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Restricted interests (RIs) in autism spectrum disorder (ASD) are clinically impairing
interests of unusual focus or intensity. They are a subtype of restricted and repetitive
behaviors which are one of two diagnostic criteria for the disorder. Despite the near
ubiquity of RIs in ASD, the neural basis for their development is not well understood.
However, recent cognitive neuroscience findings from nonclinical samples and from
individuals with ASD shed light on neural mechanisms that may explain the emergence
of RIs. We propose the nexus model of RIs in ASD, a novel conceptualization of this
symptom domain that suggests that RIs may reflect a co-opting of brain systems
that typically serve to integrate complex attention, memory, semantic, and social
communication functions during development. The nexus model of RIs hypothesizes
that when social communicative development is compromised, brain functions typically
located within the lateral surface of cortex may expand into social processing
brain systems and alter cortical representations of various cognitive functions during
development. These changes, in turn, promote the development of RIs as an alternative
process mediated by these brain networks. The nexus model of RIs makes testable
predictions about reciprocal relations between the impaired development of social
communication and the emergence of RIs in ASD and suggests novel avenues for
treatment development.

Keywords: autism, restricted interests, cognitive neural development, fMRI, social perception

BACKGROUND

Restricted interests (RIs) in autism spectrum disorder (ASD) are clinically impairing interests of
unusual focus or intensity that are a subtype of the restrictive and repetitive behaviors symptom
domain of ASD (American Psychiatric Association, 2013). RIs are strongly associated with ASD
(Gal, 2011), are typically challenging to treat (Dawson et al., 2010), and are described in some of the

Abbreviations: ASD, autism spectrum disorder; FFA, fusiform face area; RI, Restricted Interest; TPJ, Temporal-Parietal
Junction.
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earliest accounts of ASD (Kanner, 1943; Asperger, 1944).
Additionally, they are less often studied than social
communication symptoms of ASD (Richler et al., 2007), making
them a promising avenue for improving our understanding of
ASD. The manifestations of RIs are highly variable in expression
and intensity (Baron-Cohen and Wheelwright, 1999), and
early descriptions of RIs in ASD characterized their content
or topic area (Kanner, 1943; Asperger, 1944; Baron-Cohen
and Wheelwright, 1999; South et al., 2005), though the focus
of RIs often change over time and are not easily semantically
categorized (Klin et al., 2007). Although the neural bases of RIs
are not well understood, recent research has highlighted that
RIs engage mesolimbic motivational brain systems (Clements
et al., 2018), compete with social stimuli for attentional resources
(Sasson and Touchstone, 2014), and prompt effort expenditure
to seek out RIs (Traynor et al., 2019) in individuals with ASD.

The goal of this paper is to provide a framework to explain
the neural mechanisms underlying the development of RIs. We
propose a nexus model of RIs as a brain-based developmental
bridge between social communication impairments and RIs
in ASD. The nexus model emphasizes that RIs may be
conceptualized as a preferred mode of engaging with the world
(Baron-Cohen et al., 2003; Klin et al., 2007) that first emerges
early in life and suggests that RIs may reflect cognitive abilities
and supporting neural systems that are strengthened during
development relative to those of individuals without ASD.
RIs involve altered development of both the social cognition
and reward systems; they are linked and develop in concert.
Without social motivation, the perceptual and modeling areas
do not develop because social stimuli do not elicit behavior to
attend or approach. Without social cognition, social motivation
cannot develop optimally because actors and predictions must be
neurally represented to be motivating. We recognize the extensive
literature documenting associations between the reward system
and RIs [e.g., (Dichter et al., 2012; Cascio et al., 2014; Kohls
et al., 2018; Harrop et al., 2019) and the role motivation plays
in the formation of RIs (Chevallier et al., 2012; Dichter, 2018)].
The mechanism we propose here reflects a complementary
framework addressing the influence of motivation on RI
development (Dawson et al., 2005; Clements et al., 2018; Dichter,
2018): namely that RIs arise as motivation and cognitive systems
are mutually constraining during development in ASD. We hold
the description of the interaction between reward systems and
social cognitive development for later work. Here, we focus
on how the altered development of social cognitive systems
could produce RIs.

