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Whole genome sequences are required to
fully resolve the linkage disequilibrium
structure of human populations
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Abstract

Background: An understanding of linkage disequilibrium (LD) structures in the human genome underpins much of
medical genetics and provides a basis for disease gene mapping and investigating biological mechanisms such as
recombination and selection. Whole genome sequencing (WGS) provides the opportunity to determine LD
structures at maximal resolution.

Results: We compare LD maps constructed from WGS data with LD maps produced from the array-based HapMap
dataset, for representative European and African populations. WGS provides up to 5.7-fold greater SNP density than
array-based data and achieves much greater resolution of LD structure, allowing for identification of up to 2.8-fold
more regions of intense recombination. The absence of ascertainment bias in variant genotyping improves the
population representativeness of the WGS maps, and highlights the extent of uncaptured variation using array
genotyping methodologies. The complete capture of LD patterns using WGS allows for higher genome-wide
association study (GWAS) power compared to array-based GWAS, with WGS also allowing for the analysis of rare
variation. The impact of marker ascertainment issues in arrays has been greatest for Sub-Saharan African
populations where larger sample sizes and substantially higher marker densities are required to fully resolve the LD
structure.

Conclusions: WGS provides the best possible resource for LD mapping due to the maximal marker density and
lack of ascertainment bias. WGS LD maps provide a rich resource for medical and population genetics studies. The
increasing availability of WGS data for large populations will allow for improved research utilising LD, such as GWAS
and recombination biology studies.

Keywords: Linkage disequilibrium map, Population structure, Whole-genome sequencing, Recombination,
Next-generation sequencing

Background
Detailed analysis of the linkage disequilibrium (LD)
structure of human populations has been vital for the
successful mapping of many human disease genes, un-
derstanding mechanisms underlying genetic recombin-
ation and elucidating patterns of selection and population
structure [1]. The development of array-based genotyping
(ABG) panels of single nucleotide polymorphisms (SNPs)

enabled genome-wide association studies (GWAS) to lo-
calise numerous genetic variants with roles in human dis-
ease. Recognition that the genome contains ‘blocks’ of low
haplotype diversity [2] facilitated the selection of ‘tagging’
SNPs [3] to enable cost-effective genotyping using panels
of 500,000 to one million SNPs. Extensive SNP genotyping
enabled the International HapMap Project to characterise
the LD structure of diverse human populations [1]. The
first LD maps of human chromosomes showed a haplo-
type block structure punctuated by ’steps’ aligning with re-
combination hotspots [4, 5]. The strong alignment of
linkage and LD maps confirms historical recombination as
the major determinant of LD structure [5–7].

* Correspondence: s.ennis@soton.ac.uk
†Equal contributors
1Human Genetics & Genomic Medicine, Faculty of Medicine, University of
Southampton, Duthie Building (MP 808), Tremona Road, Southampton SO16
6YD, UK
Full list of author information is available at the end of the article

© 2015 Pengelly et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Pengelly et al. BMC Genomics  (2015) 16:666 
DOI 10.1186/s12864-015-1854-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-1854-0&domain=pdf
mailto:s.ennis@soton.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Array-based LD maps of human chromosomes con-
tain regions with negligible apparent LD between adja-
cent markers, seemingly reflecting high regional
recombination, which are not well defined in the maps.
Service et al. [7] assessed the impact of increasing
marker density in a number of these regions using
ABG data and found that some, though not all, regions
were resolved with increasing marker density. For
chromosome 22, 53 % of these regions were resolved
using 27,060 vs. 9658 SNPs. Differences between popu-
lations were apparent, with LD maps from isolated
populations (therefore having more extensive LD) con-
taining substantially fewer such regions. Tapper et al.
[6] constructed genome-wide LD maps using ~500,000
SNP genotypes from 60 HapMap samples with European
ethnicity, identifying 3144 poorly resolved regions genome-
wide and estimated that ~40,000 markers per Morgan
would be needed to fully characterise LD structure. As-
suming the autosomal linkage map length is ~33 Morgans
[8] this suggests that ~1.3 million SNPs genome-wide
would be sufficient to resolve these regions in this popula-
tion. However, this assumes uniform marker spacing and
LD intensity, whilst in reality much higher local marker
density may be required for some of these regions. A par-
ticular difficulty exists for populations which have reduced
LD due to extended population history, such as those from
Sub-Saharan Africa, for which considerably higher marker
coverage is required for complete coverage.
Given that whole-genome next generation sequencing

