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A regulatory network modeled from wild-type
gene expression data guides functional
predictions in Caenorhabditis elegans
development
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Abstract

Background: Complex gene regulatory networks underlie many cellular and developmental processes. While a
variety of experimental approaches can be used to discover how genes interact, few biological systems have been
systematically evaluated to the extent required for an experimental definition of the underlying network. Therefore,
the development of computational methods that can use limited experimental data to define and model a gene
regulatory network would provide a useful tool to evaluate many important but incompletely understood
biological processes. Such methods can assist in extracting all relevant information from data that are available,
identify unexpected regulatory relationships and prioritize future experiments.

Results: To facilitate the analysis of gene regulatory networks, we have developed a computational modeling
pipeline method that complements traditional evaluation of experimental data. For a proof-of-concept example,
we have focused on the gene regulatory network in the nematode C. elegans that mediates the developmental
choice between mesodermal (muscle) and ectodermal (skin) cell fates in the embryonic C lineage. We have used
gene expression data to build two models: a knowledge-driven model based on gene expression changes
following gene perturbation experiments, and a data-driven mathematical model derived from time-course gene
expression data recovered from wild-type animals. We show that both models can identify a rich set of network
gene interactions. Importantly, the mathematical model built only from wild-type data can predict interactions
demonstrated by the perturbation experiments better than chance, and better than an existing knowledge-driven
model built from the same data set. The mathematical model also provides new biological insight, including a
dissection of zygotic from maternal functions of a key transcriptional regulator, PAL-1, and identification of
non-redundant activities of the T-box genes tbx-8 and tbx-9.

Conclusions: This work provides a strong example for a mathematical modeling approach that solely uses
wild-type data to predict an underlying gene regulatory network. The modeling approach complements traditional
methods of data analysis, suggesting non-intuitive network relationships and guiding future experiments.
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Figure 1 The C lineage produces ectodermal and mesodermal
cells in the C. elegans embryo. The C cell is an embryonic
“founder” cell in the C. elegans embryo that is born after three
rounds of cell division. It divides to produce cells that contribute
to the ectoderm (skin) and mesoderm (body wall muscle) of
the embryo, which are highlighted in the bottom diagram of a
1.5 fold embryo.
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Background
Production of the diverse cell types that make up a
multicellular organism is a highly complex and intercon-
nected process. Although at the cellular level many
developmental decisions can be broken down to a sim-
ple choice between two outcomes, it is clear that there
are multiple regulatory inputs into that decision
(reviewed by [1]). While a variety of genetic and gen-
omic methods can be used to dissect the regulatory
inputs into developmental cell fate decisions, large scale
experimental analyses are limited by time and expense.
These practical constraints argue for the development
of computational methods that maximize extraction of
biologically relevant information from the available data,
as well as the development of predictive models to
prioritize experiments for future testing.
Mathematical approaches to modeling complex behav-

ior can generally be categorized as either data-driven or
knowledge-driven. Knowledge-driven models are con-
structed by assembling all known features of a biological
system into the model. Knowledge-driven models can be
considered “bottom up” models, and they reflect a meth-
odology that has been highly effective in the physical
sciences. Although knowledge-driven models are com-
mon in mathematical biology [2-4], it is often the case
that there is not sufficient information about the bio-
logical system to completely define the model. In con-
trast, data-driven models are built from experimental
data, often in the absence of known features. These
models are “top down,” in that they use observations
from the biological system to infer, or reverse engineer,
the model. Data-driven models can always be built given
an appropriate data set; the problem lies in the fact that
there are typically hundreds to thousands of possible
models for a given data set and so model selection tech-
niques must be employed.
There are many reverse-engineering methods available

to select preferred network models from among the pos-
sible set [5-8]. However, these methods often rely on
certain types of data, such as gene expression data
resulting from the perturbation of other genes in the
network. Relatively few methods perform well for data
recovered only from the wild-type condition and fewer
still correctly provide directional information, such that
the regulatory relationships among genes are predicted
[9]. However, limiting the practice of model-building to
experimental frameworks in which systematic perturba-
tions have been performed limits the range of biological
systems that are readily available to mathematical mod-
eling, especially for large regulatory networks. Thus we
set out to develop a mathematical modeling strategy that
utilizes data collected only from the wild-type condition,
yet enriches for regulatory interactions observed in per-
turbation experiments.
This work uses data from experiments on the nema-
tode C. elegans, an experimental model used to study
the genetics and cell biology of a variety of developmen-
tal processes. During C. elegans embryonic development,
the fate of different lineage precursor cells is established,
making each precursor different from the others ([10],
reviewed in [11]). The development of one cell, termed
the C cell, is dependent on the maternally-supplied
homeodomain transcription factor PAL-1 ([12]; Figure 1).
The C cell is precursor to two distinct cell types: meso-
derm (muscle) and ectoderm (skin). Following specifica-
tion of the C cell type by PAL-1, interaction among a
number of PAL-1-dependent genes results in the deci-
sion of a cell to differentiate as mesoderm or ectoderm.
Baugh et al. [13] developed a preliminary, biological
model for the C lineage regulatory network based on a
developmental time course of gene transcript abundance
data from animals wild type for all genes in the network.
This model was then tested and refined by systematic
gene disruption and gene interaction experiments of
Yanai et al. [14]. This combined set of wild-type descrip-
tions and perturbation experiments provides data sets
that allow for the building and testing of mathematical
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models for this developmental process. Consequently,
we have selected this experimental system as a proof-
of-concept example to compare the performance of
data-driven mathematical models with that of knowledge-
driven biological models.
Here, we present a mathematical approach that uses

two distinct methods in series to model this develop-
mental network solely from wild-type gene transcript
abundance time-course data. To test the mathematical
model, we build a corresponding knowledge-driven net-
work that is comprehensive in the sense that it incorpo-
rates interactions for which there are multiple sources of
supporting experimental evidence. We find that the
mathematical model predicts regulatory relationships
present in the biologically-derived network with a high
degree of accuracy, and that it predicts more features of
the biological network than does a knowledge-driven
model derived from the same data set. The results argue
that model-assisted evaluation of experimental data
can identify new regulatory relationships not suggested
by existing scientific knowledge, and can guide future
experimental inquiry.

