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Abstract

Cardiac disease has become a severe threat to public health according to the government
report. In China, there are 0.29 billion cardiac patients and early diagnosis will greatly
reduce mortality and improve life quality. Electrocardiogram (ECG) signal is a priority
tool in the diagnosis of heart diseases because it is non-invasive and easily available with a
simple diagnostic tool of low cost. The paper proposes an automatic classification model
by combing convolutional neural network (CNN) and recurrent neural network (RNN)
to distinguish different types of cardiac arrhythmias. Morphology features of the raw ECG
signals are extracted by CNN blocks and fed into a bidirectional gated recurrent unit (GRU)
network. Attention mechanism is used to highlight specific features of the input sequence
and contribute to the performance improvement of classification. The model is evaluated
with two datasets considering the class imbalance problem constructed with records from
MIT-BIH arrhythmia database and China Physiological Signal Challenge 2018 database.
Experimental results show that this model achieves good performance with an average F1
score of 0.9110 on public dataset and 0.9082 on subject-specific dataset, which may have
potential practical applications.

1 INTRODUCTION

Cardiac disease has a death rate of 32% more than cancer and
other disease. In China, there are 0.29 billion cardiac patients
with a rising prevalence [1]. It is important to detect and
diagnose early to reduce mortality and improve life quality. Elec-
trocardiography (ECG) is a non-invasive tool for the diagnosis
of cardiac abnormalities. Normal heartbeat usually consists of
P, Q, R, S and T waves [2]. Different arrhythmias show spe-
cific differences in these five waves and the durations between
the waves. The unique local morphology and overall trends can
be observed in an ECG record and thus the cardiac abnormal-
ities can be recognized by their characteristics. For examples,
the T wave of ventricular ectopic beat was significantly higher
than that of non-ectopic beat. While long duration between S
and T wave and morphological changes of T wave are several
diagnostic indexes of myocardial infarction [3].

Deep learning technology provides a new and effective exam-
ple for making clinical decision-making from pathophysiologic
data [4]. Many researches have focused on the topic to explore
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potential risks of heart attack and made great progress trying
to achieve high performance [5]. Although some works have
achieved better performance than a human specialist, there are
still unsolved challenges which limit the large-scale promotion
of automatic classification of arrhythmias:

1. Many cardiac diseases are chronic and change gradually over
time. There is a long-term correlation between disease stage
and historical medical intervention and treatment. In order
to make a correct medical diagnosis, historical information
must be taken into account. An automatic diagnosis model
will be more precise if the time-dependency progress of
disease symptoms is modelled.

2. The morphological characteristics of ECG signals are sig-
nificantly different among subjects, and strongly depend on
their physical condition. For example, a healthy athlete as
regular heartbeat frequency of about 60 beats per minute,
which is usually considered as sinus bradycardia of ordinary
people. In this case, a normal heart condition for the athlete
may be incorrectly identified as abnormal. While for some
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physically weak people, the normal signals may be regarded
as noise. The high variability between patients and the inter-
nal variability of heart rate of the same patient will affect
the accuracy of abnormality recognition, and the recognition
model is easy to have the problem of over-fitting or under-
fitting. Human heterogeneity should be paid more attention
when designing a universal classification model.

3. The performance of a neural network is highly dependent on
the training dataset. If the dataset is imbalanced with 98% of
normal events and 2% of abnormal events, the model will
achieve accuracy of 98% even it classifies all the inputs into
normal events while treats the abnormal data as noise and
eliminates it. But these 2% data are just the distinguishing
symptoms of ECG abnormality.

To address the time-dependency problem of ECG classifica-
tion task, this paper proposes a model integrating convolutional
neural network (CNN) and recurrent neural network (RNN).
The convolutional neural network is used to learn the mor-
phological characteristics of ECG raw signal, and the GRU
network is used to extract the long-term correlation between the
sequence features. To address the human heterogeneity prob-
lem, we conduct patient-specific training method. The training
is composed of two phases: the first phase is to produce a gen-
eralized model with public datasets, and the second phase is
to fine-tune the general model to fit the specific subject. To
address the data imbalance problem, the model is trained with
constructed datasets in which the records numbers of each class
are complemented to be equal.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces related work. The architecture of the proposed
work is introduced in detail in Section 3. Section 4 describes
the preparation of datasets. Section 5 gives experimental setup
and performance evaluation. Finally, a conclusion is presented
in Section 6.

