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Abstract Changes in temperature affect biochemical reaction rates and, consequently, neural 
processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling 
them to retain their functionality under varying temperatures. Auditory receptor neurons of 
grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend 
moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron 
models reveals that temperature compensation of spike generation can be achieved solely relying on 
cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. 
Remarkably, this type of temperature compensation need not come at an additional metabolic cost of 
spike generation. Firing rate-based information transfer is likely to increase with temperature and we 
derive predictions for an optimal temperature dependence of the tympanal transduction process 
fostering temperature compensation. The example of auditory receptor neurons demonstrates how 
neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.
DOI: 10.7554/eLife.02078.001

Introduction
Changes in temperature considerably modulate physico-chemical processes and, consequently, also 
affect neural processing (Schmidt–Nielsen, 1997; Robertson and Money, 2012). The dependence of 
neural activity on temperature poses a particular challenge for animals without central heat regulation, 
like insects, who are permanently exposed to temperature fluctuations. These animals must have evolved 
intrinsic mechanisms at the behavioral, systems, or cellular level that help to circumvent temperature-
induced behavioral modulations. Such compensatory mechanisms, however, may also come into play 
for homeothermic animals under pathological conditions, like fever or hypothermia in mammals.

Nevertheless, our understanding of generic design principles that enhance robustness to tempera-
ture fluctuations remains limited. The goal of this study is to identify mechanisms and limitations of 
cellular temperature compensation at the level of firing rates. We start from a characterization of the 
temperature dependence of neural responses in an insect auditory system, which we find to be surprisingly 
robust to temperature changes. The absence of network inputs to these receptor neurons (Vogel and 
Ronacher, 2007; Clemens et al., 2011) suggests that a cellular mechanism underlies the observed 
temperature compensation and hence raises the more general question to what extent temperature 
compensation can be achieved at the level of individual cells. Based on generic conductance-based 
models of spike generation, we then show that the experimentally observed degree of temperature 
compensation can be explained by physiological properties intrinsic to single cells despite a substantial 
dependence of ion channels on temperature.
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Temperature dependence is usually quantified by the so-called Q10 value, which characterizes the 
relative change of a variable when temperature rises by 10°C. Several invertebrate species were found to 
have firing-rate Q10 values above 2 (i.e., to double their neurons' firing rate), which is in line with the fact 
that many underlying biochemical processes also exhibit Q10 values of two or more (French and Kuster, 
1982; Pfau et al., 1989; Warzecha et al., 1999; Hille, 2001; Spavieri et al., 2010). In contrast, we 
found that grasshopper auditory receptor neurons on average increased their firing rate by only ∼40–50% 
(corresponding to a Q10 value of 1.4–1.5). Receptor responses are shaped by a cascade of two major steps 
(Gollisch and Herz, 2005)—(1) auditory transduction, which translates the vibrations of the tympanal mem-
brane into receptor currents and (2) spike generation. Temperature compensation of the response must be 
achieved by compensatory mechanisms in these individual components or their combined output.

Based on a computational analysis, we first investigate how the second component, that is cellular spike 
generation in terms of the translation from input current to firing rate, can be temperature compensated in 
generic model neurons and identify conductances whose temperature dependence favors robustness. As 
energy efficiency of signaling is an important constraint (Attwell and Laughlin, 2001; Niven and Laughlin, 
2008), we also resolve whether the identified mechanisms for temperature compensation come at an 
additional metabolic cost and identify the key parameters of temperature dependence that increase 
energy efficiency of action-potential generation as well as of the maintenance of the resting potential. 
Moreover, we show that information transfer (via spike rates) is fostered by temperature increments.

Second, we combine spike generation with a phenomenological model of mechanotransduction 
and predict properties of the temperature dependence of this nonlinear transformation that would 
allow for an efficient compensation in firing rates to the degree observed in our experimental data. As 
our model-based approach generalizes beyond the grasshopper system, our findings can be expected 
to reflect principles that could be implemented in many invertebrate and vertebrate species.