Results
Overview of modeling and model validation framework
The research framework relies on two data sets that rep-
resent different states of knowledge for the same gene
regulatory network. The gene regulatory network
includes a set of genes important for the development of
the C. elegans embryonic C cell lineage, a cell that gives
rise to two distinct cell types: mesoderm and ectoderm
[10]. The C lineage is dependent on the transcription
factor PAL-1, and a number of genes have been identi-
fied that influence how cells in the lineage choose
between the two possible cell type outcomes [12,13].
The test data set is based largely on results of Yanai
et al. [14], who completed gene perturbation experi-
ments followed by transcript abundance analysis for
all genes in the network, and yeast one hybrid (DNA
binding) analysis for all transcription factors and the
upstream sequences for each gene in the network. These
data (along with additional data curated from the litera-
ture, see Methods) are used to develop the Gold Stand-
ard Network (GSN). The source data set for the
Mathematically Inferred Model (MIM) is provided in
[13]. It includes time-course analysis of gene transcript
abundance in essentially wild-type animals. In addition,
we have formalized the knowledge-driven model pro-
posed by Baugh et al. (Figure 9 of [13]) as the Wild Type
Model (WTM), for comparison to the MIM. Conse-
quently, both the mathematical model (MIM) and the
knowledge-driven biological model (WTM) are derived
from the same data set and reflect a comparable state of
knowledge of the gene regulatory network. These two
models are then compared to the Gold Standard Net-
work derived from the test data set. To select the genes
to include in the network, we used all of the genes in
the network proposed by Baugh et al. [13], plus lin-26.
lin-26 had been previously identified as a critical factor
for development of epidermal cell types [15-17]. This
approach of separating the model-building data from the
model-testing data provides a rigorous test of our math-
ematical modeling strategies using data that are pre-
existing in the literature.
We will use the word “module” to refer to groups of

genes, following the groupings of Yanai et al. [14], with
additions from Baugh et al. [13]. The specific groups are
“initiation” for pal-1, tbx-8, and tbx-9; “ectoderm” for
elt-1, elt-3, lin-26, and nhr-25; “mesoderm” for hlh-1,
hnd-1, and unc-120; “mixed” for nob-1, scrt-1, and vab-
7; and “other” for cwn-1 and mab-21. In all figures we
have color coded the nodes according the module: blue
for initiation, yellow for ectoderm, gray for mesoderm,
brown for mixed, and green for other.

The gold standard network is a comprehensive
knowledge-driven model of the gene regulatory network
controlled by PAL-1
In order to assess the performance of a model, a repre-
sentation of the "truth", or a so-called gold standard net-
work, is required. A network is defined as a gold
standard if it is used to validate the performance of a
method or a model; in essence it is considered to be the
sought-after solution [18,19]. While it is common to
construct a gold standard from a synthetic or a simu-
lated network, we aim to assess the predictive power of
two types of models (i.e., data-driven versus knowledge-
driven) in the presence of future knowledge. Therefore
our gold standard, constructed from interactions
obtained from experiments subsequent to those in [13],
is intended to be a comprehensive model of the regula-
tory network controlled by PAL-1.
The primary source of data for our gold standard net-

work, which we label GSN, regulating cell fate decisions
in the C. elegans C lineage is [14], with additional data
curated from the literature (Additional file 1: Table S1,
tabs “Gene interactions” and “Gene interactions – refs”).
Yanai et al. incorporated their results into a knowledge-
driven model represented as a set of directed graphs
(Figure 4 of [14]), which we refer to as the Experimen-
tally Derived Model (EDM). While this model reflects
the data, we have produced an alternative model that is
derived from a systematic approach to data interpret-
ation (see Methods). The rationale for production of this
alternative model is to demonstrate one way in which
scientists lacking specialized expertise in a particular
biological system can use existing data to build a
knowledge-driven model, and derive testable hypotheses
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from that model. We define this as the GSN. Due to its
size, the GSN is represented as a pair of graphs: one
showing the interactions between genes within a regula-
tory module (e.g., ectoderm, mesoderm) and the other
showing the interaction between genes in different mod-
ules (Figure 2). The model includes both directed and
undirected edges, depending on the type of experimental
data that predict the edge. For consistency, we use the
gene (rather than protein) names in all of the models.
To evaluate the GSN, we compared it to the EDM,

including only pal-1 and the genes of the ectoderm
and mesoderm modules, to match the choices in [14]. In
Figure 3 we illustrate the similarities (in black) and
differences (in red) between the EDM and the GSN. The
GSN shares extensive similarity with the EDM, a result
that is not unexpected given that the two draw on the
same data sources. Two edges in the ectodermal module
(from elt-1 to nhr-25, and elt-3 to lin-26) are included in
the EDM, whereas they are predicted to be absent by the
GSN. Five additional edges are predicted by the EDM,
but the data were insufficient for the GSN to either
support the edge, or provide a direction for the edge.
We hypothesize that the requirement of two data fea-
tures to support inclusion of an edge in the GSN will
result in a more conservative network than provided
by the EDM. Altogether, the GSN is a network that
shares similarity with one derived independently by
experimental specialists.
One benefit of the GSN is that it incorporates data for

all genes in the network, allowing description of features
that are not included in the EDM. For example, we
observe that the initiation genes pal-1 and tbx-8/tbx-9
are distinct in their interactions within the GSN,
Figure 2 The Gold Standard Network (GSN) derived from the literatur
lines with arrows indicate directed interactions and dashed lines without d
interactions between modules, and the right graph depicts interactions wit
outgoing edges for the genes tbx-8 and tbx-9, they are represented as a sin
edges displayed. The colors of the nodes, maintained throughout, correspo
gray for mesoderm, brown for mixed, and green for other.
whereas no such distinction is made in the EDM. In par-
ticular, pal-1 and tbx-8/tbx-9 have different target gene
sets. In addition, tbx-8/tbx-9 are regulated by other
genes in the network (nhr-25, lin-26 and nob-1), whereas
pal-1 has no in-network regulators. In the GSN all three
of the initiation genes (along with others) regulate elt-3,
whereas in the EDM pal-1 is the only regulator from the
gene set. In the GSN, we see that pal-1 regulates all
mesodermal genes, which matches the predictions in the
EDM; however, we also see that the other two initiation
genes tbx-8/tbx-9 also regulate hlh-1. Altogether, the
GSN includes a greater complexity of interactions for
the initiation gene set than does the EDM.
The EDM incorporates data for two pal-1-regulated

modules: ectoderm and mesoderm. The EDM and GSN
exhibit similarities within the ectoderm module, but
there are a number of differences for the mesoderm
module. The EDM predicts that all three genes regulate
each other. The GSN is in agreement between hnd-1
and hlh-1; however there is disagreement around unc-
120. The difference arises from there not being enough
support for the regulatory interactions involving unc-
120. In fact, the GSN suggests that the regulatory inter-
action from hnd-1 to unc-120 may happen through
nob-1; that is, there is a directed path of hnd-1! nob-
1! unc-120. While additional data might modify the
interpretation, the more conservative GSN identifies
the potential for indirect regulatory relationships.
For the mixed module, the EDM provides no predic-

tions for these genes. While we cannot make a direct
comparison, we will highlight some predictions of the
GSN. The GSN identifies the mixed gene vab-7 as a key
regulator of the mesoderm module, as only it and pal-1
e. The GSN is represented as a pair of mixed graphs, where solid
ecorations indicate undirected interactions: the left graph depicts
hin modules. Since there is no difference between incoming and
gle node in the between-groups graphs to minimize the number of
nd to their associated module: blue for initiation, yellow for ectoderm,