2 RELATED WORK

The abnormality of ECG can be observed from the morpho-
logical and temporal variability between cardiac cycles. In order
to explore the variabilities, a model should have the capability to
extract the local feature of the cardiac cycles and analyse sequen-
tial data. In the field of deep learning, there are two widely
used networks: convolutional neural network that focuses on
feature extraction and recurrent neural network that focuses on
sequence analysis.

2.1 CNN model and its application in ECG
diagnosis

CNN is a special kind of neural network characterized by con-
volutional operators, which makes it perform well in image
processing field. Deep CNN has multiple non-linear hidden lay-
ers capable of learning the complex relationship between input
and output. In recent years, CNN model has been applied in the

diagnosis of different cardiac diseases, such as cardiac arrhyth-
mia, myocardial infarction, and heart failure. In the work of
Hannun and co-workers [6], a model consisting of 16 conven-
tion blocks with residual connections is proposed to detect 12
kinds of heart arrhythmias from the original single lead ECG
input, which achieves an F1 average score of 0.837 better than
the average of cardiologists (0.780). In the work of Baloglu [7], a
deep learning model of 10 layers is proposed for diagnosis of 10
types of myocardial infarction based on 12 lead ECG signals.
For congestive heart failure diagnosis, Acharya and his team
developed a 11-layer deep convolutional neural network model
with 2-s of ECG signals as input, and attained a diagnostic
accuracy of 98.97% [8].

2.2 RNN model and its application in ECG
diagnosis

RNN model is suitable for processing temporal and sequen-
tial data with the capability of memory of historic information
and is widely used in time series processing. However, the
original recurrent neural network suffers from gradient vanish-
ing or gradient exploding. Long short-term memory (LSTM)
model is a variant of RNN and solves the problems effec-
tively. It introduces gating mechanism including input gate,
output gate and forgetting gate to control the pass route of
information.

RNNs are natural to model time-dependent correlation of
the ECG data, but need to be fed with preprocessed features,
including time domain and frequency domain features. Time
domain features involve the time length of ECG waves and
intervals and associated further processing, such as RR inter-
val and its standard deviation. Maknickas proposed a three-layer
LSTM network on pre-computed features including wave width
and amplitude and QRS interval length to distinguish Atrial fib-
rillation from normal signal. The model achieved an average F1
score of 0.78 with 1791 parameters [9].

Frequency domain features involve features extracted with
signal processing techniques such as wavelet transformation or
Fourier Transform. Chang proposed an LSTM model of 30
hidden units to extract the long-term and short-term charac-
teristics of atrial fibrillation (AF) with the input of transformed
spectrograms from 2-lead ECG signal [10]. The spectrogram
is achieved by the Short-Term Fourier Transform (STFT) of
data on a sliding window basis. The detection accuracy of the
model was 98.3%. In the work of Saadatnejad [11], the ECG
feature and wavelet feature of ECG signal are extracted and
then the features are fed into two LSTM models to classify the
record. Sawant proposed a multilabel classification model based
on gated recurrent unit (GRU) with time-frequency features
extracted by Fourier Bessel Expansion and scattering transform
[12].

Instead of hand-crafted features, Yildirim applied an LSTM
model with the features coded using conventional autoencoders
(CAE) to automatically classify five types of arrhythmias, and
achieved a testing accuracy of 99.11% with a reduction of
training time from 4.5 to 0.6 h [13].
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2.3 CRNN model and its application in
ECG diagnosis

CNN model has shown its powerful and feasible capability in
feature extraction, but it is limited in that all input signals should
be segmented into fixed size, which will lead to the loss of
temporal feature of continuous signal. RNN model is suitable
for sequences of variable length, while learning local feature of
input signal is a challenging task for it. In view of the distinctive
features, it is inspired to take advantage of the combination of
the two models, that is, convolutional recurrent neural network
(CRNN).