Results
Temperature dependence of locust auditory receptor neuron responses 
to acoustic stimuli
Based on recordings of auditory receptor neurons in the metathoracic ganglion of the grasshopper 
Locusta migratoria, we quantified the dependence of the firing rate on temperature. Figure 1A shows 

eLife digest Warm-blooded animals—including mammals and birds—expend large amounts of 
energy in keeping their body temperature constant regardless of how hot or cold their environment 
is. By contrast, the body temperature of cold-blooded animals—including amphibians, reptiles, 
and insects—follows that of their surroundings. Cold-blooded animals must therefore have 
evolved a means to cope with the effects of changes in temperature, but exactly how they do this  
is not clear.

Now, Roemschied et al. have obtained new insights into this process by studying the nerve cells 
in grasshoppers that allow them to hear sounds. The auditory system of the grasshopper comprises 
sensory receptor neurons that are located on the abdomen of the insect. Sound waves move the 
tympanal membrane, which causes ion channels within the cell membranes to open. This enables 
the neurons to produce an electrical signal known as a spike.

Recordings from grasshoppers revealed that changing the outside temperature by up to 10°C 
affected the rate at which the neurons produced spikes by only about half the amount expected. 
Given that these neurons do not receive inputs from any other cells, this ability to withstand 
changes in temperature must be intrinsic to the neurons themselves. Consistent with this, 
computational modeling showed that while the activity of individual ion channels did indeed vary 
with changes in temperature, these changes in ion channel activity had little overall effect on the 
rate at which a neuron produced spikes.

Whereas it has previously been assumed that compensation for changes in temperature occurs 
at the level of networks of neurons, the work of Roemschied et al. reveals that such compensation 
can occur in individual cells, and that it need not require a lot of energy to be expended.
DOI: 10.7554/eLife.02078.002
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voltage responses to stimulation at three different sound intensities and two different temperatures, 
as well as spike shapes. Interestingly, spike rates at a given sound intensity did not differ much between 
the low and high temperatures and mildly increased from low to high temperature, while spike width 
decreased. In general, firing rates of grasshopper receptor neurons are relatively high, saturating only 
at several hundreds of Hz. At a given temperature, the transfer function, that is the firing rate as a 
function of sound intensity, has a sigmoidal shape (Figure 1B). Three parameters (saturation rate, half-
max sound level, and dynamic-range width) are sufficient to capture the experimental transfer func-
tions (R2 >0.95 for all response curves). Comparing transfer functions at the two different temperatures 
revealed that their temperature dependence was surprisingly low (Figure 1C): all corresponding median 
Q10 values were below 1.5; the sound intensity at half-maximal response (half-max sound level) remained 
almost unchanged, as did the median of the slope at half-max sound level. The width of action potentials, 
in contrast, was lower at the higher temperature.

Compared to the temperature dependencies previously observed in other species like moth auditory 
receptor neurons, locust stretch receptors, and fly H1 neurons and photoreceptors (Q10(spike rate) ∼2, 
Pfau et al., 1989; Coro and Perez, 1990; Warzecha et al., 1999; Tatler et al., 2000), the grasshopper 
responses were temperature compensated; the dependence was similar to what has been referred to 

Figure 1. Cooling mildly affected electrophysiologically recorded firing rates generated by auditory receptor 
neurons in response to sound. (A) Voltage traces at 29 and 21°C for one neuron (red and blue lines, respectively). 
Black horizontal lines mark time intervals of stimulus presentation; stimulus intensity as indicated. (B) Firing-rate as 
a function of sound intensity was well described by sigmoidal functions at both temperatures (same neuron as in A). 
The three sigmoidal parameters (saturation rate, sound level at half-maximum, and dynamic-range width) were 
extracted from fits to the experimental data. (C) Statistics of the measured temperature dependence, 
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parameters of the sigmoidal function, as well as the spike rate and slope at the cold half-maximum were temperature 
compensated (median ∈10 [1,1.5]Q , see also Figure 1—figure supplement 2 and Figure 1—figure supplement 3).
DOI: 10.7554/eLife.02078.003
The following figure supplements are available for figure 1:

Figure supplement 1. Temperature calibration curve. 
DOI: 10.7554/eLife.02078.004

Figure supplement 2. Sound-intensity resolved p-values of statistical differences between firing rates at the two 
temperatures. 
DOI: 10.7554/eLife.02078.005

Figure supplement 3. Statistical analysis of Q10 values. 
DOI: 10.7554/eLife.02078.006
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as warm-insensitive in hypothalamic neurons of the rat (Q10(spike rate) ∼1.3, Curras and Boulant, 1989). 
To understand this low dependence of receptor neuron firing rate on temperature, we next turned to 
mathematical modeling.