Figure 3 Comparison of the GSN to the EDM represented as a consensus graph. Black edges reflect agreement, whereas red edges reflect
differences between the two models. Solid thick red edges depict edges in the EDM that are not in the GSN; that is the GSN predicts that there
is no interaction between the genes incident to a solid red edge. Dashed thin red edges depict edges in the EDM for which there are no
predictions in the GSN; that is, according to the GSN, it is unknown whether the genes incident to a dashed red edge interact. Solid thin red
edges annotated with 0.5 depict edges predicted to be directed in the EDM and undirected in the GSN.
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regulate all three genes of the module. The GSN also
identifies nob-1 as an important regulator in the whole
network. nob-1 interacts with each module through
regulation of elt-1 (ectoderm), unc-120 (mesoderm), and
tbx-8/tbx-9 (initiation). nob-1 also regulates the other
genes within the mixed module. In contrast, scrt-1 exhi-
bits no interactions beyond the mixed module. Thus the
GSN identifies the cross-network nature of genes in the
mixed module, and also demonstrates functional differ-
ences among the mixed module genes.
The authors of the EDM proposed an “expert-

inferred” model (i.e., one not strictly based on their data)
for the regulation of the ectoderm and mesoderm mod-
ules by pal-1 (see Figure 6 of [14]); we refer to this
model as the C lineage model. For completeness’ sake,
we compare the GSN to those additional findings. In the
C lineage model, the authors predict that the ectoderm
gene elt-1 regulates the mesoderm module; the GSN
narrows the target set to unc-120 and hlh-1, and
includes lin-26 as another regulator of these two meso-
derm genes. Additionally, in the GSN the mesoderm
module regulates elt-1, which matches the predictions in
the C lineage model. Thus the GSN also makes predic-
tions that match expert-driven network features that
reflect expert experience, knowledge of the literature,
and knowledge of the experimental system.
In building the GSN, we also collected information

about which genes are observed to not regulate other
genes, referred to as “non-interactions”. Non-interactions
are distinct from relationships for which there is insuffi-
cient data, and identify prospective cases of network
hierarchy or other network constraints. For example, a
number of non-interactions were identified between
initiation genes and genes from other categories. The
genes elt-1, elt-3, hlh-1, unc-120, and scrt-1 were found
to not regulate any of the initiation genes. Additionally
lin-26, nhr-26, hnd-1, vab-7, and nob-1 do not regulate
pal-1. In the ectoderm module, we observe that nhr-25
and elt-3 do not regulate lin-26; elt-1 does not regul-
ate nhr-25; and lin-26 does not regulate elt-3. In the
mesoderm module, however, no non-interactions were
discovered. These results identify differences in either
the interconnectedness or the functional redundancy
between the two modules.
To further evaluate the GSN, we evaluated a set of

“statistics” from graph theory for which common fea-
tures have been discovered in modeling gene regulatory
networks [20]. In many biological networks, the average
path length (average minimal number of edges between
any two nodes) is less than four. With an average path
length of about three, the GSN is consistent with this
prediction. The average out-degree (the number of out-
going edges) is five and the average in-degree of the
nodes is five. Consistent with other gene regulatory net-
works, the GSN has relatively few nodes with an out-
degree of greater than half of the network in their target
set: pal-1, lin-26, and nob-1. These genes can be consid-
ered the network hubs. While there are also relatively
few nodes with an in-degree of greater than half of the
network (hlh-1 and elt-1), the GSN is unusual for a tran-
scriptional network as it has a relatively large range for
the in-degree of the nodes (0–10 in a 15 node network).
Overall, the GSN exhibits network features seen in other
gene regulatory networks, and serves as a knowledge-
based model for C cell lineage development against
which other models can be tested.
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A mathematically inferred model of the gene regulatory
network controlled by PAL-1
We derived a Mathematically Inferred Model (MIM) for
the gene network regulating cell fate decisions in the
C. elegans C cell lineage using wild-type gene expression
time-course data from [13]. The model results from
applying two different modeling methods in series. Such
approaches have been termed “pipelines,” and they
exhibit improved performance over individual methods
alone [21]. To utilize the benefits and minimize the
weaknesses of methods from different modeling classes,
we applied statistical (covariance (COV)) and algebraic
(the Minimal Sets Algorithm (MSA)) methods in series
(see Methods). Covariance can discover a larger number
of gene relationships, but does not provide information
about the regulatory relationship between genes that
covary. MSA, on the other hand, identifies fewer pos-
sible relationships, but it predicts directional edges since
it incorporates the observed gene expression changes
from one time point to the next. Consequently, the
model includes both directed and undirected edges,
reflecting the types of edges predicted by the different
methods. The MIM is represented as a set of three fig-
ures: one showing the interactions between genes within
a regulatory module, one showing directed interactions
between genes in different modules, and one showing
undirected interactions between genes in different mod-
ules (Figure 4).
There are two principal ways to combine the methods

used in the MIM: COV followed by MSA, denoted
COV-MSA, and vice versa. Intuitively it seems natural
to first allow COV to decide which genes interact and
then to let MSA determine the direction of the inter-
action; however, either order is technically feasible. We
built a model using both pipeline orders, compared
them using the assessment methods described below,
and found that they yield comparable results (see Meth-
ods). These findings suggest that, at least in this case, the
order of modeling methods within the pipeline does not
drastically impact the performance of the model. The
MIM of Figure 4 results from application of MSA-COV,
as this model is modestly better than that built from the
reverse order. The graphs from application of COV-MSA
are shown in Figures S1 and S2 in Additional file 2.
To assess the MIM, we compared it to the GSN, and