Lui developed a myocardial infarction (MI) classifier which
combines convolutional neural network and recurrent neural
network [14]. It uses single lead ECG signal acquired form wear-
able ECG equipment to distinguish 15 kinds of classification. It
is found that the sensitivity is improved by 28.0% after adding
a recurrent layer compared with the original convolution neural
network.

Much effort has been devoted to demonstrate the perfor-
mance of the integrated structure. To detect diabetes by heart
rate, several experiments are conducted in different network
architecture [15]. The accuracy of CNN is 93.6%, while the
maximum accuracy of CNN-LSTM combination is 95.1%.
Three deep learning networks are proposed to classify ECG
signal: CNN, LSTM, convolutional LSTM (CLSTM) [16]. The
performance of the models was verified using multiple public
arrhythmia database. Among the three models, CLSTM model
shows the overall superior performance with an accuracy of
97.6%.

Attention mechanisms are a well-known technique in com-
puter vision [17] and natural language processing [18]. Attention
is dynamically selected by adaptive weighting according to the
importance of the input. The essence of attention is to locate
interested information and suppress useless information. The
combination of attention layer with CNN and RNN model
has been proposed. Sigurthorsdottir et al. proposed a convo-
lutional recurrent neural network. The blocked convolutional
layers extracted features, and a bi-directional gated recurrent
unit (GRU) layer and an attention layer is applied to aggre-
gate these features into a single feature vector which is used to
classification [19]. Qiao developed a model composed of CNN
and Bi-LSTM with multilevel attention to find the abnormal
variation in beat-, rhythm- and frequency-level [20].

Although CRNN has shown remarkable progress in ECG
diagnosis, there are still much potential needing to be exploited.
In our method, we augment the CNN module and RNN
module with different attention mechanism to calibration the
feature learning, and apply fine-tuning technique to achieve the
subject-specific classification model. Besides, we re-construct
the training dataset to avoid class-imbalance problem.

3 METHODS

In this work, we present an automatic classification model com-
bining both CNN and RNN for detection of arrhythmias from

ECG signals. Figure 1 illustrates the proposed network archi-
tecture. The CNN module is applied to extract morphology
features of the ECG signal and the gated recurrent unit (GRU)
module is applied to model the long-term temporal dependency
of the features. In this study, the network accepts heartbeats
from raw ECG signal sampled at 360 Hz as input (described
in Section 4.1), and outputs a prediction of the arrhythmia type
to which the heartbeat belongs. The arrhythmia types used are
normal sinus rhythm (NSR), left bundle branch block (LBBB),
right bundle branch block (RBBB), atrial premature beats (APB)
and premature ventricular contraction (PVC).

3.1 CNN module with attention

The architecture of CNN module is shown in Figure 2a. The
first block consists of a 1D convolutional (1D Conv) layer,
a batch normalization (BN) layer and a rectified linear unit
(ReLU) layer. The next four blocks have the same structure as a
BN layer followed by a ReLU layer, a dropout layer, and a con-
volutional layer. Each block will start with a BN layer except
for the first one which has made the input normalized in the
preprocessing phase.

Batch normalization is the operation of transforming the
dataset into having zero mean and unit variances to minimize
the impact of internal covariate shift 22, which is the phenom-
ena that the input distribution of each layer will change with the
parameters of the previous layer in training phase. BN trans-
form can be added to a network to manipulate any activation
and enables higher learning rate.

ReLU layer will introduce non-linearity into the model, accel-
erate convergence speed and improve accuracy. Dropout is a
regularization technique to discard units randomly. It will pre-
vent the network from forming complex cooperative adaptation
and significantly reduces over fitting and improves accuracy. We
apply dropout with a probability of 0.2. The convolution layer
contains a 1D convolution layer (each have 32 kernels of size 5).
Max pooling is an operation that compute the max value of a
particular feature, which reduces the dimensions of the output
features significantly while enables translation invariant of the
features. We use max pooling of size 5 and stride 2 in all pooling
layers to reduce the number of parameters and computation.

