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Abstract: Olive oil samples from three different Greek regions (Crete, Peloponnese and Lesvos) were
examined by optical spectroscopy in a wide spectral region from ultraviolet to near infrared using
absorption, fluorescence and Raman spectroscopies. With the aid of machine learning methods,
such as multivariate partial least squares discriminant analysis, a clear classification of samples
originating from the different Greek geographical regions was revealed. Moreover, samples produced
in different subareas of Crete and Peloponnese were also well discriminated. Furthermore, mixtures
of olive oils from different geographical origins were studied employing partial least squares as a
tool to establish a model between the actual and predicted compositions of the mixtures. The results
demonstrated that optical spectroscopy combined with multivariate statistical analysis can be used as
an emerging innovative alternative to the classical analytical methods for the identification of the
origin and authenticity of olive oils.

Keywords: olive oil; geographical origin; authenticity; visible spectroscopy; Raman spectroscopy;
Partial Least Squares Discriminant Analysis; machine learning

1. Introduction

Olive oil is a fruit juice produced in a completely natural way from olives (Olea europaea), without
the use of chemical solvents or other additives. Its phenolic components have been shown to have
anti-inflammatory and antioxidant properties [1]. The protective role of the phenolic components
of olive oil is well known [2]. Thus, its consumption has been increasing worldwide. However,
the increased demand of olive oil may lead to illegal activities, such as false declaration of geographical
origin and counterfeiting authenticity.

In order to prevent such incidents, the European Union has enacted a series of regulations to attest
olive oils [3]. The geographical indications of PDO (protected designation of origin), PGI (protected
geographical indication) and TSG (traditional specialty guaranteed) are used for the commercial
protection of a product originating from a specific region and following a traditional production
process. PDO includes agricultural products that are produced in a specific geographical area. PGI
includes products linked to a geographical area. More specifically, at least one of the production
stages occurs in that area. TSG includes products that have been created using traditional materials or
traditional production methods [4].
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In previous years, many analytical techniques have been used to protect the authenticity of olive
oils. These techniques include chromatography, nuclear magnetic resonance (NMR) spectroscopy and
isotope ratio mass spectrometry [5]. NMR spectroscopy was used to investigate the authenticity of virgin
olive oils from Italy and Greece [6]. Also, 1H high-field NMR was used to analyze olive oils collected in
different Italian areas and to evaluate the potential of this technique for geographical characterization [7].
Moreover, authentic Italian olive oils were characterized by isotope ratios of C, H and O [8]. Additionally,
measurements of δ13C and δ18O were performed on olive oil samples produced in Greece, Morocco,
Spain, Italy, Tunisia and Turkey. The results showed a trend to classify samples according to
geographical origin [9]. Chromatographic techniques, such as capillary electrochromatography, high
performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS),
have been used to determine the geographical origin of olive oils. More specifically, Lopez-Feria et al.
conducted a mass spectrometric study for the discrimination of extra virgin olive oils belonging to
different PDOs [10]. In addition, olive oil samples from different European countries were successfully
separated by proton transfer reaction mass spectrometry (PTR-MS) headspace analysis [11]. Recently,
Mikrou et al. accomplished the varietal and geographical discrimination of Greek olive oils based
on the chromatographic determination of fatty acids, squalene and tocopherols [12]. Even though
analytical methods are quantitative and accurate, they are also sophisticated and time consuming.

Spectroscopic techniques have been used for the discrimination of olive oils based on their
geographical origin. Visible Fourier transform infrared and near- and mid-infrared spectroscopies
were used to classify olive oil samples based on their geographical origin. More specifically, Lin et al.
reported the potential of visible and near-infrared spectroscopies for discriminating between extra
virgin olive oils from Spain, Italy and Turkey [13]. Moreover, Downey et al. examined the ability
of visible and near-infrared spectroscopies to discriminate extra virgin olive oils from the eastern
Mediterranean [14]. In addition, Fourier transform infrared spectroscopy (FTIR) in combination with
multivariate analysis can distinguish extra virgin olive oils from Greece, Italy, Portugal and Spain [15].
Gurdeniz et al. demonstrated the efficiency of mid-IR spectroscopy in the classification of Turkish
olive oils according to their growing location [16].