to the model offered by Baugh et al. ([13], their Figure
9). We term this model the Wild Type Model (WTM;
Figure 5), as it is a knowledge-based model derived from
the same wild-type data used for the MIM. As a first
comparison, we evaluated the number of predictions in
each model that are validated by the GSN. The WTM
model makes 39 predictions, which includes true posi-
tives, true negatives, false positives, and edges consid-
ered to be half-right (see Methods) with 32 or 82% being
correct, whereas the MIM makes 88 predictions with 57
or 65% being correct. Thus although the WTM achieves
a higher percentage of correct predictions, the MIM
makes over twice as many predictions, without a com-
parable loss of correctness. For a more detailed compari-
son of the models, we used precision-recall (PR) and
receiver operating characteristic (ROC) plots (Figure 6).
In both graphs, points that lie above the dashed line
have a stronger predictive value than random. The data
used to produce these figures are included in Additional
file 1: Table S1, Tab “Overall.”
We assessed the models’ overall performance, as

well as performance on ability to identify targets of
PAL-1 and to identify the ectoderm and mesoderm
subnetworks. More specifically, we considered the
subnetworks generated by the genes within a mod-
ule, that is the subgraph of edges incident only to
genes within a module. We also considered the sub-
networks of the modules within the context of the
entire network; that is the subgraph induced by
those edges incident to genes within a module and
possibly incident to genes outside the module. The
subnetwork of the first type is denoted by “s” and of
the second type, by “w” in Figure 6. Note that two
nodes are adjacent if they share an edge, and an
edge is incident to a node if the node is an endpoint
of the edge.
A global comparison of the models can be obtained by

evaluating the distance of the resulting model from one
whose predictions are random guesses (see Methods).
The MIM has a total distance of 2.8, whereas a best per-
forming model has a total distance of about 8.49. In con-
trast, the total distance of the WTM from random is 1.3,
arguing that the MIM globally has a 111% increase in
predictability over the WTM. The predictions that the
WTM (blue triangles) makes are correct in the context
of the GSN, accounting for high precision (92%) and low
FPR (1%); however, the WTM misses many of the inter-
actions in the GSN, which is evident in its low recall
(14%). It is due to the low recall value that the predic-
tions of the WTM have a distance of 0.04 and 0.09 from
random guesses in the PR and ROC plots, respectively.
While the MIM (orange squares) has more misidentified
predictions (lower precision at 71% and higher FPR at
46%) than the WTM, it has greater recall (55%). These
changes result in a distance of 0.18 and 0.06 from ran-
dom guesses in the PR and ROC plots, respectively, indi-
cating a 316% increase in PR space and a 29% decrease
in ROC space. We see that the MIM correctly identified
more targets of PAL-1 (78% recall) than the WTM (33%
recall); both models have 100% precision and 0% FPR
for the targets of PAL-1. The MIM’s PR and ROC points
are a distance of 0.55 from a random guess, compared
to the WTM’s points at a distance of 0.24; this value of



Figure 4 The Mathematically Inferred Model (MIM) constructed using MSA-COV. The MIM is represented as a triple of mixed graphs, where
solid lines with arrows indicate directed interactions and dashed lines without decorations indicate undirected interactions: the upper left graph
depicts directed interactions between modules; the upper right graph depicts interactions within modules; and the bottom graph depicts
undirected interactions between modules. A colored edge incident to a colored box indicates that the edge is incident to all genes in the box;
edge and box colors are used to assist the reader in determining the ends of edges.
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0.55 is the largest distance achieved by either model.
The MIM also identified more interactions in the meso-
derm module (59-67% recall; the range reflects differ-
ences between subnetwork “s” vs “w”) than the WTM
(15-33% recall). While the WTM has 100% precision
and 0% FPR on the mesoderm module, the MIM has 82-
100% precision and 0-33% FPR. The significance is that
Figure 5 The Wild Type Model (WTM), derived from Baugh et al. [13].
lines with arrows indicate directed interactions: the left graph depicts inter
within modules.
the MIM does not lose much in the way of making mis-
takes, while it gains much in the way of identifying other
interactions, as compared to the WTM. Where the
mathematical model suffers is in the prediction of the
ectoderm module, with a precision of 50-71%, a recall
of 50-67% and a FPR of 45-100%. As above, we use the
distance to summarize the findings: the distances of the
The WTM is represented as a pair of directed graphs, where solid
actions between modules, and the right graph depicts interactions



Figure 6 Performance of the MIM using MSA-COV. In the upper left is a precision-recall (PR) plot and in the upper right is a receiver
operating characteristic (ROC) plot. Blue triangles and orange squares represent data points for the WTM and the MIM, respectively. The labels for
the data points are as follows: E = ectoderm module; M=mesoderm module; P = targets of PAL-1; Overall = entire model. A parenthetical “s” for
“module subnetwork” indicates performance of the subgraph generated by genes within a module; that is, edges incident to genes outside of the
module are not counted. A parenthetical “w” for “module in whole network” indicates performance of the subgraph induced by those edges
incident to genes within a module; note that genes outside the module may be included in the subgraph. A good value lies in the upper
right-hand corner of the PR graph and in the upper left-hand corner of the ROC graph. In either case, values that lie on the dashed line are
considered to be no better than random guesses and values below the line are considered to be poor. In the bottom row are the distances of
the points in the upper plots from the dashed lines.
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MIM’s PR and ROC points range from −0.24 to 0.15.
We point out that negative distances reflect worse than
random predictions. Notably, the single false positive
edge prediction in the WTM is also in the ectoderm
module, with 71-78% precision, 12-28% recall and 4-17%
FPR, with distances between −0.07 and 0.08. The false
positives present in both models may be indicative of
features of the ectoderm module - such as complexity -
that uncover the limitations of our modeling strategy.
Alternatively, the false positives could suggest genetic
redundancy in this module. For example, redundancy in
the network would lead to under-prediction of regulatory
edges based on single gene perturbation experiments,
which are the primary source of data for the GSN.
Now we compare specific features of the MIM to the

