District, Malawi
Table 1 gives summary statistics for study participants
who had outcomes of interest. The study had 1642 par-
ticipants of which 55.4% were female. The mean age

Table 1 Characteristics for S. Haematobium participants
(N= 1642) in Chikwawa,Malawi

Variable Mean (Std. Dev) Number (%)

Outcome

S. Haematobium 233 (19.35)

S. Mansoni 71 (5.02)

Hookworm 324 (22.9)

Age (years) 32.36 (22.79)

Sex

Female 909 (55.36)

Male 733 (44.64)

Education level

None 745 (45.37)

Primary 850 (51.77)

Secondary 47 (2.86)

Village type

Intervention 831 (50.61)

Control 811 (49.39)

Fishing

Yes 1,421 (86.54)

No 221 (13.46)

Garden

Yes 960 (58.47)

No 682 (41.53)

Occupation

Farmer 733 (44.64)

Other 909 (55.36)

Polyparasitism

None 807 (49.15)

One 594 (36.18)

Two 200 (12.18)

Three 38 (2.31)

Four 3 (0.18)

(years) of 32.4 (standard deviation: 22.8). Of these, 324
had hookworm representing 19.7% of sample popula-
tion, 71 of these had S. mansoni representing 4.3%
and 233 had S. haematobium representing a prevalence
of 14.2%.
Figure 1 shows that a large proportion of individuals i.e.

85.8% for S. haematobium were “zero egg excretors”. The
likelihood ratio test for over-dispersion between Poisson
and Negative binomial at α = 0.05 showed a critical
value test statistic = 2.7 with a χ2 test statistic = 10606.5,
p-value<0.001. Indeed, there was overwhelming evidence
of overdispersion. This was confirmed by the presence of
excess zeros (Figure 1).

Model comparison
Using the AIC and zero capturing, the predicted counts
using the ZINB and NBLH indicate a closer fit with the
observed values. In Table 2, AIC results show that the
ZINB and NBLH are similar and offer a better fit com-
pared to using Poisson Logit Hurdle (PLH) or a negative
binomial (AIC = 3,482 for NBLH; AIC = 3, 484 for ZINB
whereas AIC = 6,854 for PLH and AIC = 3,576 for NB
respectively). With regards to zero capturing, the Poisson
model was again not appropriate as it could only capture
515 of the zeros whereas the zero adjusted based mod-
els were much better in capturing the zero counts. The
following models performed relatively similar: Negative
Binomial, ZIP, ZINB, PLH with NBLH model capturing
971 zeros which were equal to the observed (Table 3).
From these results, NB modified based models (NBLH
and ZINB) offered the best fit to zero inflated helminth
data in terms of the AIC (minimum value for all the
models fitted) and are indistinguishable with respect to
fit, AIC difference of less than 4 between the two (see
Table 2). NBLH was used for fitting a final model to model

Figure 1 Distribution of egg counts for S. haematobium in
Malawi study.
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Table 2 Model comparison using Akaike Information
Criterion (AIC) for Malawi study data

Poisson Neg. Bin. ZIP ZINB PLH NBLH

AIC 14,182 3, 576 6, 854 3, 484 6, 854 3, 482

helminth infection intensity and determination of factors
that foster infections due to its ease of implementation
and its direct link with the observed data. Besides, NBLH
has an advantage over ZINB as it has the lowest AIC
despite the difference of less than 4.

Modelling and interpretingmain effects
Fixed effects: infection probability Table 4 provides
estimates for the fixed effects from the hurdle model,
with significant factors at 5% significance level given in
bold type. The probability of infection was found to be
associated with age (Odds Ratio [OR] = 0.97, 95% Con-
fidence Interval [CI]: 0.96–0.99), the risk of infection
decreased with age. The risk of infection was low in males
than in females (OR = 0.61, 95% CI: 0.41–0.89). Infec-
tion probability was also found to be associated with
village type; whether one was in the intervention area
or control area (OR = 0.38, 95% CI: 0.26–0.54). Those
in the intervention area were at a reduced chance of
infection relative to those in control area. We also noted
that chances of infection were increasing with number of
parasites an individual was hosting (OR = 7.30, 95% CI:
5.56–9.59).

Fixed effects: Infection intensity From Table 4, it was
observed that infection intensity reduced with an increase
in age (Relative Risk (RR) = 0.96, 95% CI: 0.95–0.98).
There was no difference in terms of infection inten-
sity between males and females (RR = 1.03, 95% CI:
0.72–1.47). Primary school children showed a high infec-
tion intensity relative to those that are in pre-school
level (RR = 1.54, 95% CI: 1.08–2.19) whereas those in
secondary level showed a reduced infection intensity
(RR = 0.34, 95% CI: 0.11–1.06) but not significant at 5%
level. A positive association was also observed between
those who did fishing in Shire river relative to those who
did not fish (Table 4). We observed an increased risk
of infection intensity farmers compared to non-farmers
(RR = 1.83, 9% CI: 1.16–2.91).