Influence of temperature on spike generation in single-neuron models
The grasshopper auditory periphery consists of a relatively simple feed-forward network, in which the 
receptor neurons constitute the first layer. Receptor neurons are known to respond to vibrations of the 
tympanal membrane, but they do not receive input from the neuronal network. Mechanisms of tem-
perature compensation must hence be cell-intrinsic. To resolve which intrinsic processes can be suffi-
cient to account for the observed degree of temperature compensation, we first focussed on spike 
generation, leaving mechanotransduction aside. We analyzed in generic model neurons, how the tem-
perature dependence of ionic conductances mediating spike generation can reduce the dependence 
of firing rate on temperature.

We used the Connor–Stevens model (Connor et al., 1977; Dayan and Abbott, 2005) to simulate 
a type I spike generation process (Izhikevich, 2007) as it is assumed for grasshopper receptor neurons 
(Benda, 2002). Besides a sodium and a leak conductance (gNa and gL), this model comprises a delayed-
rectifier and an A-type potassium conductance (gK  and gA ), which are both known to be present in the 
grasshopper nervous system (Ramirez et al., 1999). Temperature dependence was assumed to affect 
the opening and closing rates of all gates of the three ion channel types (i.e., the m and h gates for gNa, 
n gates for gK , a and b gates for gA ), as well as their peak conductances (gNa, gK , gA ) and that of the 
leak conductance, gL. For a systematic analysis (refers to (Prinz et al., 2003)), we independently varied the 
temperature dependence of these parameters (comprising a total of nine) within physiologically realistic 
ranges: Q10(x) ∈ [2.0, 4.0] for transition rates and Q10(gX) ∈ [1.2, 2.0] for peak conductances (Partridge 
and Connor, 1978; Hille, 2001). For each combination of parameters, the transfer function (input 
current to firing rate; i.e., the f-I curve) was computed at two temperatures: 18 and 28°C (Figure 2A,B).

To estimate the temperature dependence of a whole f-I curve, Q10 values are not ideal, as they are 
defined as the ratio of firing rates at two different temperatures, which will be infinitely large for inputs 
that only elicit spikes at the higher, but not the lower temperature. To circumvent this bias, we assessed 
the temperature dependence of a model neuron as the root-mean-squared difference between the 
firing rates at the two temperatures (mean taken across input currents), normalized by the mean rate 
elicited at the colder temperature. We refer to this quantity as RMSD. It reflects the average relative 
change in firing rate with temperature. Note that a Q10 value of 1.5 is hence comparable to an RMSD 
of 0.5 (50% relative change). Across all model combinations, the relative change, RMSD, was distributed 
between 0.22 and 2.14, with a median of 0.68 (Figure 2D). This means that, intuitively, the median of 
the average change in firing rate of an f-I curve was 68%. The analysis showed that the effect of 
temperature on spike generation depended strongly on the specific temperature dependence of the 
ionic conductances. A fraction of models (18%) exhibited temperature compensation with relative 
changes in firing rate comparable to those found experimentally (RMSD <0.5). This result shows that 
a low dependence of firing rate on temperature is feasible despite a substantial (and hence realistic) 
dependence of the individual conductances on temperature.