The Nexus Model of Social Cognition
Highlights the Role of the
Temporal-Parietal Junction in Social
Processing
The nexus model of social cognition (Carter and Huettel,
2013) describes the convergence of cognitive processing
streams that are related to preferred modes of engagement.
As an example, the temporal-parietal junction (TPJ) is a
multimodal brain region involved in attention (Mitchell, 2008;

Corbetta and Shulman, 2011; Geng and Vossel, 2013), memory
(Berryhill et al., 2007; Cabeza et al., 2012), language (Binder et al.,
2009; Donaldson et al., 2015; Redcay et al., 2016), and social
processing (Gallagher and Frith, 2003; Saxe and Kanwisher,
2003; Young et al., 2010) functions (Figure 1). This model asserts
that novel, complex, predictive social cognitive functions emerge
from the functional and anatomical intersection of attention,
memory, language, and social processing streams in the brain
(Carter and Huettel, 2013), and the combination of output
from these processes provides a means to predict future social
action by others (Hill et al., 2017). Each constituent process has
its own developmental progression that must be successfully
completed before it can be combined with other necessary
functions to support complex social cognition and social
communication (Carter and Huettel, 2013). Given this, a change
in the developmental progression of these processing streams
may give rise to alternative preferred modes of engagement.

The development of complex social processes necessarily
depends on the prior development of simpler social processes.
These social building blocks are bootstrapped through interactive
specialization (Johnson, 2011), by which early experiences
produce responses that drive the development of more complex
functions. For example, analogous to social development, regions
of the brain anatomically close to sensory areas drive the
functional specialization of regions further from sensory areas
as development progresses. Representations grow increasingly
abstract as visual information travels from V1 along the
ventral visual stream, supporting object recognition (Goodale
and Milner, 1992; DiCarlo et al., 2012). A similar increase
in complexity is evident for social cognition. Meta-analyses of
neuroimaging data show a pattern of activation in response
to complex visual social stimuli that predict future actions
(Carter and Huettel, 2013). Moving superior and anterior
from the lateral-occipital face processing area, cortical regions
are sensitive to more complex and abstracted social-cognitive
representations (Figure 2). This pattern of increasing complexity

FIGURE 1 | The nexus model of social function. The nexus model
hypothesizes that complex social functions arise where memory, attention,
language, and social processing come into close proximity and can be
combined. Each image is an FDR corrected reverse-inference (likelihood of
term given activation) statistical image from neurosynth.org overlaid on an
inflated cortical surface using nilearn. Maps were taken from the 200-topic
cognitive maps: Memory is topic 28; Attention is topic 64; Language is topic
93 and Social is topic 145. All maps were downloaded in the summer of 2019
from the July 2018 LDA 200-topic model from neurosynth.org based on
14,371 studies.
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FIGURE 2 | Hierarchical construction of flexible social cognition. Social
cognitive processes begin with face recognition on the lateral occipital surface
and more superior/anterior regions representing more complex aspects of
social cognition. Images are surface overlay of a reverse-inference maps for
the terms “face recognition,” “gaze,” and “mentalizing” downloaded from
neurosynth.org in the summer of 2019 (based on 14,371 studies).