The aim of this study was to analyze Greek olive oil samples using optical spectroscopic techniques,
which are able to stand as an innovative alternative to conventional analytical techniques. Spectroscopic
methods are of low cost, capable of providing information rapidly and need no special pretreatment of
the samples.

2. Results and Discussion

In this study, we investigated the classification of olive oil samples using optical spectra for
various spectral regions from ultraviolet (UV) to near-Infrared (NIR), and also fluorescence and Raman
spectroscopic data. Seventy-one samples of Greek olive oils were collected in the winter period of
2018–2019 from three regions of Greece, namely Crete, Peloponnese and Lesvos. These included
40 samples of Koroneiki variety produced in different subareas (prefectures) of Crete (16 from Heraklion,
7 from Lasithi, 8 from Rethymnon and 9 from Chania), 16 samples of Koroneiki and Kolovi varieties
produced in different subareas (prefectures) of Peloponnese (12 from Messinia and 4 from Laconia) and
15 samples of Koroneiki, Kolovi and Adramitiani varieties from Lesvos. A map of the above-mentioned
regions is shown in Figure 1.

Graphical results are presented only for the spectroscopic techniques that achieved optimal
classification of the samples. Table 1 shows the percentage of successful classification of the olive
oil samples by PLS-DA for all spectral regions under examination. The application of partial least
squares discriminant analysis (PLS-DA) on the absorption (UV, visible and NIR), fluorescence and
Raman spectra of the olive oils from different geographical origins demonstrated that visible and
Raman spectroscopy are superior in comparison to other spectroscopic techniques for the purpose of
this study.
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Figure 1. Map of Greece showing the geographical origin of the olive oil samples.

Table 1. Rate of successful classification (%) of the olive oil samples by partial least squares discriminant
analysis (PLS-DA) for all spectral regions/methods.

Spectral Region/Method % Successful Classification

UV 220–280 nm 84.51
UV 260–410 nm 80.28
Vis 400–800 nm 97.18

NIR 800–1600 nm 87.18
NIR 1800–2200 nm 77.46

Fluorescence 81.69
Raman 94.37

A typical visible absorption spectrum of olive oil is shown in Figure 2a. Samples of olive oil
present peaks from carotenoids at 454 and 480 nm, while peaks at 416 and 670 nm correspond to
chlorophyll [17]. A typical Raman spectrum of olive oil from 1000 to 1800 cm−1 is shown in Figure 2b.
The characteristic Raman bands correspond to the vibrations of fatty acids in olive oils. In particular,
the band at 1082 cm−1 is due to C-C stretching vibrations, and the one at 1265 cm−1 is due to =C-H
stretching vibrations. The bending vibrations of C-H is observed at 1300 and 1441 cm−1, while C=C
stretching of unsaturated fatty acids is observed at 1657 cm−1. A weak band at 1747 cm−1 corresponds
to C=O stretching of esters in olive oil [18–21].

The application of PLS-DA on the visible spectra brought on a clear separation of the olive oils
produced in different geographical regions as shown in the score plot of Figure 3a. In total, 97.57%
of data variance was explained by the first two latent variables (LV1 and LV2). The loading plot
of Figure 3b depicts that both the first and the second latent variable played a notable role in the
discrimination of the olive oils based on their geographical origin. Four main bands contributed to
the discrimination, namely at 454 and 480 nm, that correspond to carotenoids, and at 416 and 670 nm,
that correspond to chlorophyll. Therefore, chlorophyll and carotenoid contents are different in olive oils
produced in different regions of Greece [22]. As mentioned by Mateos et al., differences in chlorophyll
and carotenoid contents depend on the growing regions of the olive oils [23].
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Figure 3. Classification of olive oils: (a) score plot for the discrimination of the olive oils from Crete,
Peloponnese and Lesvos using visible absorption spectroscopy; (b) loading plot based on visible spectra.

Table 2 shows the PLS-DA model accuracy based on visible spectra. The predicted values of
the statistical model are satisfactory and only two samples were misclassified. A five latent variables
model cross-validated with Venetian blinds (nine splits) was applied.
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Table 2. PLS-DA classification of the olive oil samples using visible spectra.