GSN. One notable difference between the MIM and
the GSN is in the predictions for tbx-8 and tbx-9. In the
GSN, these initiation genes are indistinguishable, which
is not the case in the MIM. For example, the MIM sug-
gests that tbx-8 interacts with lin-26, hlh-1, and nob-1,
whereas there is no such prediction for tbx-9. Further-
more, of these two initiation genes, only tbx-9 is found
to regulate elt-3 in the MIM, while in the GSN both
regulate elt-3. On the chromosome, tbx-8 and tbx-9 are
adjacent genes with a shared upstream region (they are
on opposite strands of the DNA), and this genomic
organization has suggested that they are co-regulated
[22]. However, because the MIM is built from gene
expression data, these model differences reflect differ-
ences in the observed behavior of the tbx-8 and tbx-9
transcripts, and suggest that the regulation of these genes
may be more complicated than previously thought.
An important feature of the MIM is the involvement

of pal-1 not just as a key regulator of other genes, but
also as a participant in feedback loops commonly found
in gene regulatory networks. Both the GSN and the
MIM identify tbx-8 and tbx-9 as regulators of pal-1, and
include the two-cycles pal-1 ! tbx-8/tbx-9. The
mathematical model additionally suggests non-initiation
genes as regulators of pal-1, namely, hlh-1, nob-1, and
cwn-1. The genes pal-1! nob-1! cwn-1 form a feed-
forward loop (with each gene also providing feedback on
pal-1), while pal-1! scrt-1! hlh-1 and pal-1! (nhr-
25, lin-26)! nob-1 form feedback loops. (Note that in a
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feedforward loop the first element goes to the last,
whereas in a feedback loop the last goes to the first.)
Other feedforward loops shared by the GSN and the
MIM are pal-1! hnd-1! lin-26 and pal-1! lin-26!
hlh-1. Since pal-1 is both provided maternally and tran-
scribed zygotically, feedback loops in the MIM identify
potential zygotic activities for pal-1. While other studies
have demonstrated the general importance of zygotic
pal-1 [23-25], the ability to separate prospective zygotic
from maternal roles is a unique features of the MIM
compared to the other models.
The MIM identifies possible alternative network archi-

tectures compared to the GSN. Both the GSN and MIM
predict the directed paths lin-26! nhr-25! elt-1 and
hnd-1! lin-26! hlh-1, the latter suggesting an alter-
nate path of the direct regulation of hlh-1 by hnd-1
represented in the GSN. Another example of an alterna-
tive path is that from scrt-1 to vab-7, shown to be direct
in the GSN; however, another explanation is that scrt-1
acts on vab-7 through hnd-1, as suggested by the MIM.
In building the GSN, we assumed that experimentally
confirmed edges were direct. However, we recognize that
gene expression changes might result from either direct
or indirect effects. The MIM suggests cases where alter-
native (indirect) regulatory relationships might explain
the observed data.
A comparison of the non-interactions between the

MIM and the GSN could not be performed. While such
information can in principle be extracted from the chosen
modeling methods, there were no non-interactions
being reported by MSA and adjusting the threshold for
COV resulted in all genes not interacting. As there were
no conclusive results, we exclude comparison of non-
interactions involving the MIM.
We evaluated the MIM for the same graph theory

metrics as we used for the GSN. The average path length
is about 3, and therefore less than 4. The nodes with an
out-degree greater than half of the network are pal-1
and nhr-25. The average in-degree of the nodes is 3, and
- compared to the GSN - the MIM exhibits a narrower
in-degree range (2–6). No node exhibits an in-degree
greater than half of the network, but the nodes with
greatest in-degree are pal-1 (indeg = 6), nhr-25 (indeg =
5), and nob-1 (indeg = 5). We conclude that the MIM
derived from wild-type data exhibit similar network fea-
tures to those of other gene regulatory networks.
Altogether, we have mathematically reverse engineered

a model based on wild-type gene expression data. We
employed a pipeline modeling strategy that benefits from
the unique strengths of two distinct modeling methods,
and show that the order of method in the pipeline does
not have a big impact on outcome. The model is
enriched for positive predictions compared to random
guesses, as well as compared to a knowledge-driven
model built from the same data. A key benefit of the
model is that it extracts information and offers predictions
beyond the focus of the original experimental framework.
We conclude that complementing knowledge-driven
insight with systematic modeling approaches has the
potential to improve predictability, prioritize future experi-
ments, and suggest new network features compared to
reliance only on knowledge-driven models.

Discussion
Mathematical modeling and experimental data sets
We have developed a Mathematically Inferred Model
(MIM) for the gene regulatory network underlying de-
velopment of the C cell lineage of C. elegans using gene
expression time course data recovered from wild-type
animals. We have compared this model to a Gold Stand-
ard Network (GSN) built from the data of gene perturb-
ation experiments, and found that the MIM predicts
gene interactions better than chance, and extracts a
larger and richer set of gene interactions than a
knowledge-driven biological model (the Wild Type
Model (WTM)) produced from the same wild-type data
set. In fact 65% of the MIM’s predictions are validated
by at least two sources of experimental evidence. Over-
all, we conclude that mathematical models of this
type can complement experimenter insight to suggest
unexpected regulatory relationships and to guide prio-
ritization of future experiments.
One of the main contributions of this work is to dem-

onstrate to predictive power of data-driven models. An
important consequence is that it broadens the potential
data sets and methods for modeling of biological net-
works. We used experimental data that were produced
to discover new genes involved in C. elegans C cell
development, but they were not specifically collected for
model production [13]. Indeed, the genes included in
the network were not selected prior to data collection,
but rather were an outcome of the original experiment.
This argues that experiments that are well-designed to
address specific biological questions can offer data dir-
ectly useful for modeling. From the modeling perspec-
tive, we applied a modeling method (the Minimal
Sets Algorithm (MSA)) that has been applied pre-
viously to data sets that include perturbation experi-
ments [26-29]. This work suggests that, at least when
applied in combination with other modeling methods,
MSA can extract meaningful information from wild-
type-only data sets. Finally, the model demonstrates
that pipeline modeling approaches can be applied to
large, experimentally-derived data sets. Altogether, our
results provide an example of the utility of mathematically-
assisted analysis of experimental data, whether or not
the data were originally collected within a modeling
framework.
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Modeling insights to C. elegans development
This work produced network models of two distinct
types: a knowledge-driven network based on a system-
atic annotation of experimental evidence (the GSN) and
a data-driven model that utilizes mathematical modeling
methods to infer network features (the MIM). Both
methods provide an integrated network that evaluates
the regulatory relationship within the defined ectoderm
and mesoderm sub-modules, but also among all of the
network genes. Both networks demonstrate the potential
for integration and cross-talk among all of the genes in
the C lineage. In particular, the networks incorporate the
genes identified as “mixed” (participating in develop-
ment of both mesoderm and ectoderm) that were not
included in the Experimentally Derived Model (EDM) of
[14]. This work demonstrates how modeling approaches
can suggest additional regulatory relationships beyond
the scope of the original questions addressed by the
experiments.
Another biological phenomenon highlighted by the