in representations of social stimuli is not thought to exist
at birth but occurs sequentially in a developmental cascade
(Johnson, 2011). In this way, development proceeds sequentially,
focusing at first on simpler processes which form the basis
for more complex behaviors (Nelson, 1999). This progression
is constructivist in that the development of each cognitive
function depends upon previous and less complex and abstract
functions (Quartz and Sejnowski, 1997), but also relies on nativist
principles. In particular, patches of cortex involved in social
processing are reliably associated with specific computations
(Srihasam et al., 2014; Livingstone et al., 2017) and are
consistently anatomically located across individuals. Functions
within these same areas are also subject to change by experience
(Dehaene et al., 2010) in a manner that relies upon their
particular functional network (Mahon and Caramazza, 2011),
commonly referred to as experience-dependent plasticity. Social
development thus relies on the emergence of specific brain
functions at birth and on the reinforcing interactions that
occur as these functions are successfully used. The neural
development of complex social cognition recapitulates the order
of social-developmental milestones in infancy and childhood
with implications for ASD (Shultz et al., 2018): should the
development of each social area of cortex depend on earlier,
simpler areas, as is predicted by interactive specialization,
decreased orienting to social stimuli, or any deficiency in the
ability to represent those stimuli, may leave areas of cortex critical
for social cognition underdeveloped.

Altered Developmental Trajectories Lead
to Preferred Modes of Engagement in
ASD
In the absence of valued (Chevallier et al., 2012; Dichter
et al., 2012; Abrams et al., 2013; Chen et al., 2015) or easily
interpretable (Sasson et al., 2013; Hohwy and Palmer, 2014)
social input, neural systems supporting complex social cognitive
hierarchies fail to develop, leaving cortical areas that are critical
for social cognitive functions potentially capable of assuming,
at least in part, alternative functions. When typical input to a
brain region is disrupted, the region often takes on meaningful
functions using alternative or indirect input. For example,
neurons in visual cortex in the congenitally or early blind are
selectively active during braille reading (Sadato et al., 1996,

2004; Cheung et al., 2009), speech processing (Kujala et al.,
2005; Hertrich et al., 2009; Dietrich et al., 2013), or even
patterned electrical stimulation to the tongue (Ptito et al.,
2005; Matteau et al., 2010). For reasons that are not clearly
understood, social stimuli activate reward systems, including
the dorsal and ventral striatum and medial prefrontal cortex,
to a lesser degree in ASD (Clements et al., 2018; Kohls et al.,
2018; Supekar et al., 2018). A critical implication of the nexus
model of RIs in ASD is that when rewarding responses to
social stimuli are dampened early in development, areas of the
brain that govern more complex social cognitive processes will
develop in a delayed fashion. Critically, experience-dependent
and experience-expectant social-cognitive brain areas would
show altered developmental trajectories and thus would be
relatively more responsive to other, non-social sources of input
(Butz et al., 2009; Holtmaat and Svoboda, 2009). In the same way
that visual cortex utilizes new inputs for spatial processing when
visual information is unavailable, areas of cortex that typically
predict future states of complex social stimuli may instead
make predictions about RI-related stimuli. Extending the nexus
model, any of the cognitive processes that typically neighbor
social processing in the cortex (Figure 3) may expand into
underdeveloped social areas of the brain. This biased flexibility in
processing is inherent in the theory of interactive specialization
and may provide a mechanism for better characterizing regional
brain functions. The interactive development of cortex is
also hypothesized to underlie the development of language-
specific cortical areas. Through a mechanism described as
cortical recycling, Dehaene and colleagues hypothesize that the
visual word form area develops from cortical tissues previously
devoted to face and object processing (Dehaene and Cohen,
2011). This link between face and language processing is akin
to the repurposing of social communication brain regions
for RI processing.