S. haematobium in school children in Lusaka Province,
Zambia
Table 5 gives characteristics of study population. A total
of 2040 school children aged 6 to 15 years were enrolled

Table 3 Zero count capturing in theMalawi studymodel

Observed Poisson Neg. Bin ZIP ZINB PLH NBLH

971 515 968 970 969 970 971

Table 4 Fixed effects estimates for NBLHmodel for
S. Haematobium in Malawi study

Infection
probability
odds ratio
(OR)

95% CI

Infection
intensity
relative
risk (RR)

95% CI

Intercept 0.13 (0.06, 0.29) 11.72 (5.70, 24.08)

Age 0.97 (0.96, 0.99) 0.96 (0.95, 0.98)

Sex:

Female 1.00 1.00

Male 0.61 (0.41, 0.89) 1.03 (0.72, 1.47)

Education:

None 1.00 1.00

Primary 1.18 (0.81, 1.71) 1.54 (1.08, 2.19)

Secondary 1.37 (0.41, 4.60) 0.34 (0.11, 1.06)

Village Type:

Control 1.00 1.00

Intervention 0.38 (0.26, 0.54) 0.81 (0.58, 1.13)

Fishing:

No 1.00 1.00

Yes 0.73 (0.44, 1.20) 0.68 (0.45, 1.03)

Garden:

No 1.00 1.00

Yes 1.34 (0.90, 1.99) 1.21 (0.82, 1.81)

Occupation:

Other 1.00 1.00

Farmer 0.61 (0.35, 1.06) 1.83 (1.16, 2.91)

Polyparasitism 7.30 (5.56, 9.59) 0.87 (0.70, 1.08)

into the study from 20 selected primary schools in the
two districts, Kafue and Luangwa, 1909 (93.5%) pro-
vided urine samples for parasitological examination. The
remaining children 131 (6.5%) did not provide urine sam-
ples for examination. Overall S. haematobium prevalence
rate for two districts was 9.6% (range: 0 – 36.1). Infec-
tion intensity had a mean of 31.4 eggs/10 ml (range:
0 – 120 eggs/10 ml). However there was a significant
difference in the mean intensity of infection, with 40.2
(range: 3 – 53.1 eggs/10ml) observed in Kafue district and
22.6 (range: 0 – 116.0 eggs/10 ml) in Luangwa district.
For Schistosomiasis, a large proportion of individuals were
“non egg excretors” (84.6%).
Similar to results from Malawi study, gender showed

to be insensitive to urinary Schistosomiasis prevalence
and intensity with a χ2 = 2.4 and a p-value = 0.124.
Age showed marginal differences between the 6-9 years
and 10-15 years age groups, χ2 = 4.0 with p-value
= 0.059. With a χ2 =29.5, altitude showed significant
difference between valleys and plateaus in influencing
infection prevalence and intensity. Normalised difference
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Table 5 Characteristics and intensity of infectionwith S.
haematobium in 2040 children from 20 schools in Lusaka
Province, Zambia, 2004

Variable Mean (std. dev) Number (%)

Intensity of infection

No infection (0 eggs/ml: epm) 1726 (84.6)

Light infection (1-100 epm) 139 (6.8)

Mod/heavy infection (> 100 epm) 44 (2.2)

Age (years) 9.98 (2.14)

6-9 years 1130 (55.4)

10-15 years 900 (44.1)

Sex

Female 1027 (50.4)

Male 1000 (49.0)

Altitude

Plateau 723 (35.4)

Valley 1316 (64.5)

NDVI 138.2 (5.1)

TMAX 19.6 (2.9)

Snail abundance (B. globosus) 25.3 (29.9)

vegetation index (NDVI) (t = 1280.47, p-value <0.001)
showed a significant impact on urinary Schistosomiasis.
Again, Tmax (t = 282.26) and snail abundance (t = 30.82)
both with p-values <0.001 also showed significant impact
on urinary Schistosomiasis.