networks is functional redundancy. Based on genetic
tests, tbx-8 and tbx-9 are functionally redundant, in that
animals only exhibit embryonic defects when both genes
are disrupted or subject to knockdown [22,30]. For this
reason, they are grouped together in the WTM and the
EDM [13,14]. Nevertheless, gene-specific probes identify
notable differences in the expression abundance and
behavior of these two genes ([13], this work). These dif-
ferences result in distinct regulatory relationships for
each gene in the MIM. While it is clear that the bio-
logical system is sufficiently robust to only exhibit
defects when both genes are disrupted, it will be inter-
esting to test whether gene expression differences can be
detected in single gene mutants. Similarly, one source of
false positives in the MIM could be functional redun-
dancy not uncovered in the experiments used for the
GSN. The redundancy between tbx-8 and tbx-9 likely
reflects direct compensation (based on the sequence
similarity of the two genes). Another paralogous gene
pair in the GSN is elt-1 and elt-3, and some functions
may be shared between them [31]. An alternative possi-
bility is that functional redundancy results from a dis-
tributed network architecture or pathway compensation,
as is seen among the non-paralogous mesodermal genes
hlh-1, hnd-1 and unc-120 [32]. Knockdown of network
genes in combination could identify the potential for
within-network redundancy, and characterize whether
features of the network architecture are responsible.

Conclusions
Many models of biological systems are primarily
knowledge-driven, and therefore rely on the availability of
suitable data with which to build a model. This approach
places the burden on experimentalists to produce data
suitable for model-building, and - in practice - limits the
number of processes that can be modeled. The argument
in favor of a knowledge-driven approach is its track rec-
ord - it is the foundational method used to apply math-
ematics to the physical sciences. Indeed, this approach
has lead to the insights and formalisms that result in
physical theories and laws. Unfortunately, many current
computational models of biology describe the available
data well, but they predict new results, or extend to
related but distinct biological processes, with limited
accuracy. Therefore, unlike the powerful ability of math-
ematics to describe, unify, and predict outcomes in the
physical sciences, the promise of mathematical modeling
in biology is yet to be realized - a phenomenon that has
been described as the “unreasonable ineffectiveness of
mathematics in biology” [33]. While we acknowledge the
importance knowledge-based models, our current work
illustrates the value of data-driven methods to uncover
non-intuitive network features, and to use mathematical
approaches to guide future experiments based on a pre-
liminary set of descriptive data.

Methods
Building the gold standard network
The Gold Standard Network was built based on experi-
mental data curated from the scientific literature. A pri-
mary source of data is [14], which includes gene
expression analysis in strains systematically perturbed
for each gene using RNAi-mediated gene knockdown,
and yeast one-hybrid (DNA binding) studies. Both of
these data types are directional. Additional gene inter-
action data were recovered from studies on individual
genes, and include gene expression analysis (directional;
[12,16,22,34-36]) and synthetic gene interactions (non-
directional; [22,30,32,37,38]). In words, network edges
were assigned if two or more of the following criteria
were met: 1) Yanai et al. [14] gene expression change Z
score significance was greater than or equal to 2, 2)
Yanai et al. [14] gene expression fold change was greater
than or equal to 2x, 3) Yanai et al. [14] yeast one hybrid
experiment exhibited a positive result, or 4) a positive
relationship was reported in the studies on individual
genes (each positive result was counted independently).
The rationale for these criteria is to balance our pre-
sumption that the alteration of gene expression level in
perturbation experiments is the gold standard for dem-
onstrating regulatory relationships with our recognition
that DNA binding results support direct interactions,
and that other types of experiments (including the repli-
cation of results by different research groups) are valu-
able in the validation of perturbation experiments.
Furthermore, we require that each edge satisfies at least
two criteria as we aim to produce a gold standard net-
work in which we have a high level of confidence in all
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of the included edges. This approach may result in a
more conservative network, that is a network with fewer
edges than if there were fewer criteria to satisfy; how-
ever, we expect that our strategy minimizes bias toward
better matches with complex models as compared to less
complex models. Since knockdown experiments using
RNAi (which reduces target gene RNA abundance) are
an important source of data for the network, the experi-
mental method precludes detection of prospective self-
regulatory relationships. Therefore, the network does
not include any auto-regulatory loops. The GSN is pro-
vided as a graph in Figure 2, with the data in Additional
file 1: Table S1, Tab “GSN”.
The network is represented as a mixed graph, meaning

the graph has directed as well as undirected edges. The
graph is encoded as an adjacency matrix where an entry
(i, j) has value

� 1, for a directed edge, if gene j regulates gene i
� −1, for an undirected edge, if there is an interaction

between genes i and j, but the direction of the
interaction is unknown

� 0, for a non-edge, if there is no interaction between
genes i and j

� -, if the interaction between genes i and j is
unknown

The entries of the matrix are set according to the fol-
lowing rules:

� 1, if (sig ≥ 2 and mag ≥ 2) or (sig ≥ 2 and y1h= 1) or
(gen ≥ 2) or (sig ≥ 2 and |gen| = 1)

� −1, if |gen|≥ 2
� 0, if mag= 0 and sig= 0 and y1h= 0
� -, otherwise

where sig denotes the significance of the transcript abun-
dance, mag denotes the magnitude (fold change) of the
transcript abundance, y1h denotes the existence of a
yeast one-hybrid interaction, and gen denotes the exist-
ence of genetic interactions (described above). The
values for sig, mag, and y1h were extracted from [14],
and the values for gen were extracted from the refer-
ences listed. A numerical value for y1h and gen indicates
the number of interactions of said type. Here we use | . |
to denote the absolute value operator.

Building the mathematically inferred model
The data for the Mathematically Inferred Model (MIM)
are derived from gene expression microarray time-
course analysis of RNA from whole embryos carried out
in [13]. The RNA abundance levels in wild-type embryos
(who have one C cell) and mex-3(zu155); skn-1(RNAi)
embryos (who have 11 cells that develop like the normal
C cell (~11/12 of the embryo)) were utilized to develop
the model. We anticipate that in each of these experi-
mental conditions the cellular decisions distinguishing
mesodermal from ectodermal cell types within the C cell
lineage take place, with perhaps a greater “signal” from
the mex-3(zu155); skn-1(RNAi) animals due to the
reduction of “noise” from other cell lineages. Both of
these genotypes are considered “wild type” from the per-
spective of model-building, as neither disrupts any of
the genes within the modeled network, and were used as
independent time series. The model (produced from
the pipeline MSA-COV) is provided as a graph in
Figure 4, the data in Additional file 1: Table S1, Tab
“MIM (MS-COV)”. An alternative model (produced
from the pipeline COV-MSA) is provided as a graph in
Figure 1S in Additional file 2, with the data in Additional
file 1: Table S1, Tab “MIM (COV-MS)”.
The data set used to build the model is the gene tran-