(WGS) provides maximal genotype density, we consider
the advantages of WGS-derived SNP genotypes for the
characterisation of LD structure in different populations.
We construct LD maps according to the Malécot-Morton
model, using the program LDMAP [5, 6]. This model is
defined as:

p̂ ¼ 1−Lð ÞMe−∈d þ L

where p̂ is the association between SNPs, the asymptote
L is the ‘background’ association between unlinked
markers which is increased in small sample sizes and
with residual population structure, M reflects association
at zero distance with values ~1 consistent with mono-
phyletic origin and <1 with polyphyletic inheritance, ϵ is
the rate of LD decline, and d is the physical distance in
kilobases between SNPs [5].
LDMAP constructs maps in linkage disequilibrium

units (LDU, equal to ϵd) such that one LDU corresponds
to the (highly variable) physical distance over which LD
declines to background levels. LDU plotted against the
chromosome location forms step-like patterns with in-
tense breakdown in LD, canonically due to recombin-
ation hotspots, and plateaus for broader regions of low
haplotype diversity (blocks). Overall LDU map lengths

are proportional to time since an effective population
bottleneck [7, 9]. Hence, populations with shorter LDU
maps have been founded more recently, experienced a
more recent selective sweep, or have a smaller effective
population size (such as some population isolates) com-
pared to those with longer maps (such as Sub-Saharan
African populations). The close correspondence between
LD patterns and the linkage map reflects the dominant
role of recombination in LD structure. In contrast to
linkage maps, which are derived from family data and
describe recombination over recent generations, LD
maps are constructed from population data and reflect
the historical impacts of recombination, mutation, selec-
tion and population history. Our findings show that
WGS based LD maps provide greatly increased reso-
lution of LD structure in both populations and indicate
some genome regions in ABG-derived maps are incom-
pletely covered. The findings have implications for inter-
pretation in genome-wide association studies (GWAS)
and support the use of WGS for association mapping
and for establishing LD structure for studies of mecha-
nisms underlying recombination and for identifying gen-
omic regions subject to selection.

Results
To investigate the impact of using WGS data for defining
patterns of LD, we utilised publicly available WGS genotype
data for chromosome 22 within the 1000 Genomes Project
(henceforth referred to as the WGS dataset), and array-
based genotype data from the International HapMap Pro-
ject Phase 3 (henceforth the ABG dataset) [10, 11]. Due to
its small size, chromosome 22 exhibits the highest recom-
bination intensity in the genome [6] whereby LD declines
sharply with distance and the LD maps are thus particularly
sensitive for demonstrating the impact of the increased
marker density in WGS data. We analysed LD maps con-
structed from CEU (Utah Residents (CEPH) with Northern
and Western European ancestry) and YRI (Yoruba in
Ibadan, Nigeria) populations. These are representative of
populations which have developed since the effective ‘out
of Africa’ bottleneck (CEU) and Sub-Saharan Africans
(YRI). SNP markers within these datasets were filtered as
described in Methods; final marker counts for each are
given in Table 1. A detailed breakdown of marker attrition
through filtering is presented in Additional file 1: Table S1.

LD map topography
LD maps produced using the ABG and WGS CEU data-
sets appear topographically highly similar when plotted,
though with differing overall map lengths (Fig. 1). Re-
gions of concordant strong LD are apparent, seen as low
gradient regions in the plot, as well as regions of weak
LD, appearing as a steep gradient. In addition, both
maps appear to have similar contours to the linkage map
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produced from European samples, with broad areas
reflecting strong and weak LD/recombination, [12]. It is
noteworthy that there is an increased overall map length
for the CEU WGS map compared to the ABG map (1.2
fold, Table 1). The change in map length is concurrent
with much greater increases in marker density (4.3 fold)
from ABG to WGS datasets.
LD maps for the two WGS populations also show

close alignment in LD structure with broad shared re-
gions of stronger and weaker LD. When the LDU maps
are represented as a rate (LDU/kb) in 100 kb windows
(Fig. 2) the positions of the peaks, where LD declines
rapidly, align closely between the two populations, as do

Table 1 Number of individuals, component marker counts and
LD map length and using ABG and WGS data

Individuals Markers Map length (LDU)