# Samples Predicted as
Crete

Predicted as
Peloponnese

Predicted as
Lesvos

Model
Accuracy

Crete 40 40 0 0 100%
Peloponnese 16 0 15 1 93.75%

Lesvos 15 0 1 14 93.33%

By using Raman spectroscopy, in a similar way to the visible absorption, the olive oil samples from
Crete, Peloponnese and Lesvos were separated into three groups (Figure 4a). In total, 96.18% of data
variance was explained by the first two latent variables (LV1 and LV2). It should be mentioned that the
samples from Crete were further discriminated into two subgroups. Those subgroups correspond to
the samples produced in western (negative values of y axis) and eastern Crete (positive values of y
axis). The loading plot of Figure 4b depicts that the second latent variable played a notable role in the
discrimination of the olive oils based on their geographical origins.
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The four main bands that contributed to the discrimination, namely at 1082, 1300, 1441 and
1657 cm−1, corresponded to the vibrations of saturated and unsaturated fatty acids in olive oil.
Consequently, Raman spectroscopy in combination with PLS-DA revealed a clear differentiation of fatty
acid content with respect to geographical origin. Diraman et al. have used fatty acid composition of
olive oils for the discrimination of geographical origin for various Turkish virgin olive oils [24]. Kosma
et al. have also shown that variation in the fatty acid content of Greek olive oils can be attributed to
different geographical origins [25]. In this study, the harvest time, crop altitude, irrigation scheme and
fertilization of the samples were similar. Therefore, the differences in fatty acid content can be attributed
to differences in the soil and environmental conditions of the regions (average temperature, rainfall and
duration of sunshine). The average rainfall value from May to October 2018 was recorded at 52 mm
for Chania and 1.67 mm for Lasithi. Similarly, the duration of sunshine was recorded at 327.67 h for
Lesvos and 223 h for Lasithi [26]. Inglese et al. reported that environmental conditions affect both the
fatty acid and the unsaponifiable fraction of the olive oils [27]. Fluctuations in the fatty acid content
have been related to average temperature until harvest [28]. Additionally, Stefanoudaki et al. were
able to classify olive oils according to their growing locations due to environmental factors such as
rainfall [29].

Table 3 shows the PLS-DA model accuracy based on Raman spectra. A clear discrimination
was accomplished. A six latent variables model cross-validated with Venetian blinds (nine splits)
was applied.

Table 3. PLS-DA classification of the olive oil samples using Raman spectra.

# Samples Predicted as
Crete

Predicted as
Peloponnese

Predicted as
Lesvos

Model
Accuracy

Crete 40 39 1 0 97.50%
Peloponnese 16 2 14 0 87.50%

Lesvos 15 0 0 15 100%

For the olive oils from Crete, PLS-DA was performed on the Raman spectra from 1000 to 1800 cm−1.
Figure 5a shows a discrimination of the olive oils produced in different prefectures of Crete (Heraklion,
Lasithi, Rethymnon and Chania). It is interesting to mention that samples from Rethymno and Chania
appear closer together. This may occur due to their neighboring geographical locations and as a result
of similar environmental conditions. In total, 98.04% of data variance was explained by the first two
latent variables (LV1 and LV2). The corresponding loading plot (Figure 5b) depicts that both the first
and the second latent variable played a notable role in the discrimination of the olive oils.

For the olive oils from Peloponnese, PLS-DA was performed on the Raman spectra from 1000 to
1800 cm−1. Figure 6a shows an unambiguous discrimination of the olive oils produced in different
prefectures of Peloponnese (Laconia and Messinia). In total, 99.42% of data variance was explained
by the first two latent variables (LV1 and LV2). As depicted in the relevant loading plot (Figure 6b),
the second latent variable contributed to the discrimination of the olive oils.

As mentioned above, it is interesting to examine the ability of optical spectroscopy to detect the
ratio of oil mixtures originating from different geographical regions. Table 4 shows the root mean
squared errors of cross-validation (RMSECV) and the correlation coefficients (R2) for all spectral regions
under examination. The application of PLS on the absorption, fluorescence and Raman spectra of
the mixtures of olive oils from different geographical origins demonstrated that visible absorption
spectroscopy has higher values of R2 in comparison to other spectroscopic techniques. Therefore,
results from the visible region are presented.
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Table 4. Root mean square errors of cross-validation (RMSECV) and correlation coefficients (R2) in the
prediction of mixtures of olive oils from different geographical regions by PLS model.