The nexus model of RIs suggests that brain regions that
typically mediate social communication, including most centrally
the TPJ, demonstrate a functional shift during development
towards processing information related to RIs. This co-opting
highlights a perspective that RIs reflect a preferred mode of
engaging with the world in individuals with ASD. Whereas early
descriptions of RIs in ASD characterized the specific content or
topic area of RIs (Kanner, 1943; Asperger, 1944; Baron-Cohen
and Wheelwright, 1999; South et al., 2005) (e.g., folk physics,
objects, or machines), a broader perspective on RIs (as a preferred
mode of engagement) accounts for changes in RIs over time. It
also accounts for the fact that RIs are not always easily categorized
semantically, and emphasizes types of interactions that may be
part of an individual’s RI (e.g., fact memorizing, counting, spatial
manipulation, and categorizing), (Attwood, 2003; Baron-Cohen
et al., 2003; South et al., 2005; Klin et al., 2007). The perspective
that RIs reflect a preferred mode of engagement suggests that
RIs reflect cognitive abilities that are relatively enhanced and
consequently pursued (Spiker et al., 2012) and represents a more
parsimonious account of RIs as reflecting altered functioning of
brain systems that mediate higher-order cognitive processes in
individuals with ASD, as will be described in the next section.
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FIGURE 3 | Cognitive processes and preferred modes of engagement. Undeveloped complex social functions like mentalizing (Neurosynth reverse inference
“mentalizing,” green outline) may leave areas of cortex open to expansion from neighboring cognitive functions that can be mapped to preferred
modes-of-engagement for RIs in autism. FDR corrected, reverse inference (likelihood of term given activation) statistical images from neurosynth.org are overlaid on
inflated cortical maps using Nilearn for each term in quotes. “Math topic” is Topic number 2 from version 5 (July 2018) of the Neurosynth set of LDA derived topic
maps with prominent terms like: problem(s), arithmetic, solving, and calculation. All maps were downloaded in the summer of 2019 (based on 14,371 studies).

A Nexus Model of RIs in ASD
In this section, we focus on four cognitive functions represented
in cortical and neighboring social processing brain regions
that may be linked to preferred modes of engagement and
RIs in ASD: (1) memory (e.g., fact recall RIs), (2) spatial
attention (e.g., calculating, building, and mapping RIs), (3)
object processing (e.g., object expertise and reading RIs), and (4)
auditory processing (e.g., tone and speech RIs).

Memory recall is associated with activation in the posterior
parietal cortex, an area of the brain that anatomically neighbors
mentalizing functions in the TPJ (Figure 3, left). There are
some documented changes in the hippocampus in ASD (Barnea-
Goraly et al., 2014; Trontel et al., 2015; Cooper et al., 2017).
However, if the hippocampus were the primary driver of memory
deficits in ASD, these deficits found in individuals with ASD
would be expected to be general in nature. Instead, the majority
of studies that find changes in memory in ASD report specific
impairments, and not a general deficiency (Boucher, 1981;
Renner et al., 2000; Toichi and Kamio, 2002, 2003). Higher
functioning individuals with ASD perform well on standard cued
recall and paired-association learning (Boucher and Warrington,
1976; Minshew and Goldstein, 2001; Williams et al., 2006)
and recall tasks involving non-social items, such as buildings
and leaves, but have been found to perform poorly on face
memory tasks (Blair et al., 2002). Neurobiologically, specific
memory deficits like these are unlikely to be due to changes in
the hippocampus, as patients with hippocampal lesions show
broad memory deficiencies (Winocur and Weiskrantz, 1976;
Shimamura and Squire, 1988; Holdstock et al., 2002). Instead,
these specific deficits are better attributed to memory recall
functions in the posterior parietal cortex (Hadjikhani et al., 2004),
which, when lesioned, produce subtle and selective memory
deficits resembling episodic memory impairments (Boucher and
Mayes, 2012). Thus, parietal cortical mechanisms are implicated
in memory-based RIs and improved memory recall observed in
ASD. Developmentally, early changes in motivation or exposure
to social stimuli may alter development of the lateral surface

of the cortex in ASD. Variations in the precise timing of
these changes would result in memory alterations in ASD,
ranging from memory deficiencies to memory enhancement
(Rimland, 1978), which may result in memory-related RIs in
some individuals with ASD.