The SE (squeeze-and-excitation) module is applied to refine
the channel-wise feature maps [21]. SE module consists of a
global average pooling (GAP) layer and two fully connection
(FC) layers, each with different activation functions. Given the
input feature vector as fin, the GAP layer will squeeze global
spatial information into a channel descriptor to capture channel-
wise dependencies. The SE module will produce a scalar s to
represent the importance of the channel as shown in Equa-
tion (1), where δ refers to the ReLU function and σ refers to the
Sigmoid function. The refined feature vector is shown in Equa-
tion (2), where s⋅fin refers to the channel-wise multiplication
between the feature vector and the scalar s.

s = 𝜎 (W2𝛿 (W1GAP (X ))) (1)

fout = fin + s ⋅ fin (2)
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FIGURE 1 The block diagram of our proposed model. The neural network consisted of a CNN module and a GRU module. The training of the model
includes global training and subject-specific training.

FIGURE 2 (a) The architecture of CNN module. (b) The architecture of GRU module. The output of CNN module of different timestamp is fed into the
RNN module for further processing.

3.2 Attention-based bidirectional GRU

GRU is applied to extract the long-term temporal features along
the time sequence to infer the trend of the signal. We apply a
bidirectional GRU model to capture the forward and backward
time dependency. As shown in Figure 2b, the model is com-
posed of a forward layer and a backward layer. Each layer has
two units for different direction. At each time step t, the latent
feature vector ft of an ECG segment is fed into the GRU mod-
ule. The number of the units is the length of the considered
time steps of an ECG record, and set to 32 after several testing
of varied setting.

In each GRU unit, the hidden state ⃖⃗ht of time step t in the
forward layer and ⃖⃖ht in the backward layer are determined by
the current input and the hidden state of the previous time step

as denoted in Equations (3) and (4), where W⃗ and V⃗ denoting
the weight and b⃗ denoting the bias of the forward layer, and
⃖W⃖ , ⃖⃖V and b⃖ are that of the backward layer. They are trainable
parameters.

The annotation vector of each ECG segment is calculated by
summarizing its hidden outputs from both directions as [⃖⃗ht ; ⃖⃖ht ]
and the output of the unit yt are computed as Equation (5),
where ft represents the input of GRU in timestep t. The out-
put will be constructed into a matrix Y of size of N×T, where
T is the length of the input sequence and N is the size of vector
yt , and fed into the attention layer.

⃖⃗ht = tanh
(

W⃗ ft + V⃗ ⃖⃖⃗ht−1 + b⃗
)

(3)
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⃖⃖ht = tanh
(
⃖W⃖ ft + ⃖⃖V ⃖⃖⃖ht−1 + b⃖

)
(4)

yt = tanh
(

U
[
⃖⃗ht ; ⃖⃖ht

]
+ by

)
(5)

Soft attention mechanism is applied to emphasize informa-
tion specific to the subject heterogeneity, which is represented
with an attention weight vector 𝛼 denoted in Equation (6).
The output from the attention layer is denoted as Equation (7),
where the superscript T denotes the transpose of a matrix.

𝛼 = so ftmax
(
wT

att Y
)

(6)

Yatt = Y𝛼T (7)

3.3 Classification layer

The attention layer is then followed by a fully connected layer,
the output of which is fed into a SoftMax layer. The output from
the SoftMax layer corresponded to the probability distribution
of arrhythmia in the input ECG segment.

3.4 Subject-specific training

The model is trained by two steps: global training and subject-
specific training as shown in Figure 1. The global training uses
public dataset to get a generalized model. The subject-specific
training uses patient-specific dataset to fine-tune the generalized
model and get a subject-specific model. Fine-tuning technique is
applied when a pretrained DNN to be reused for new task. The
parameters of the model can be adjusted to find a new mini-
mized loss while the structure of the model remains intact. The
subject-specific training is performed forward propagation to
calculate the loss of the objective function, and then perform
back propagation to calculate the gradient of the filter (param-
eter) using the chain rule. Finally, the parameters are updated
by batch SGD algorithm. Forward propagation and backward
propagation are performed iteratively until the loss converges.