Model comparison
Using the AIC and zero capturing, AIC results show
that the NBLH and ZINB offer a better fit compared to
using Poisson Logit Hurdle (PLH) or a negative binomial
(AIC = 3,230 for NBLH and 3,232 for ZINB; whereas
AIC = 14,8734 for PLH and AIC = 3,250 for NB respec-
tively), see Table 6. With regards to zero capturing, the
Poisson model was again not appropriate as it could only
capture 183 of the zeros whereas the zero adjusted mod-
els were much better in capturing the zero counts. The
NBLH, ZINB, PLH and ZIP models captured 1705 zeros
which were equal to the observed (Table 7). Since NB
modified based models (NBLH and ZINB) offered the
best fit to zero inflated helminth data in terms of the AIC
(minimum value for all the models fitted), NBLH there-
fore was used for fitting a final model to model helminth

Table 6 Model comparison using Akaike Information
Criterion (AIC) for Zambia study data

Poisson Neg. Bin. ZIP ZINB PLH NBLH

AIC 351,690 3,250 148,734 3,232 148, 734 3,230

Table 7 Zero count capturing in Zambia studymodel

Observed Poisson Neg. Bin ZIP ZINB PLH NBLH

1705 183 1704 1705 1705 1705 1705

infection intensity and determination of factors that foster
infections.

Modelling and interpretingmain effects
Fixed effects: Infection probability From Table 8, sig-
nificant factors at 5% significance level are given in bold
type. The probability of urinary Schistosomiasis infec-
tion was shown to have a significant association with age
(OR= 0.69, 95% CI: 0.50–0.94) with lower risk in younger
children. Infection probability showed a positive associ-
ation with sex (OR = 1.17, 95% CI: 0.86–1.60) though
not significantly different between females and males. We
observed a negative association between infection prob-
ability and altitude (OR = 0.37, 95% CI: 0.25–0.53) with
those in the valley at an increased risk of infection. Max-
imum temperature (TMAX) showed an association with
probability of infection though not significant at 5% level
(OR = 0.99, 95% CI: 0.94–1.04). We also observed a
positive relationship between snail abundance and risk
of infection, (OR = 1.01, 95% CI: 1.00–1.01). Marginal
positive association was observed between urinary Schis-
tosomiasis and NDVI (the mean Dec–Nov biannual com-
posites of NDVI) (OR = 1.04, 95% CI: 1.00–1.07).

Table 8 Probability and intensity of infectionwith S.
haematobium in 2040 children from 20 schools in Lusaka
Province, Zambia, 2004

Infection
probability
odds ratio
(OR)

95% CI

Infection
intensity
relative
risk (RR)

95% CI

Intercept 0.01 (0.00, 0.65) 13.03

Age:

10-15 years 1.00 1.00

6-9 years 0.69 (0.50, 0.94) 0.55 (0.25, 1.19)

Gender:

Female 1.00 1.00

Male 1.17 (0.86, 1.60) 1.28 (0.57, 2.87)

Altitude:

Plateau 1.00 1.00

Valley 0.37 (0.25, 0.53) 0.11 (0.04, 0.28)

TMAX 0.99 (0.94, 1.04) 0.84 (0.75, 0.94)

NDVI 1.04 (1.00, 1.07) 1.07 (0.99, 1.16)

Snail abundance 1.01 (1.00, 1.01) 1.00 (0.99, 1.01)
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Fixed effects: infection intensity From Table 8, we
observed that infection intensity was marginally asso-
ciated with age (RR = 0.55, 95% CI: 0.25–1.19). It
was observed that temperature was negatively asso-
ciated with urinary Schistosomiasis intensity (RR =
0.75, 95% CI: 0.75–0.94), as well as altitude (RR = 0.11,
95% CI: 0.04–0.28). Snail abundance was marginally asso-
ciated with infection intensity (RR = 1.00, 95% CI: 0.99–
1.01). We also observed a positive association between
infection intensity and NDVI (mean Dec-Nov biannual
composites of NDVI) (RR = 1.07, 95% CI: 0.99–1.16) as
well as gender (RR = 1.28, 95% CI: 0.57–2.87) albeit both
not significant at 5% level.

Discussion
This paper considered several count data models to quan-
tify factors associated with prevalence and intensity of
S. haematobium infection using two different datasets
inflated with zeros. Factors considered include such as
age, sex, education level, village type, fishing in rivers,
working in gardens, occupation and polyparasitism. All
the models considered modelled intensity by using the
actual egg counts as the response. An alternative approach
to modelling intensity of infection is derived by catego-
rizing egg-counts into groups of no infection, light and
moderate/high infection based on egg counts in the urine
samples. The competing models were compared to each
other in terms of AIC, estimated regression coefficients
and zero count capturing.
Results from model comparison and selection showed