Second, spatial attention, numeracy, and timing are related
to automatic and volitional attentional control (Hartje, 1987;
Walsh, 2003), and these functions each produce activity adjacent
to social processing brain areas in the intraparietal sulcus
(Hubbard et al., 2005; Ansari et al., 2007; DeWind et al., 2015)
(Figure 3, left-middle) that are themselves implicated in ASD
(Allman et al., 2011b; Dichter, 2012). Some individuals with
ASD exhibit evidence of compromised functioning of attentional
streams reflected in less frequent (Baranek, 1999) and slower
(Wainwright and Bryson, 1996; Keehn et al., 2010) orienting.
Others studies, however, have documented evidence of enhanced
spatial attention in ASD (Mottron et al., 2006), reflected in faster
responses on a conjunctive visual search task (Jarrold et al., 2005)
and greater accuracy in the embedded figures (Jolliffe and Baron-
Cohen, 1997) and block design (Tymchuk et al., 1977; Siegel
et al., 1996) tasks. There are also examples of compromised
numeracy (Meaux et al., 2014) and timing (Allman et al.,
2011a) in ASD. In functional neuroimaging studies of selective
attention, there is evidence that activation in the dorsal attention
stream (including the intraparietal sulcus) is greater or more
variable in ASD (Belmonte and Yurgelun-Todd, 2003). A popular
theory for explaining better visual performance in some cases
is that individuals with ASD have enhanced perceptual function
(Mottron et al., 2006), focusing on simpler, rather than more
abstract, dimensions (Bertone et al., 2005) or on local, rather than
global, configurations (Rinehart et al., 2000) of visual stimuli. The
nexus model of RIs would hypothesize that these differences may
reflect improved spatial attention, numeracy, and timing due to
expanded representations into cortical brain regions, including
specifically the TPJ.

Third, object sensitive areas of the brain are arranged along
the lateral occipital surface of the brain (Figure 3), adjacent to
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areas of the brain that respond to faces, emotions, and eye-gaze
(Figure 2). Enhanced visual perception has been reported in a
number of contexts in ASD, including fine pattern discrimination
(Plaisted et al., 1998a), conjunction search (Plaisted et al.,
1998b), orientation (Bertone et al., 2005), and other tasks
(Dakin and Frith, 2005). Performance improvements in visual
perception in ASD tend to be constrained to lower-order abilities,
whereas deficits in integrative and holistic tasks are commonly
reported in ASD (Happé and Frith, 2006). Brain areas that
mediate many of these enhanced processes border the lateral
occipital face area of the brain, raising the possibility that small
differences in performance on these tasks in early childhood may
developmentally expand these cortical representations, leading
to expanded lower-order visual processing and by extension
reduced focus on social stimuli. In fact, a common occurrence
in ASD is hyperlexia, a syndrome that relies on character
and word recognition areas of the brain in the ventral visual
pathway that borders face processing brain areas (Ostrolenk et al.,
2017), offering a potential mechanistic explanation for the co-
occurrence of diminished social function and hyperlexia in ASD.

Relatedly, an early hypothesis for social communication
deficits in ASD is a diminished ability to process faces (Dawson
et al., 2002). Although this deficit is not universally true,
individuals with ASD tend to have a diminished ability to
recognize unfamiliar faces (Weigelt et al., 2012; Tang et al.,
2015), which in turn may also impact social functions including
social memory (Ewbank et al., 2017), social eyescan paths
(Pelphrey et al., 2002), social emotion recognition (Adolphs
et al., 2001; Bal et al., 2010), and face inversion effects (Scherf
et al., 2008), though there may be compensation for familiar
or enhanced stimuli (Pierce et al., 2004; Pierce and Redcay,
2008). Proposed explanations for diminished face recognition
in ASD are that it reflects lower-level perceptual impairments
(Behrmann et al., 2006), reduced generalization (Plaisted, 2001),
and enhanced perceptual function (Mottron et al., 2006) [for
review see Mottron et al. (2009); Thye et al. (2018)]. Although
low-level perceptual changes explain enhanced functions in ASD,
understanding higher-order impairments has traditionally relied
on an additional proposed mechanism, such as diminished
veridical mapping and weak central coherence. While not
typically described in terms of a specific brain mechanism, these
compromised higher-order processes are mediated by the TPJ
(Dakin and Frith, 2005). As in memory and attentional RIs, this
heterogeneity of visual phenotypes in ASD hints at variations in
developmental trajectories that depend on preferred modes of
engagement and the development of lower-level processes that
support a specific RI class. Because object and text sensitive brain
areas (Figure 3, right-middle) abutt brain regions specialized for
face and emotional processing, they are positioned to expand in
cases where face processing is compromised during development.
This link between objects/text and social brain areas predicts that
face processing areas of the brain may respond preferentially to
RIs that focus on text and objects. For example, a case study
of a boy with ASD found greater brain activation to his RI (a
DigimonTM cartoon character) in the fusiform face area (FFA)
compared to human face stimuli (Grelotti et al., 2005). This study
demonstrated the possibility of plasticity in FFA responses in