ABG CEU 112 15359 850.07

YRI 147 16083 993.80

WGS CEU 96 66704 (4.34) 1021.07 (1.20)

YRI 80 91320 (5.68) 1569.46 (1.56)

Fold change vs. ABG data in parentheses
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Fig. 1 Comparison of LD maps from ABG and WGS, and linkage map. Comparison of WGS (red) and ABG (blue) CEU LD maps (left ordinate axis
scale) and linkage map (black; right ordinate axis scale) for chromosome 22. Linkage map shown is from the June 2012 release of the Rutgers
Map v3, interpolated using the Kosambi function (available at http://compgen.rutgers.edu/download_maps.shtml) [12]
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regions with strong LD (low LDU/kb). The much longer
LDU map for the YRI population reflects population his-
tory with increased time to erode LD through recombin-
ation, mutation and other processes [9]. There is a
particularly marked increase in length for the YRI map
of 1.6 fold from ABG to WGS data sets (Table 1).

Marker density and frequency
The WGS data provides up to a 5.7 fold increase in
number of markers compared to ABG data (Table 1;
Additional file 1: Table S1). This increase in marker
density allows greatly improved resolution of the LD
maps in many regions. Although whole-chromosome
LD map contours of ABG and WGS derived maps look
very similar, noteworthy differences exist at higher reso-
lution. Figure 3 shows an expanded view of a 250 kb re-
gion of the YRI population maps. The map of this
region generated from the lower density ABG data
failed to resolve 13 hotspots which are discernible in the
WGS-based map. Many such narrow regions of high

recombination can be far more accurately located using
WGS maps.
As well as increased marker density in the WGS data,

there is also a shift in the minor allele frequency (MAF)
spectrum of the component markers (Fig. 4). The WGS
dataset shows a significant reduction in the median
MAF compared to the ABG data (p < 2.2 x10−16 for each
population), with a far greater magnitude change in the
YRI population compared to the CEU population (with
a 35 and 18 % reduction in median MAF respectively).
These data illustrate that: 1) markers at the lower fre-
quency end of the range are particularly underrepre-
sented in the arrays used to genotype the HapMap
samples; and 2) this underrepresentation is most pro-
nounced for the YRI population.

Effect of population sample size
We investigated the extent to which population sample
size within the WGS datasets impacts the marker dens-
ity available for map generation, as well as the length of

Fig. 2 Comparison of LD decline intensity in WGS derived LD maps between populations. Comparison of regional rates of LD breakdown for CEU (green)
and YRI (purple) populations using the WGS dataset for chromosome 22 for 100 kb windows. A very strong correlation between the LDU/kb for the two
populations can be seen (p= 0.91, p< 2.2x10−16)
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the final LD maps. For 12 Mb of the chromosome we
generated random subsets of the full datasets with vary-
ing sample size, and then performed marker filtering
and map generation as described. With an increased
sample size, a higher marker density is achieved for map
generation, with diminishing returns with larger sample
sizes (Additional file 1: Figure S1). From these data, we
extrapolated the sample size for which the addition of 10
individuals increases marker density by <1 %; this
marker saturation is achieved with 90 and 110 individ-
uals for the CEU and YRI populations respectively.
For maps from these data subsets, there is a weak, but

significant, correlation between sample size and LDU
length of the resultant CEU maps (Additional file 1:
Figure S2); the YRI maps show no significant correl-
ation. This indicates that overall map lengths are largely
robust to variations in sample size. Due to the increased
marker diversity of the YRI cohort compared to the
CEU, a greater number of individuals need to be sam-
pled for complete marker saturation. At smaller sample
sizes however, the deviation of map lengths from average
is much broader, reflecting increased sensitivity to hetero-
geneity within the dataset (Additional file 1: Figure S3).
Despite the increased map variability, the WGS map re-
mains consistently longer than the corresponding ABG

map. Even where maximal marker densities have been
attained, larger sample sizes are likely to improve the
population representativeness of the map.