Crete-Peloponnese Peloponnese-Lesvos Crete-Lesvos

UV 220–280 nm R2 = 0.777
RMSECV = 13.28

R2 = 0.675
RMSECV = 17.93

R2 = 0.965
RMSECV = 6.21

UV 260–410 nm R2 = 0.931
RMSECV = 7.10

R2 = 0.755
RMSECV = 13.96

R2 = 0.968
RMSECV = 5.45

Vis 400–700 nm R2 = 0.998
RMSECV = 1.29

R2
≈ 1.000

RMSECV = 0.51
R2 = 0.939

RMSECV = 6.46

NIR 800–1600 nm R2 = 0.467
RMSECV = 19.49

R2 = 0.687
RMSECV = 14.52

R2 = 0.605
RMSECV = 17.55

Fluorescence R2 = 0.993
RMSECV = 2.32

R2 = 0.982
RMSECV = 3.52

R2 = 0.980
RMSECV = 3.72

Raman R2 = 0.732
RMSECV = 14.26

R2 = 0.723
RMSECV = 14.93

R2 = 0.428
RMSECV = 22.21
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Figure 7 presents the measured concentrations versus the predicted concentrations resulting from
the application of PLS on the visible absorption spectral data. Figure 7a corresponds to the mixture of
olive oils from Crete and Peloponnese and has a correlation coefficient of 0.998 and a RMSECV of 1.29.
Figure 7b shows the mixture of olive oils from Peloponnese and Lesvos and has a correlation coefficient
of ≈1.000 and a RMSECV of 0.51. Figure 7c depicts the mixture of olive oils from Crete and Lesvos and
has a correlation coefficient of 0.939 and a root mean square error of cross-validation of 6.46.
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3. Materials and Methods

3.1. Samples

Seventy-one samples of Greek olive oils were collected in the winter period of 2018–2019 from
three regions of Greece, namely Crete, Peloponnese and Lesvos (Figure 1). They included 40 samples
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of Koroneiki variety produced in different subareas (prefectures) of Crete (16 from Heraklion, 7 from
Lasithi, 8 from Rethymnon and 9 from Chania), 16 samples of Koroneiki and Kolovi varieties produced
in different subareas (prefectures) of Peloponnese (12 from Messinia and 4 from Laconia) and 15 samples
of Koroneiki, Kolovi and Adramitiani varieties from Lesvos. The olive oil samples were derived from
both organic and conventional cultivations of similar harvesting time, altitude, irrigation scheme and
fertilization. In addition, 30 binary mixtures of olive oils from different geographical origins were
studied. The olive oil mixtures were prepared by blending different concentrations (10–90% v/v) of
oils. The samples were stored in dark-brown glass bottles in a refrigerator at 4 ◦C and analyzed at
room temperature.

3.2. Equipment and Software

Visible measurements. A Shimadzu UV-1900 spectrophotometer (Shimadzu Corporation, Kyoto,
Japan) was used for collecting spectra, covering areas from 190 to 1100 nm. The spectrophotometer
consisted of a dual beam optical system, two light sources (deuterium and halogen lamps),
a Czerny-Turner monochromator and a silicon photodiode.

For the visible region, glass cuvettes with a 2 mm pathlength were used. Samples were measured
without pretreatment and the absorbance was measured from 400 to 800 nm with a resolution of 2 nm.

Raman measurements. A mobile Raman spectrometer (HE 785, Horiba Jobin Yvon, France) was
used to collect Raman spectra. The light source was a semiconductor diode laser, emitting at 785 nm.
The laser was connected to the optical head of the system through a fiber optic of one-meter length and
100 µm diameter. Inside the optical head, there were necessary optics (lenses, mirrors and filters) that
directed the beam and helped stimulate the sample and collected the signal. In addition, there was a
led source and a multicolor camera that provided a clear image of the sample surface. A second optical
fiber (2 m long and 100 µm in diameter) connected the optical head to the spectrometer (Exemplar
Plus, B&W Tek, 19 Shea Way, Newark, USA), consisting of a diffraction grating monochromator and a
charge-coupled device (CCD) detector. This spectrometer provided spectral coverage in the range of
98–3362 cm−1 (relative to the laser line) with a spectral resolution of about 8–10 cm−1.