script abundance measured at 10 developmental time
points in [13]. Since we are interested in modeling the
network of genes influenced by pal-1 (as identified in
both [13] and [14]), we extracted the time-course
data for the following 15 genes: pal-1, tbx-8, tbx-9, elt-1,
lin-26, nhr-25, elt-3, hnd-1, hlh-1, unc-120, scrt-1 (pre-
viously labeled C55C2.1), vab-7, nob-1, cwn-1, and mab-
21. The genes in this listing had unique transcript
probes, with the exception of pal-1, which had three
probes on the microarray; elt-3, with two; nhr-25, with
two; nob-1, with three; and lin-26, with two. In fact, for
those genes with 3 probes, there are two probes that
are close to the 5' end of the gene and one close to the
3' end. The data for the probes near the 5' end are
more similar than that of the probe near the 3' end. As
there was not enough information to assess the central
tendency of the data, we did not combine the data
for multiple probes for a given gene. We represented
each distinct data set with a variable, giving 22 nodes in
the network.
The model is represented as a mixed graph, meaning

the graph has directed as well as undirected edges. The
graph is encoded as an adjacency matrix where an entry
(i, j) has value

� 1, for a directed edge, if gene j regulates gene i
� −1, for an undirected edge, if there is an interaction

between genes i and j, but the direction of the
interaction is unknown

� 0, for a non-edge, if there is no interaction between
genes i and j

We used a pipeline approach to build a mathematical
model. We combined the following statistical and alge-
braic methods: covariance (COV), which measures how
much variables change together; and the Minimal Sets
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Algorithm (MSA) [26], which identifies directional func-
tional relationships between genes. Next we provide jus-
tification for the choice of methods.
Because each probe for a gene is represented with a

variable, dependence among these variables needed to
be preserved: modeling methods typically assume inde-
pendence among variables. Since covariance measures
how much variables change together, we combined it
with a threshold to couple data that should be consid-
ered to be the same. However, covariance alone cannot
identify directed interactions. Therefore, covariance
needed to be paired with a method that can detect direc-
tionality in the inferred relationships. While there are
numerous choices [5-8], most inference methods return
a few likely models. The Minimal Sets Algorithm is a
network inference method that was developed to com-
pute all minimal models from input–output data. The
algorithm identifies sets of variables that are most likely
responsible for the response given the input data; more-
over the sets are minimal in the sense they include the
fewest variables that reproduce the response. An advan-
tage of MSA is that it allows for a rigorous analysis of
the model space since all possible models are con-
structed; moreover, it does not have any requirements
for the input data. As a result, we combined MSA and
COV for their suitable and complementary features.
For each method, we constructed an adjacency matrix.

Since directionality cannot be deduced from COV,
the covariance adjacency matrix, denoted cov(i, j), has
(0, –1) entries where 0 means “no interaction” and −1
means “undirected interaction”. To construct cov(i, j),
we first computed the standard (n x n)-variance-covari-
ance matrix using MATLAB's built-in cov function [39],
where n is the number of variables. We then chose a
threshold such that the entries of the adjacency matrix
corresponding to the probeset of a given gene all have a
value of −1. We found that the median across the entire
matrix yielded an appropriate threshold.
Since MSA does provide directionality, its adjacency

matrix, denoted msa(i, j), has (0, 1) entries where 0
means “no interaction” and 1 means “directed inter-
action” from gene j to gene i. To construct msa(i, j), we
followed the procedure as outlined in [26] which we
implemented in the computer algebra system Macau-
lay2 [40]. We discretized the wild-type data set using
the method of [41]: the data were discretized to 7 states.
Then we applied MSA to the discretized data. Since
multiple possible models were returned, we discarded
models that did not satisfy a “no crosstalk” requirement
(ectodermal genes should not directly regulate mesoder-
mal genes, and mesodermal genes should not directly
regulate ectodermal genes) wherever possible and used
the scoring method (Algorithm 8 with the S1-T1 score in
[26]) to select the most likely such model. This “no
crosstalk” rule is included as it was an assumption of the
WTM derived from the same data set.
Below we provide two strategies for developing a pipe-

line using COV and MSA.
COV-MSA. One strategy is to choose the undirected

edges from the output of COV and then to incorporate
directed edges from MSA. For genes i and j, if both cov
(i, j) =−1 and msa(i, j) = 1 then we say that there is a
directed edge j! i in the resulting model. If there is no
directed edge in either direction between i and j in the
MSA model and cov(i, j) =−1, then we say there is an
undirected edge between i and j. For a given gene i,
if there is no directed self-loop in the MSA model, but
the variance of its data is above the chosen threshold
(that is, cov(i, i) =−1), we discard such edges as self regu-
lation cannot be determined from covariance. For genes
with multiple probes, an entry is set to 1 (or −1) if all
of its probes have a value of 1 (or −1) according to
the rules below. This results in an adjacency matrix for a
15-node network, as desired. In summary, the two adja-
cency matrices are combined using the following rules:

� 1, if cov(i, j) =−1 and msa(i, j) = 1
� −1, if i 6¼ j and cov(i, j) =−1 and msa(i, j) = 0 and msa

(j, i) = 0
� 0, if cov(i, j) =−1 and msa(i, j) = 0 and msa(j, i) = 1 or

if cov(i, j) = 0.

MSA-COV. Another strategy is to choose the directed
edges from the output of MSA and then to incorporate
undirected edges from COV. We include an undirected
edge between two distinct genes i and j if there is no
directed edge in either direction between them and cov
(i, j) =−1. As with COV-MSA, undirected self-loops are
discarded and genes with multiple probes were handled
as described above. A summary of the algorithm follows:

� 1, if msa(i, j) = 1
� −1, if i 6¼ j and cov(i, j) =−1 and msa(i, j) = 0 and

msa(j, i) = 0
� 0, otherwise.