In implementation, the first five CNN modules are frozen
in subject-specific training to avoid overfitting and fasten the
training speed. A lower learning rate is adopted to promote the
convergence of the network. Therefore, the model can com-
plete training with only dozens of back propagation stages,
making the classification task as quickly as possible. This
makes the subject-specific model for real-time ECG monitoring
applicable.

4 DATASETS

In this work, the public datasets are obtained from two publicly
available database. MIT-BIH Arrhythmia database (MITDB)
[22] consists of 48 records obtained from 47 subjects sampled at

360 Hz. Each record contains two leads, that is, modified limb
lead II obtained by placing the electrodes on the chest and lead
V1. In this study only ECG recordings of lead II are applied to
detect the heartbeat for it gives a good view of the P wave, is
most commonly used to record the rhythm strip [24]. The other
dataset is China Physiological Signal Challenge (CPSC) dataset
[25] containing 9831 12-lead ECG recordings obtained from
9458 subjects sampled at 500 Hz. The subject-specific dataset
is obtained by an ECG sensor attached on the chest of 80 per-
sons. Each person collected ECG signals of 1 min for 5 times
to get five-minute long record in comply with AAMI standards
[26].

The public ECG signals used in the paper is preprocessed
as shown in Figure 3. Before feeding into the neural network,
these raw signals should be preprocessed to retrieve heartbeats
(denoting a cardiac cycle) of a fixed length. Then the heartbeats
are shuffled and rearranged to construct different datasets.

4.1 Signal preprocessing

ECG signals from different source need to be preprocessed
to obtain the samples of same length and resolution to be fed
into the CNN model. The signals from CPSC are downsam-
pled from 500 to 360 Hz to comply with MIT-BIH records. All
the ECG signals are denoised and filtered to remove baseline
wander using Daubechies wavelet [27]. Each ECG signal is nor-
malized with Z-score normalization in the range of (0,1), that
is, to achieve standard deviation of 1 and zero mean. Further,
the ECG signals are segmented according to the location of
R peak using Pan-Tompkins algorithm [28], which is regarded
as the identification of a cardiac cycle. The length of each
segment is fixed to 600 ms (200 ms before the R peak and
400 ms after) with 216 sample points. Finally, each segment is
labelled according to the annotations provided by the public
database.

4.2 Datasets construction

The quality of the proposed model is directly related to the size
and quality of training data. In many datasets publicly available,
the number of records of different categories is highly unbal-
anced. For MITDB, the number of ECG recordings labelled
with NSR is much more than that of ECG beats labelled with
other categories. While for CPSC, it contains 207 records of
LBBB while 1695 records of RBBB. A neural model will take
the risk of performance degradation with training dataset of
biased distribution, for the model would favour the dominating
classes. To solve this problem, we need to balance the number
of records in each category.

In this study, two different datasets A and B are con-
structed for performance evaluation. Dataset A includes full and
unbalanced ECG data with the heartbeats retrieved only from
MITDB as shown in Table 1. Dataset A is divided into train-
ing set, validation set and testing set at a ratio of 70%:10%:20%
randomly.
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FIGURE 3 The preparation of datasets.

TABLE 1 Distribution of heartbeats in dataset A.

Arrhythmia types Number of heartbeats

Normal sinus rhythm (NSR) 75,020

Left bundle branch block (LBBB) 8072

Right bundle branch block (RBBB) 7255

Atrial premature beats (APB) 2546

Premature ventricular contraction (PVC) 7129

Total number 100,022

TABLE 2 Distribution of heartbeats in dataset B.

Arrhythmia

types

Training set and

validation set Test set Total

NSR 16,000 15,004 31,004

LBBB 16,000 1614 17,614

RBBB 16,000 1451 17,451

APB 16,000 509 16,509

PVC 16,000 1425 17,425

Total number 80,000 20,003 100,003

Dataset B is a balanced dataset with records from MITDB
and CPSC. We complement the number of the minority classes
of MITDB using records of CPSC and thus make each category
contains equal numbers of heartbeats (16,000). To conduct the
performance comparation in a fair and sound way, dataset A
and B all contain a total of approximately 100,000 ECG heart-
beats in summary. Dataset B is divided into a 70% training set,
10% validation set and 20% testing set similar with dataset A as
denoted by Table 2. The training set and validation set include
a total of 80,000 segments. The test set contains 20,000 seg-
ments randomly selected from MITDB and CPSC without any
augment. The strategy is to make sure the performance of the
model is evaluated with real data sample.