In a typical Raman measurement, the olive oil sample was placed without any pretreatment in a
specific sample carrier. The objective lens used provided a magnification of ×20. The samples were
irradiated at a power of 68 mW, the acquisition time was 60 s and 2 scans were performed. For each
sample, the measurement was repeated at different points and the average of three measurements
was extracted.

NIR measurements. The Perkin-Elmer Lambda 950 spectrophotometer (Shimadzu Corporation,
Kyoto, Japan) was used for collecting infrared spectra. The excitation light sources were a deuterium
lamp, emitting at 190–318 nm, and a tungsten lamp, emitting at 318–2500 nm. The detector was a
gridless photomultiplier tube with Peltier-controlled PbS to achieve high-performance testing across
the spectral range up to 2500 nm. Measurements were performed using glass cuvettes with a 10 mm
pathlength without any sample pretreatment.

Fluorescence measurements. The Horiba FluoroMax-3 (HORIBA Ltd.,Tokyo, Japan) was used for
collecting fluorescence spectra. Simultaneous scanning of excitation and emission monochromators
with a constant distance λ between them resulted in synchronous fluorescence spectra. The excitation
wavelength ranged between 270 and 600 nm with wavelength intervals of 30, 60, 90, 120, 150, 180, 210
and 240 nm. For the fluorescence measurements, glass cuvettes with a 10 mm pathlength were used.
Samples were not chemically pretreated and were placed in the front-face geometry—more specifically,
at 35◦ to the incident beam—in order to avoid all inner filter effects.

3.3. Data Analysis

Data analysis was performed using MATLAB R2013b (MathWorks, MA, USA) with the
PLS_Toolbox 8.1 (Eigenvector Research, Manson, WA, USA). The discrimination of the olive oil
samples was achieved by partial least squares discriminant analysis (PLS-DA). PLS-DA is a supervised
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method. The main aim of using this method was to reduce a large number of variables to a smaller
number of latent variables (LVs), enabling effective visualization and classification of data. The results
are presented in the form of score plots and loading plots. A score plot is a scatter plot between two
latent variables. It shows the relationship among samples by displaying how similar or different they are.
A loading plot depicts the relationship among the initial variables (wavelengths or wavenumbers) and
latent variables and provides the necessary information to determine which variables are responsible
for the discrimination.

Partial least squares (PLS) is a technique used to model the relation between predictor matrix data
and response matrix data. In this paper, PLS analysis was performed to establish a model between
the actual and predicted concentrations of the olive oil mixtures from different geographical origins.
The PLS models were evaluated on the basis of root mean square errors of cross-validation (RMSECV)
and correlation coefficients (R2).

Both the visible and Raman spectra required pretreatment before analysis. Several pretreatments
were performed, such as standard normal variate (SNV), mean center, first derivative (Savitzky–Golay)
and smoothing, and it was concluded that mean center provided the best results for visible spectra.
A combination of first derivative and mean center was selected to correct the baseline offset caused by
sample fluorescence on the Raman spectra.

4. Conclusions

This study shows that visible absorption and/or Raman spectroscopy in combination with
multivariate statistical analysis can distinguish olive oils produced in different geographical regions.
PLS-DA models were able to classify samples from Crete, Peloponnese and Lesvos for both visible
absorption and Raman spectral data. Furthermore, the application of PLS-DA to Raman spectroscopic
data allowed for distinguishing samples from different sub-regions (prefectures) of Crete and
Peloponnese. PLS analysis was performed to establish a model between actual and predicted
concentrations of olive oil mixtures from different geographical origins. The best PLS model achieved
corresponded to visible absorption spectroscopic data for the olive oil mixtures from Peloponnese and
Lesvos and had a correlation coefficient of ≈1.000, with a root mean square error of cross-validation
of 0.51.

Compared to other techniques used for geographical discrimination of olive oils, optical
spectroscopic techniques, such as visible and Raman spectroscopies, are simpler, time saving and need
no pretreatment of the sample. Moreover, a simple photometer, or even a portable Raman spectrometer,
could be possibly used for on-site analysis and quality control.
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