Building the wild type model
The Wild Type Model (WTM) is based on the model
offered in Baugh et al. ([13]; modified from their
Figure 9) as an interpretation of their wild-type gene
transcript abundance time course data. It is a knowledge-
driven biological model for comparison to the Mathemat-
ically Inferred Model built from the same source data set.
This model emphasizes the temporal and spatial relation-
ship of expression for each gene. In words, each direc-
tional edge included in Baugh et al. (Figure 9 of [13]) was
assigned as a directional edge in the model. Genes
assigned to a particular time phase might influence genes
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in that time phase or later, but were restricted (blocked)
from influencing genes in an earlier time phase. Further-
more, transcription factor genes assigned to a particular
tissue type (mesodermal or ectodermal) were restricted
from influencing transcription factor genes in the alterna-
tive tissue type (a “no cross-talk” constraint also included
in the MIM).
The model is represented as a directed graph, meaning

the graph has only directed edges. The graph is encoded
as an adjacency matrix where an entry (i, j) has value

� 1, for a directed edge, if gene j regulates gene i
� 0, for a non-edge, if there is no interaction between

genes i and j
� -, if the interaction between genes i and j is

unknown

The model was constructed directly from Figure 9 of
[13]. The WTM is provided as a graph in Figure 5, with
the data in Additional file 1: Table S1, Tab “WTM”.
Comparison of the models to the gold standard network
We assessed the predictability of the models on the
interactions observed in the mutant experiments by
comparing the models to the Gold Standard Network.
We focused on three aspects of the network: the overall
structure, the targets of the PAL-1 protein, the structure
of the mesoderm and ectoderm modules. We used
precision-recall and receiver-operator plots to measure
the models’ performance.
Let TP denote true positives; TN, true negatives;

FP, false positives; and FN, false negatives. A precision-
recall (PR) graph is a plot of the precision against the
recall. Precision, or positive predictive value (PPV), is a
measure of how many of the predicted interactions
are correct and is defined as TP

TPþFP . Recall, or true posi-
tive rate (TPR), is a measure of how many of the
observed interactions are correctly predicted and is
defined as TP

TPþFN. A receiver-operator curve (ROC) graph
is a plot of the true positive rate (which is the same as
recall) against the false positive rate (FPR). FPR is a
measure of how many of the known non-interactions
are incorrectly predicted as interactions and is defined
as FP

FPþTN.
In PR space, a classifier has strong predictive value if

its points lie in the upper, right-hand corner of the
graph, representing a precision and recall close to 1.
In ROC space, a classifier has strong predictive value if
its points lie in the upper, left-hand corner of the graph,
representing an FPR close to 0 and a TPR close to 1.
In either space, points that lie on the dashed line are
considered to be no better than random guesses and
points below the line are considered to be weak
classifiers. Even though it is known that classifiers that
dominate in one space will dominate in the other space
(meaning one can go back and forth between PR and
ROC curves), we show both plots here to provide a
more complete representation of the assessment [42].
Note that recall is the same as TPR; we will use these
words interchangeably. We employ both terms here to
be consistent with the standard classifier nomenclature.
We provide the justification for the computation

of the aforementioned quantities below. Since we are
comparing adjacency matrices of mixed graphs, we
had to modify the formula of the precision and recall
to account for half-right predictions; that is, an undir-
ected edge in the model for which the correspond-
ing edge in the GSN is directed. Let HR denote half
right, mim(i, j) refer to the adjacency matrix for the
mathematical model, and gsn(i, j) refer to the adjacency
matrix for the Gold Standard Network. We defined
the following:

� TP := (mim(i, j) = gsn(i, j) = 1) or (mim(i, j) = 1 and
gsn(i, j) =−1)

� TN := mim(i, j) = gsn(i, j) = 0
� HR := mim(i, j) =−1 and gsn(i, j) = 1
� FP := mim(i, j) = 1 and gsn(i, j) = 0
� FN := mim(i, j) = 0 and gsn(i, j) = 1 or −1

Then we modified the standard formulas as follows:

TPR :¼ TP þ 0:5HR
TP þ 0:5HRð Þ þ FN þ 0:5HRð Þ

PPV :¼ TP þ 0:5HR
TP þ 0:5HRð Þ þ FP

:

For a measure of the total number of predictions, we
compute TP+TN+HR+FP; for the total number of pre-
dictions that are correct, we use TP+TN+ 0.5HR.
The results of the analyses are provided in the top row of

Figure 6 and the accompanying table is in Additional file 1:
Table S1, Tab “Overall”.
To evaluate each pipeline, we computed the distance

of the points in the PR and ROC plots from the appro-
priate diagonal line; see below for definitions of these
plots. In ROC space, the distance of a point (x,y) from
the diagonal line y= x is measured as the length of dif-
ference of the vector (x,y) and the projection of (x,y)
onto the vector (1,1); that is, the distance is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xþ y

2

� �2

þ y� xþ y
2

� �2
r

¼
ffiffiffi
2
p

x� yð Þ
2

:

In PR space, the distance of a point (x,y) from the
diagonal y= 1 – x is measured as the length of difference
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of the vector (x–1,y) and the projection of (x–1,y) onto
the vector (−1,1); that is, the distance is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 1ð Þ � x� 1ð Þ � y

2

� �2

þ yþ x� 1ð Þ � y
2

� �2
s

¼
ffiffiffi
2
p

x� 1ð Þ þ y
2

:

For points below the diagonal, we assigned them with
a negative distance, realized by the above expressions on
the right, to reflect their position with respect to the line
of random guesses. To determine the best pipeline
approach, we added all distances (positive and negative)
in both spaces and the pipeline with the largest positive
distance from random is deemed the best (see
Additional file 1: Table S1, Tab “Overall”).
Since we have only one PR or ROC point per pre-

dicted feature (ectoderm modules, mesoderm modules,
targets of PAL-1, etc.), we do not have a curve as is typ-
ically expected in these types of analyses. Hence we can-
not use the standard Area Under the Curve (AUC) to
measure the overall performance of the models. We
constructed the distance measure defined above to be a
one-dimensional variant of the AUC. The greatest dis-
tance possible of any point from the line of random
guesses is 1/

ffiffiffi
2
p

; which is approximately 0.7. Further-
more, we use the total distance, that is the sum of the
distances over each measured feature and over both PR
and ROC plots, as a comprehensive indicator of per-
formance. The maximum value of the total distance is
12/

ffiffiffi
2
p

; which is approximately 8.49.
The model using the pipeline COV-MSA has a total

distance of 2.3, whereas the model from MSA-COV has
a total distance of 2.8. Plots of the distances for both
PR and ROC graphs are provided in the bottom row of
Figure 6; the accompanying table is in Additional file 1:
Table S1, Tab “Overall”.

Additional files

Additional file 1: Table S1. Supporting Excel workbook for
modeling and analysis. All presented models, computations, and results
are supported by the Excel workbook in Additional file 2; note that many
of the spreadsheets in the workbook contain formulas that reference
multiple spreadsheets. See the tab “README” for a listing and description
of the contents.

Additional file 2: Graphs and performance plots for the MIM built
using COV-MSA. Figure S1. contains the graphs comprising the MIM
using the COV-MSA pipeline. S2 contains the Precision-Recall and ROC
plots for this model.
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