5 EXPERIMENTS AND RESULTS

The proposed model is developed and trained using Python
with TensorFlow library [29]. The experiments were performed
on a computer with 1 Intel Core i9-9900K CPU at 3.6 GHz,
NVIDIA Quadro RTX5000 and 64GB memory. For train-
ing the model, the categorical-cross-entropy loss function was

used [30]. Adam optimization method [31] was used for opti-
mizing the model with learning rate as 0.001, beta1 = 0.9,
and beta2 = 0.999. The procedure was repeated ten times to
complete the tenfold training and validation plus test.

5.1 Performance metrics

The performance of the proposed model is evaluated with the
following statistical measures as shown in Equations (8)–(11):
Sensitivity (Sen), Specificity (Spe), Precision (Pre), and Accu-
racy (Acc). Sen measures the ability of the model not to miss
abnormal heartbeat, and Spec evaluates how well our model
does not misjudge normal heartbeat. Pre measures the cor-
rectly predicted positive observations. Acc represents the overall
performance of the model in properly classifying heartbeat.
TP (True Positive) and TN (True Negative) indicate the num-
ber of heartbeats correctly predicted, while FP (False Positive)
and FN (False Negative) indicate the number of heartbeats not
predicted as labelled.

Sen =
#TP

#TP + #FN
(8)

Spe =
#TN

#TN + #FP
(9)

Pre =
#TP

#TP + #FP
(10)

Acc =
#TP + #TN

# (TP + TN + FP + FN )
(11)

For each class x, the F1 score is denoted as F1xand com-
puted as Equation (12), and the average F1 score of the model
is evaluated as Equation (13).

F1x =
2 (Sen ∗ Pre)

Sen + Pre
(12)

F1 =
1
5

(F11 + F12 + F13 + F14 + F15) (13)

5.2 Experiment result

Firstly, we investigate the impact of dataset on the model.
Dataset A is full and unbalanced, while dataset B is balanced.
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TABLE 3 The performance of model on datasets A.

Sen Spe Pre Acc F1x

NSR 0.9570 0.8214 0.9000 0.9064 0.9276

LBBB 0.9282 0.7607 0.8270 0.8532 0.8747

RBBB 0.9416 0.6932 0.8230 0.8429 0.8783

APB 0.8596 0.6875 0.8571 0.8055 0.8584

PVC 0.9032 0.6768 0.8400 0.8246 0.8705

F1 – – – – 0.8819

TABLE 4 The performance of model on datasets B.

Sen Spe Pre Acc F1x

NSR 0.9383 0.8227 0.9050 0.8970 0.9214

LBBB 0.9416 0.8128 0.8710 0.8866 0.9049

RBBB 0.9352 0.7647 0.8800 0.8753 0.9067

APB 0.8892 0.8041 0.9171 0.8644 0.9030

PVC 0.9617 0.7647 0.8800 0.8912 0.9191

F1 – – – – 0.9110

TABLE 5 The F1 score of different network architecture.

NSR LBBB RBBB APB PVC

Average

F1

CNN 0.9137 0.8541 0.8812 0.8236 0.8566 0.8658

CNN-RNN 0.8943 0.8766 0.8711 0.8690 0.8752 0.8772

CNN-RNN-attention 0.9213 0.9049 0.9067 0.9030 0.9051 0.9082

Denoted by Tables 3 and 4, the average F1-scores of dataset A
and B are 0.8819 and 0.9110 respectively. There is an increase
in average F1-score for dataset B. The improvement is achieved
by increase of F1 scores of the four arrhythmias accompanied
by the slight decrease of that of NSR, but it is acceptable in that
all the 5 classes achieve the same classification performance. It
can be observed that the model training on dataset B achieved
better performance as compared to dataset A, which is caused
by low numbers of the four arrhythmias used in dataset A for
training.