Fine map structure comparison between ABG and WGS
To compare LD structure between ABG and WGS maps
we segmented the LD maps into non-overlapping 100 kb
regions (Additional file 1: Table S2). All LD maps show a
very strong correlation with all other maps (ρ > 0.87), with
stronger correlations within population.
In all cases, the correlation with the linkage map is

also strong (ρ = 0.56–0.60); this correlation is likely
lower due to the lower resolution of the linkage map
and components of the LD structure that are not due to
recombination. We find a particularly strong correlation
(p = 0.94, p < 2.2x10−16) in the lengths of these segments
in LDUs between the two YRI data sources. The increase
in LD map length for the WGS YRI map might be partly
attributed to the greatly increased marker density, how-
ever there is only a relatively weak, though strongly signifi-
cant, correlation between increase in marker density and
increase in LDU length in these 100 kb regions (r2 = 0.19,
p < 2.2x10−16; Additional file 1: Figure S3). A total of
37.5 % of 100 kb regions show negligible change in LDU
length (< |1|) despite greatly increased marker density,

Fig. 3 Expanded comparison of LD maps for a small region. Fine detail comparison of WGS (red) and ABG (blue) LD maps for a 250 kb region of
YRI chromosome 22. All markers are plotted individually; hotspots are highlighted in grey. Whilst 13 hotspots are identified within the WGS map
for this region, the ABG map shows no hotspots
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suggesting a large proportion of the chromosome is ap-
proaching complete marker saturation in the ABG data.
However, other regions show substantially increased LDU
length (with many regions increased by over 5 LDU) with
the higher marker density, suggesting they are poorly re-
solved in array-based maps.
The 100 kb regions in the YRI data which exhibit the

largest and smallest magnitude LDU length change (10
of each) between ABG and WGS maps were further in-
vestigated (Additional file 1: Figure S4). Regions with
large LDU increase in the WGS data contain SNPs with
a significantly higher MAF than regions with a small
change (p = 5.7x10−7, median of 0.18 and 0.13 for the
large and small magnitude change regions respectively),
no significant difference between the MAF distributions
of these regions was observed in the ABG data (p = 0.39).
This indicates that while there is particular enrichment of
lower frequency markers using the WGS data, it is the in-
clusion of common variation absent from array panels
which has the largest effect on the resulting LD map. The

exclusion of highly LD informative common variation in
array-based panels may reflect the ascertainment of tag-
ging SNPs which is not optimised for all populations.

Hotspot identification
The LD landscape is known to comprise long regions
of low haplotype diversity punctuated by very narrow
regions of LD breakdown which align with recombin-
ation hotspots. WGS-based maps allow for more
complete resolution of recombination hotspots com-
pared to ABG-based maps (Fig. 3). We therefore sys-
tematically evaluated hotspots identified in the four
LDU maps. We defined hotspots as five kb regions
containing SNPs which were separated by at least 1
LDU. In both populations, the WGS derived maps de-
limit a substantially increased number of hotspots
(Additional file 1: Table S2). The CEU maps show a
1.7 fold increase in resolved hotspots, compared to
2.8 fold increase in the YRI maps. This indicates that
array-based genotyping only partially resolves the LD
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Fig. 4 Distribution of allele frequencies between data sources. Histogram showing MAF distributions within ABG (left panel) and WGS (right
panel) datasets for CEU (green) and YRI (purple) populations. A MAF bin width of 0.05 has been used. The median MAF for CEU is 0.25 and
0.21 for the ABG and WGS data respectively; the same metrics for the YRI are 0.23 and 0.15 respectively
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structure in both populations and resolution is par-
ticularly incomplete for the YRI population.
We also assessed concordance between hotspots iden-

tified in the datasets (Fig. 5; Additional file 1: Table S2).
The majority of hotspots identified in ABG data were
also identified in the corresponding WGS maps (81 and
86 % for CEU and YRI maps respectively). However, for
YRI only 38 % of hotspots identified in the WGS map
were also represented in the corresponding ABG map.
Furthermore, only 13 % of identified hotspots showed
concordance across the four datasets, with 29 % of all
hotspots only observed in the YRI WGS map. Of the
170 CEU hotspots identified in the ABG map the YRI
ABG map identifies only 50 % while, in contrast, the YRI
WGS map detects 70 %. This indicates that relatively
poor resolution of the LD structure in the YRI array-
based map suggests misleadingly low concordance be-
tween hotspot locations across the two populations. Le-
veraging WGS data will therefore enable more effective
characterisation of LD structure for YRI, and other pop-
ulations with an extended population history, for disease
gene mapping and the functional analysis of genomes.

Discussion
We have shown that WGS-derived data enables superior
resolution of LD structure in two populations with dis-
tinct histories. The increased marker density provides
much improved delineation of regions of high and low
recombination. Although some chromosome regions are
well represented in array-based maps, population specific
increases in map lengths of ~20–60 % reflect improved
WGS resolution of the LD structure in other regions.