ASD and served as evidence that lower-level face processing brain
regions may develop to respond to non-face stimuli in ASD. Foss-
Feig et al. (2016) compared responses to object RIs of individuals
with ASD to responses to intense interests of typically developing
individuals. Both groups exhibited greater activation in the FFA
in response to their own RIs. In addition, activation was more
robust for object RIs in ASD compared to responses of typically
developing individuals. Numerous additional studies have shown
that the FFA of individuals with ASD responded more to non-
social stimuli (Pierce and Redcay, 2008; Perlman et al., 2011;
Foss-Feig et al., 2016; Whyte et al., 2016). We include cartoon
and video-game characters as object RIs since their treatment
is mechanistic in nature. In typically developing individuals,
the study of expertise has shown increased activation in the
FFA when viewing the focus of their expertise (Gauthier et al.,
2000), supporting the argument for repurposing based on interest
more broadly. We hypothesize that this modified development
of functional specialization can drive changes in the ascending
social cognitive hierarchy, reshaping dynamic social cognitive
areas of the brain to respond to dynamic aspects of RIs.

Fourth, auditory areas of the brain are organized along the
superior temporal sulcus just anterior to mentalizing areas in the
TPJ (Figure 3, right). Auditory processing in ASD is atypical
in a number of ways, including hyper- and hypo-sensitivity
and unusual abilities like absolute pitch [for review see Samson
et al. (2006)]. As with visual perception, individuals with ASD
commonly show enhanced lower-order perception (Bonnel et al.,
2003) and diminished abilities when working with complex
voice stimuli (Gervais et al., 2004). It is, however, important
to note that, as with visual stimuli, familiar voice recognition
is not impaired in ASD (Boucher et al., 2000). Impairments in
processing of complex auditory stimuli in ASD include both
spectral and temporal aspects with compensation occuring when
lower-order auditory processing may be leveraged to complete
the task (Samson et al., 2006). Accordingly, auditory RIs in ASD
are often related to music (Sacks, 2008), for which preferences
are similar to typically developing individuals (Boso et al.,
2009). In fact, impaired functional brain connectivity during
speech processing may be improved by a transition to singing
in ASD (Sharda et al., 2015), consistent with greater emotional
comprehension for music that has been observed in ASD
(Molnar-Szakacs and Heaton, 2012). In line with these findings,
neuroimaging studies show a familiar pattern: areas of the brain
that typically respond to speech respond more strongly to music
in ASD (Lai et al., 2012). This cortical shift from processing social
stimuli to processing non-social stimuli parallels the findings
in the ventral visual stream discussed above, and may reflect
a co-opting of typically social processing pathways in favor of
responding to RIs. This repurposing of neural regions again
indicates that areas of the brain that typically respond to voices
would respond preferentially to auditory RIs in ASD.