Next, we asked which of the nine parameters (i.e., the temperature dependence of peak conduct-
ances and transition rates) most affected the dependence of firing rate on temperature. To this end, 
we performed a systematic sensitivity analysis in the nine-dimensional space of all possible parameter 
combinations. We created—for each parameter—a distribution of local changes in RMSD induced by 
changes in that parameter. Specifically, this distribution captured changes in RMSD between all neigh-
boring points along a specific parameter's dimension. Each distribution sampled the whole parameter 
space (i.e., all possible combinations of the other parameters), also see ‘Materials and methods’. The 
impact of a given parameter on the temperature dependence of the f-I curve was then defined as the 
median of its specific distribution, directly relating the impact of a parameter to its quantitative effect 
on RMSD. Figure 2C depicts the impact values of all Q10 parameters on the RMSD. The sum of all 
absolute values of impacts is normalized to unity. The impact sign, that is whether an increase in a 
parameter on average led to an increase or decrease in the observable, is indicated by + and −, respec-
tively. The analysis revealed that the largest impact on the RMSD was exerted by three parameters of 
potassium channels: temperature dependence of the delayed-rectifier potassium kinetics, Q10(n), and 
the A-type and delayed-rectifier potassium peak conductances, Q10(gA) and Q10(gK), respectively. The 
impacts of both potassium channel peak conductances were negative (i.e., increases in their Q10 values 

http://dx.doi.org/10.7554/eLife.02078
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Figure 2. Temperature dependence of spike generation in a conductance-based neuron model. (A) Voltage 
responses to step current stimuli of different amplitudes; blue: 18°C (the reference temperature), red: 28°C. Top 
trace corresponds to a model with strongly temperature-dependent firing rate, middle trace to a temperature-
compensated model. (B) f-I curves at both temperatures, corresponding to the examples shown in A. (C) Results of 
the sensitivity analysis for the RMSD. The largest impact is exerted by temperature dependencies of the potassium 
conductances (Q10(n), Q10(gA), and Q10(gK)). Signs +/− indicate the qualitative impact (see main text for details). 
(D) Distribution of the RMSD, across all models. Note that a Q10 of 1.5 corresponds to an RMSD of ∼0.5 (50% 
relative change). (E) Parameter impacts on RMSD were robust against ±20% perturbation of the model's peak 
conductances at 18°C (black symbols: perturbations of individual peak conductances; grey symbols: all combina-
tions of ±20% changes to the four peak conductances). (F) Results of the sensitivity analysis for the temperature 
dependence of the slope of f-I curves. (G) Distribution of Q10 values of the slope across all models. (H and I) as 
panels (F) and (G), but for the threshold of the f-I curves. (J and K) Sensitivity analysis of information transfer. For 
two basic noise models (Poissonian and input-independent Gaussian), the temperature dependence of firing 
rate-based information transfer J is related to that of the slope of the f-I curve: Q10( 〈J 〉) = [Q10(slope)]4. The 
conductance parameters with highest impact were very similar to those of the changes in slope (compare to panel F). 
Information transfer increased with temperature for all models. (L) Visualization of the RMSD for the parameter 
space spanned by the temperature dependencies of the Connor-Stevens model based on dimensional stacking. 
Axes order was chosen according to the impact ranking as presented in (C); color code as in (D).
DOI: 10.7554/eLife.02078.007

Figure 2. Continued on next page
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decreased the RMSD), while the potassium activation Q10(n) had a positive impact (i.e., increases in its 
temperature dependence increased the RMSD).

To confirm that the results do not strongly depend on the specific choice of peak conductances in 
the Connor–Stevens model, we tested 24 alternative models with changes of ± 20% in the peak con-
ductances of sodium, both potassium, and leak channels. The impact ranking across those models was 
highly similar to the ranking in the original Connor–Stevens model (Figure 2E) and we conclude that 
our results are robust. Moreover, we note that our results are not unique to the Connor–Stevens 
model. An analysis of a structurally different Traub–Miles model (Traub et al., 1991; Benda, 2002) 
showed that an equally low temperature dependence is possible (Figure 2—figure supplement 1).