that NB modified based models (NBLH and ZINB) are
better for modeling excess zeros as they competed well in
terms of both AIC as well as zero count capturing. Our
results illustrate, for the observed data, that the ZINB and
NBH models are preferred but these models are indis-
tinguishable with respect to fit. Choosing between the
zero-inflated and hurdle modeling framework, assuming
Poisson and NB models are inadequate because of excess
zeros, should generally be based on the study design and
purpose [1]. If the study’s purpose is inference then mod-
eling framework should be considered. For example, if the
study design leads to count endpoints with both structural
and sample zeros then generally the zero-inflated mod-
eling framework is more appropriate, while in contrast,
if the endpoint of interest, by design, only exhibits sam-
ple zeros (e.g., at-risk participants) then the hurdle model
framework is generally preferred. Conversely, if the study’s
primary purpose it is to develop a prediction model then
both the zero-inflated and hurdle modeling frameworks
should be adequate.
Cameron and Trivedi [13] report that ZINB and NBLH

are a reparameterization of each other for a binary predic-
tor. Again, in practice, there is no or little difference in AIC
between theNB hurdlemodel and zero-inflated NBmodel

[1]. However, it should be noted that NBLH which allows
for over-dispersion and also accommodates presence of
excess zeros, is more appropriate among all zero-adjusted
models [9].
In the current paper, we only considered a single hur-

dle on infection and non infection for the study sub-
jects for the hurdle negative binomial model. It should
be noted that these can be extended to multiple hur-
dles [30] for the inclusion of measurement (i.e. kato-
katz, quantitative filtration technique or other measures)
error for instance, among other hurdles. The hurdle
models can also be extended to capture spatial hetero-
geneity by introducing covariates and random effects [31].
We are currently working on multiple hurdles extension
models.
In general, common factors to influence S. haemato-

bium infection intensity and prevalence in both Malawi
and Zambia studies.We found that S. haematobium infec-
tion intensity reduced with age, this confirms what previ-
ous studies found. In common intestinal helminths such
as Ascaris lumbricoides (large roundworms) and Trichuris
trichiura (whipworm) and also Schistosomiasis, children
are more heavily affected and infected than adults [32].
Several other studies have reported that school-aged
children show high infection intensity and prevalence
[33-35]. Fishing in Shire river and working in gardens
along the river were potential risk factors for exposure
to Schistosomes and subsequent infection because trans-
mission requires contact with the aquatic habitat of inter-
mediate host snails [36]. This is in line with results from
a study that was conducted in western Africa [37], that
contact with water bodies that are a habitat for interme-
diate host snails is one of the main risk factors. Results
showed low probability of infection for males compared
to females. This could be explained by a number of fac-
tors including that Malawi being an agriculture based
economy, and that mainly agricultural activities are car-
ried out by females, hence they are more exposed to
risk factors such as working in gardens and farming.
Schistosomiasis is water dependent disease and the inci-
dence is usually more amongst people who constantly
get into contact with the schistosome infected waters
through activities such as farming, fishing, swimming and
washing [36].
Results showed that individuals who had received

chemotherapy cure for helminth showed reduced risk of
infection as well as infection intensity as compared to
those in the control area in theMalawi study. Studies have
shown that MDA significantly reduces Schistosomiasis
infection [38,39]. Evidence has shown that, following
chemotherapeutic cure of S. haematobium infection,
older individuals display a resistance to re-infection in
comparison to younger children [40]. Therefore there
is need to channel integrated control and interventions
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for helminths to areas with diseases burden in order to
reduce and/or eradicate the infections - more especially
towards school age children. Studies have shown that
having one infection, is a risk factor for having other
infections [41]. It is conceivable that the first parasite
that establishes an infection may modulate the immune
response in such a way that it makes it easier for the
next [25].
We believe that the apparent dominance of agricultural,

socioeconomic and demographic factors in determining S.
haematobium infection risk in the villages carries impor-
tant implications for disease surveillance and control
strategies. Prevalence of S. haematobium was associated
with age of an individual as well as working in the garden
and also number of parasites an individual hosted. Fur-
thermore, S. haematobium infection intensity was asso-
ciated with gender, education level, garden, occupation
and village type (intervention). Cercariae control con-
trol through environmental modifications and strategies
involving socio-economic status improvement and MDA
may be more promising approaches to disease control in
this setting.

Conclusion
The research reported in this article showed that the zero
modified negative binomial logit hurdle (NBLH) and zero
inflated negative binomial (ZINB)models aremore appro-
priate methods for the analysis of data with an excess of
zeros. These methods provide an alternative for analysing
count data with more zeros than expected and eliminates
the burden of data transformation to allow traditional
methods of count data work. There are an increasing
number of examples in the published literature where
these “two-part” methods are being used for ZI data for
helminths disease control planning and implementation
programmes.
Ease of implementation and straightforward interpre-

tation of the components and its direct link with the
observed data used here, make the NBLH model par-
ticularly a valuable alternative for researchers analysing
zero-inflated count data. It represents a key advance
in the analysis of helminth disease data inflated with
zeros.
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