Then we investigate the performance comparison between
the model of different architecture with subject-specific dataset.
We compared the performance measures of proposed model
with two different models. The first model (denoted as CNN
in Table 5) used the used the structure described in Figure 2a
with a full connection layer and a classification layer. The
second model (de-noted as CNN-RNN) is our model without
applying the attention mechanism. The F1 scores of the three
models are shown in Table 5. Based on Table 5, it can be
noted that model with RNN layer yielded better performance
as compared to it without RNN layer. This is because the
inclusion of the GRU layer captures more variations in the
large number of ECG signals during training and hence helped
to achieve better results. Attention mechanism highlights

noteworthy features on a global scale and help to discriminate
between beats of different classes, and yielding an F1 score of
0. 9082.

6 DISCUSSION

The focus of this paper comes from several issues arose in the
cardiac arrhythmia classification task: the architecture of neural
network, the variability between patients, and the imbalance of
dataset will impact on the ECG signal classification.

ECG signal is typical biomedical time series. The architecture
of neural network for time series classification is the focus of
researchers for a long time. In recent years, CNN model has
proved superior classification accuracy for its feature extrac-
tion capability. Cardiac arrhythmia classification method based
on CNN divides the ECG records into short segments of sev-
eral seconds and outputs classification result every segment.
Therefore, the method may not make full use of the entire
record. Different from the separate classification of single ECG
segment, we observed that adding an RNN layer can take beat-
to-beat variation into account and thus model time-dependent
progress of disease more precisely.

When the architecture of classification model is determined,
we investigated the impact of dataset for training the model.
For training the general model, one of the main limitations is
that all public available datasets come from the real-world hos-
pital and the records of classes are highly imbalanced. Generally,
the record number of normal sinus rhythm is far more than
other categories. Machine learning methods are often difficult
to learn when a class is dominant. Using the imbalanced dataset
to train the model, the classes with less records in the dataset will
obtain lower positive predictive value. To generate reliable pre-
diction results for the new data, the training dataset should be
evenly distributed with nearly equal number of records in each
class.

Another issue improving the unreliability of classification
result is the patient variability. General model ignores the dif-
ference between patients and always suffer from performance
degradation when applying to testing set with different data dis-
tribution. Many researches apply transfer learning mechanisms
to overcome the shift of data distribution. In our method, we
conducted global training and subject-specific training. Firstly, a
general model without consideration of the variations between
patients is trained based on common ECG database. Then,
using a few minutes of ECG signals from one specific patient,
the model is fine-tuned to find the personal characteristic pat-
tern. Finally, the model is used to classify the ECG signals from
the specific patient perpetually.

7 CONCLUSIONS

In this study, an automatic classification model for car-
diac arrhythmia combing CNN and RNN is proposed. The
main contributions of this work can be summarized in three
aspects:
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1. Combining the benefits of both CNN and RNN architec-
tures is helpful for the early diagnosis of cardiac arrhythmia.
The subtle abnormal signs can be detected by CNN in
the ECG signal before the disease have risky impact on
the patient, and RNN can monitor the signs develop-
ing over time. Long-term dependency among the feature
sequence is important to in that the sequence contains
more information than separated heartbeat. RNN can help
identify the possible abnormalities in the long-term ECG
signals with the augment of attention mechanism, which
will highlight pathological episodes and have a great poten-
tial to support clinicians for cardiac diagnosis in long-term
ECGs.

2. To overcome the high variability between patients, the train-
ing of the model is conducted by two steps: global training
and subject-specific training. The global training uses pub-
lic dataset to get a generalized model. The subject-specific
training uses patient-specific dataset to fine-tune the general-
ized model and get a subject-specific model. The experiment
result shows the model achieved a satisfactory performance
on the personal dataset.

3. We adopt a variety of health data sources which are shuffled
and reallocated to avoid the class imbalance problem. We use
a balanced training set and evaluate the proposed model with
actual test set in which the availability of abnormal class is
limited to show the generalization of the model. The results
demonstrate that the proposed model method can provide
a robust solution to the class imbalance problem in medical
data.
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