Although we have described each of these cognitive functions
as separate, they likely compete for processing resources
during development, suggesting that both in ASD and typically
developing individuals these processes may be more or less
dominant. It also suggests that combinations of preferred modes
of engagement would be common, as long as preferred functions
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related to RIs are mediated by brain areas typically used by
functions that have been diminished. For example, as noted
in this section, responses to music may be mediated by brain
regions that typically respond to voices and responses to text or
objects may be mediated by brain regions that typically respond
to social stimuli such as faces. The increased processing of non-
social stimuli in lower-order social processing brain areas would
drive the development of non-social functional specialization
in integrative brain areas, including the TPJ. We next explore
preliminary evidence for such an outcome.

Restricted Interests as Both Strengths
and Challenges
Restricted interests (RIs) are a prominent characteristic of
ASD that, by definition, cause impairment. RIs interfere with
social development (Attwood, 2003; Turner-Brown et al., 2011),
restrict the experiences of young children with ASD (Pierce and
Courchesne, 2001) and interfere with learning adaptive behaviors
(Koegel and Covert, 1972; Koegel et al., 1974; Varni et al., 1979).
Direct tradeoffs between engaging with social stimuli and RIs
have been observed in eye-tracking experiments (Sasson et al.,
2008, 2011; Sasson and Touchstone, 2014; Unruh et al., 2016)
and in reports of peer engagement (Boyd et al., 2007; Jordan and
Caldwell-Harris, 2012) in individuals with ASD. RIs and social
stimuli may directly compete for neural and attentional resources
(Richey et al., 2014; Unruh et al., 2016). However, RIs may also
represent areas of cognitive strengths (Grigorenko and Sternberg,
1997; Céline et al., 2000; Armstrong, 2011, 2014; Caldwell-Harris
and Jordan, 2014). If social processing areas of the brain develop
to preferentially respond to a preferred mode of engagement,
then performance within that mode may exceed performance
in other modes and may exceed that of typically developing
individuals. Savant syndrome is a condition in which individuals
who show substantial performance deficits in many areas have
very specific areas in which they excel. This condition occurs
in only ∼10% of individuals with ASD (Rimland, 1978) but
approximately half of individuals with savant syndrome also have
ASD (Treffert, 2009). Rimland’s 1978 survey found prodigious
memory in nearly all individuals with savant syndrome with 53%
focused on music, 40% on memorization, 25% on mathematical
or calculating skills and 19% on art, categories that fit well
with the nexus model of RIs. Even in individuals with ASD
without savant syndrome, there are performance increases in
narrow skill areas (Tymchuk et al., 1977). Approximately half of
individuals with ASD show substantially better performance on
the block design portion of intelligence tests compared to 2% of
typically developing individuals (Caron et al., 2006). Enhanced
performance on the block design task for individuals with ASD
is generally attributed to enhanced perceptual function (Caron
et al., 2006), which is also consistent with enhanced processing
of auditory stimuli such as pitch and height discrimination
of pure tones (O’Riordan and Passetti, 2006), complex tones
(Heaton et al., 2008) and musical material (Mottron et al., 2000).
Enhanced block-design performance may be due to additional
processing resources in the spatial attention areas of the brain.
Accordingly, individuals with non-spatial/symbolic preferred

modes of engagement may show performance peaks on other
tasks matched to their preferred mode of engagement.

Temple Grandin describes the importance of helping a child
with ASD to find their strengths (Grandin, 2011), and indeed
RIs can be leveraged to improve social functioning in ASD
intervention contexts (Kasari et al., 2006; Boyd et al., 2007;
Schertz and Odom, 2007). RIs have also been shown to be positive
targets for therapy (Charlop-Christy and Haymes, 1996; Carnett
et al., 2014; Patten Koenig and Hough Williams, 2017) and can
positively affect social abilities when they are incorporated into
treatment (Boyd et al., 2007; Koegel et al., 2012, 2013; Harrop
et al., 2019). The Early Start Denver model, for example, is an
approach that aims to develop skills by rewarding pro-social
behaviors during early developmental periods when repurposing
of neural pathways is most likely (Dawson et al., 2010). In the
film Life Animated, a child with ASD has an RI that is focused
on sidekicks in Disney movies. His parents were able to engage
with their son by using the voices of these characters and through
this interaction, gradually encouraged him to increase his social
interactions more broadly. Modern virtual reality approaches
raise a new possibility that dynamic and interactive worlds
can be produced based on individual RIs (Thies et al., 2016),
potentially enabling the automated development of teachers
based on preferred mode of engagements that could dramatically
improve the lives of some individuals with ASD.