These seem likely to include regions highlighted as poorly
characterised in earlier array-based maps [6, 7]. Similarly,
Lau et al. [13] observed a ~3 % increase in map length
when comparing maps generated from HapMap phases 1
and 2, with the associated increase in marker density.
We have shown that the YRI maps are improved by

the greatest margin due to the inclusion of common
variation excluded from the array-based genotyping
panel. Array genotyping necessarily has a data acquisi-
tion bias; variants must be identified prior to array de-
sign, limiting the array capture to known variation
which may be optimally informative for only the popula-
tions used for variant discovery. This ascertainment bias
can cause issues in population genetic studies particu-
larly where array data of a population not included in
variation discovery is being investigated [14, 15]. Re-
cently developed arrays which include data from the three
HapMap phases, along with variants identified in the 1000
Genomes Project, achieve coverage of common variation
of 92–93 % for CEU but only 76 % for YRI [16].
The evidence presented here indicates that the YRI LD

structure is particularly poorly represented using array-
based data, reflecting these unresolved biases in marker
selection. While improvements in representativeness
have been made, achieving good representation of all
populations using ABG methodologies is intrinsically
impracticable given technological and cost limitations
on genotyping density. In contrast, using WGS there is
negligible acquisition bias for variant discovery, though
there can be bias where a population is highly divergent
from the reference genome assembly; improvements in
assembly and analytical tools should hopefully further
reduce this bias in the near future [17]. Some regions
are still however refractory to WGS analysis, such as re-
petitive regions, again, advances will continue to reduce
these issues [18].
The total LD map length is relatively independent of

number of samples. This indicates that although an in-
crease in the number of homogenous individuals used in
map generation improves accuracy, resolution and popu-
lation representativeness, the underlying LDMAP algo-
rithm provides robust maps with even small population
samples as previously noted [19, 20]. This may prove in-
valuable where the ascertainment of large data samples
is impractical.
The high diversity of African populations, which reflects

a much longer effective population bottleneck time, offers
a rich resource for analysis of LD structure. Increased his-
torical recombination makes sub-Saharan African popula-
tions ideal for GWAS studies, particularly for post-GWAS
refinement, as well as for basic research into recombin-
ation biology and selection. Poor representation of African
LD structure is considered likely to impact reproducibility
of GWAS results. Marigorta and Navarro [21] investigated

Fig. 5 Concordance between identified hotspots. Euler diagram
showing overlap between hotspots identified in each dataset. The
area of all regions is proportional to the number of hotspots which
are present in those sets; total area represents 629 independent
hotspots across all datasets

Pengelly et al. BMC Genomics  (2015) 16:666 Page 7 of 10



GWAS-derived disease variant reproducibility across 28
diseases. While most loci and SNPs discovered in
Europeans have been extensively replicated in European
and East Asian populations, replication in African pop-
ulations is much less frequent. At least a proportion of
these failed replications reflect heterogeneity in LD be-
tween causal variants and the tag SNPs used in GWAS
panels so selection of alternative tags specific to the
population used may improve reproducibility.
The incomplete resolution of LD structure in array-

based LD maps which is evident even for the CEU popula-
tion may have impacted the detection of disease variation
in genome-wide association studies. With decreasing se-
quencing costs, WGS-based GWAS are becoming viable,
with some successes reported [22]. These studies have the
advantages of avoiding the marker ascertainment bias, and
enable rare and common variation to be interrogated con-
temporaneously. Such studies may improve GWAS repro-
ducibility, as well as identification of additional disease
variation underlying some of the ‘missing heritability’ [23].
LD maps have been used successfully in GWAS for re-

finement of candidate regions [24, 25]. Sabatti et al. [25]
defined regions of interest around nine newly identified
disease genes underlying metabolic traits using a liberal
four LDU window. Improvements in LD map resolution
through the use of WGS data will substantially reduce
the size of regions for targeted follow-up. To investigate
the potential gains of using WGS-derived LD maps for
fine mapping, we assessed the physical window size cor-
responding to four LDU for 172 GWAS association sig-
nals identified in European populations on chromosome
22 [26]. We considered the physical distance between
the two nearest markers up and downstream which are
at least two LDU away from the GWAS signal SNP. For
the CEU population map WGS-based four LDU win-
dows were, on average, 17 % smaller compared to the
ABG map (262 vs. 316 kb respectively). Furthermore, if
we presume these GWAS signals are reproducible in
Sub-Saharan African populations, the average four LDU
window is just 152 kb in the WGS YRI map, a further
42 % reduction in candidate region size compared to the
CEU WGS map.
Considerably greater resolution can be achieved in

fine-mapping using a population with African ancestry
by exploiting the weaker LD as has been recently dem-
onstrated in African American populations [27]. African
populations have been historically underrepresented in
population genetic studies but the African Genome
Variation Project [28] is focussed on using whole-
genome sequencing and other methods to refine the de-
tection of disease variation in these populations. Con-
struction of fully saturated whole genome LD maps
from diverse African samples will undoubtedly improve
efforts to map disease variants and help distinguish true

population differences in genetic disease variation from
those which have failed to replicate due to incomplete
marker coverage in African samples.

Conclusions
We have herein discussed several improvements to LD
mapping attained using WGS data. Firstly, WGS data al-
lows complete resolution of LD structure, given the
maximal marker density. Secondly, as there is no ascer-
tainment bias in genotypes, the data are also far more
representative of the population under study, particu-
larly notable for Sub-Saharan African populations.
Thirdly, data from a larger number of individuals is re-
quired to best interrogate LD patterns in diverse popu-
lations, particularly those with long population history.
We have shown that array-based SNP panels incom-
pletely represent the LD structure in both populations
studied and this may have impacted the success of
genome-wide association studies for detecting disease
variation. Genome-wide association studies using whole
genome sequences may offer a route to capturing some
of this additional variation.

Methods
Publicly available 1000 Genomes Project [10] data de-
rived from the Complete Genomics high depth whole-
genome sequencing platform was used for WGS map
generation [29]. WGS data for two population cohorts
were used, namely the Utah Residents (CEPH) with
Northern and Western European ancestry (CEU; 96 in-
dividuals), and Yoruba in Ibidan, Nigeria (YRI; 80 indi-
viduals). For comparison, array-derived HapMap Phase
3 release 3 data were also used [11]. ABG cohorts used
were CEU (112 individuals), and YRI (147 individuals)
samples. All individuals utilised for map generation
were founders, and physical positions were defined
according to GRCh37 (hg19) coordinates.
We consider here the region Chr22:20,000,000–

51,304,566. The centromeric heterochromatin was
excluded as these regions show very low density of poly-
morphic makers and complete LD, as well as a tendency
for erroneous genotyping due to the repetitive nature of
the sequences. Genotype data were filtered prior to map
generation using PLINK [30] or VCFtools [31] to re-
move non-biallelic SNPs, SNPs with MAF within the
dataset < 0.05, SNPs with Hardy-Weinberg equilibrium
deviation p-value < 0.001 [32] and SNPs with > 5 %
missing data. All statistical analyses were performed
using R [33].
LD map generation was performed using the LDMAP

program, with default parameters [20, 34]. For sample size
reproducibility investigations, random subsets of the full
cohort were generated and LD maps generated from the
resulting dataset for three regions (Chr22:20,000,000–
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25,000,000, Chr22:30,000,000–35,000,000 and Chr22:
45,000,000–47,000,000; 12 Mb total size) with 20 pseu-
doreplicates generated for each region. We restricted
these analyses to 12 Mb of the chromosome due to the
computational intensity of LD map generation. Follow-
ing subsampling, filtering and LD map generation with
a range of sample sizes, a negative exponential cumula-
tive model was fitted to the marker density data for
each population and extrapolated to estimate sample
sizes required for effective map saturation. We defined
map saturation as the sample size at which an add-
itional 10 individuals provides less than 1 % increase in
marker density.
We investigated regions of intense LD decline, which

are canonically the product of high levels of historical
recombination. Recombination hotspots are known to
span just 1–2 kb [35, 36]. For comparison of LDU
maps we defined a hotspot as a region of maximum
size 5 kb in which there was at least a one LDU change
between two encompassed SNPs, as observed in previ-
ous studies [37]. Hotspots were deemed concordant
between datasets if there was any physical overlap;
these liberal definitions were required due to the dif-
fering marker composition and density of datasets.

Additional file

Additional file 1: Additional material as referenced in the text.
(PDF 257 kb)
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