Challenges to the Nexus Model of RIs,
Future Directions, and Conclusions
There are several clear challenges to the nexus model of RIs.
First, there is mixed support for a relationship between RI
intensity and social impairment. While some studies of RIs have
found such a relationship (Turner-Brown et al., 2011; Jordan and
Caldwell-Harris, 2012), others have failed to do so (Lam et al.,
2008). Whereas the relationship between social and non-social
behaviors may be complex and non-linear, neuroimaging studies
testing the nexus model of RIs would need to be sufficiently
powered to address this potential inconsistency. Second, clearly
brain regions outside of social processing systems are implicated
in ASD. For example, recent work in a large, multi-study sample
did not find reduced activation in the TPJ during a false belief task
in individuals with ASD (Dufour et al., 2013). Third, a preference
for systematizing has been shown to be greater in individuals
with ASD (Turner-Brown et al., 2011), but it is not clear how
this preference relates to the nexus model. Finally, rather than
a co-opting of social communication brain networks, RIs have
also been hypothesized to reflect impaired executive function that
results in perseverative behaviors (Russell, 1997; Turner, 1999),
an account that differs in testable ways from the implications of
the nexus model of RI development. A related hypothesis suggests
that insistence on sameness and habitual behavior could be due
to changes in the basal ganglia (Calderoni et al., 2014; Sinha et al.,
2014; Kohls et al., 2018), which is related to habitual behaviors in
typically developing individuals.

A hypothesized framework whereby RIs reflect canalization
of social processing brain systems during development in ASD
makes a number of testable predictions. First, RIs should reflect
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preferred modes of engagement rather than specific topics. While
there is evidence for this conceptualization of RIs (Baron-Cohen
et al., 2003; Klin et al., 2007), future RI studies should assess
modes of engagement to allow for a formal comparison of
this and more topic-driven models. Second, individuals with
a particular RI should have thicker or expanded cortical gray
matter in brain areas associated with processing that specific RI.
For example, an individual with a symbolic enactment RI (e.g.,
counting) should show greater gray-matter thickening or larger
cortical areas near the intraparietal sulcus. Additionally, areas of
the brain typically responsive to social stimuli (especially those
that are spatially proximal) should respond to RIs to a greater
degree in individuals with ASD. For example, the TPJ would
be hypothesized to show more activation to spatial attention
and numeric tasks than in typically developing individuals given
that their preferred mode of engagement is attention-oriented.
Lastly, using brain network analysis, the nexus model of RIs
would predict that the processing stream associated with the
preferred mode of engagement should be more locally integrated
than processing streams associated with less preferred modes of
engagement. Similar functional processing streams (Margulies
et al., 2016) as well as their alteration in ASD (Hong et al., 2019)
lend early support for this possibility.

CONCLUSION

We have described a possible developmental neural mechanism
that may lead to RIs in which the altered development of social
communication processing brain areas result in preferred modes
of engagement and ultimately RIs. The nexus model of RIs
suggests testable hypotheses about the reciprocal relation of
RIs and impaired social communication and highlights novel
avenues for treatment development. Most critically, although
ASD research has often addressed social communication

impairments and restricted and repetitive behaviors as distinct
symptom domains, the nexus model of RIs suggests that social
communication skills and RIs may be functionally linked during
development, and that any comprehensive intensive early ASD
intervention must address both social communication and RIs to
be maximally effective.
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