On a side note, a visualization of the RMSD across the complete nine-dimensional parameter space 
based on dimensional stacking is shown in Figure 2L, see ‘Materials and methods’ for details (LeBlanc 
et al., 1990; Taylor et al., 2006). Dimensional stacking maps the nine-dimensional space onto a two- 
dimensional representation with nine axes. Ordering of the axes is arbitrary and hence requires opti-
mization to maximize visual information (Taylor et al., 2006). Here, we introduce a new way to deter-
mine optimal axes order, defined directly by the ranking of impact scores. Parameters with highest 
impact on the RMSD are depicted on large-scale axes and parameters with low impact on small-scale 
axes. The success of the ordering is reflected in the visually structured areas of equal RMSD. As only a 
subset of all parameters had relevant influence on the RMSD, optimal axes ordering led to a clear 
visual structure. In contrast, for arbitrary axes ordering visual structure would be hard to recognize.

Temperature effects on f-I threshold and slope
As we saw, the temperature dependence of potassium channels plays a crucial role for tempera-
ture compensation. For a more detailed and intuitive understanding of the underlying mechanism, 
we next analyzed the transformation of the shape of f-I curves with temperature. Type I f-I curves, 
as they are found in the grasshopper, can be described by a square root function (Izhikevich, 
2007). Temperature affects an f-I curve by shifting the curve horizontally (i.e., changing its threshold) 
and by changing its slope (which can also be termed gain). We used fits of the f-I curves by a square 

root model ( ) 0
= · –f I A I I , based on the parameters A (slope) and I0 (threshold). With heating, the 

slope always increased (Figure 2G), while we found changes in both directions for the threshold 
(Figure 2I).

Temperature dependencies of the A-type potassium and leak peak conductances had the strongest 
influence on the threshold (Figure 2H). In contrast, the slope was most sensitive to the temperature 
dependence of the delayed-rectifier potassium channel, Q10(n) and Q10(gK), and the sodium channel 
inactivation, Q10(h) (Figure 2F). Beyond clarifying the specific effect of the aforementioned parame-
ters on changes to the f-I curve, the analysis shows that temperature compensation (i.e., lower RMSD 
values) was usually achieved by modest increases in threshold balancing the effects of an increase in 
slope (Figure 2B).

Changes in slope also have direct implications for the ability to infer information about the sound 
intensity from the firing-rate output of receptor neurons. We hence quantified how the capacity to 
transmit information from input I to firing rate f changes with temperature. To this end we use Fisher 
information. Considering the average information transferred for a given interval of firing rates 
[fmin, fmax], information transfer scales with the slope of the f-I curve and its temperature dependence 
hence with Q10(A)4 (‘Materials and methods’). Consequently, the same parameters that had the largest 
impact on the slope–potassium channel rate (Q10(n)) and peak conductances (Q10(gK), Q10(gA)) and 
sodium channel inactivation (Q10(h))—also influenced information transfer most (Figure 2J). Overall, 
heating was advantageous for information transfer (Figure 2K).

Influence of temperature on the energy efficiency of spike generation
Metabolic cost is increasingly recognized as an important constraint for neural function (Attwell 
and Laughlin, 2001; Niven and Laughlin, 2008) and is likely to have shaped the design of neural 

The following figure supplements are available for figure 2:

Figure supplement 1. Temperature compensation in the Traub-Miles model. 
DOI: 10.7554/eLife.02078.008

Figure 2. Continued
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systems—the more so if firing rates are large. In the grasshopper auditory periphery firing rates 
often exceed several hundreds of Hz, suggesting that metabolic cost may have played a role in the 
design of these cells. It is hence interesting to explore whether robustness to temperature changes 
compromises energy efficiency. To this end, we computed the energetic cost of spike generation and 
maintenance of the resting potential (Figure 3A). Cost was quantified in terms of the total sodium 
current (per action potential or per time, respectively). To assess the changes of energy consumption 
with temperature, energy use was characterized by its Q10 value (i.e., the ratio of energetic cost at 
28° and 18°) and averaged across input currents.

For the majority of models, the energetic cost of an action potential decreased with heating 
(93% of models, Figure 3B). On average, temperature-compensated spike generation models (25% of 
models with lowest RMSD) were slightly more costly than the most temperature-dependent models 
(25% of models with highest RMSD), see Figure 3B. Nevertheless, the minimum energy consumption 
was comparable in both groups. Resting cost was substantially lower than spiking cost, this trend 
increasing with larger firing rates. Sodium-current based resting cost tended to decrease with heating 
(77% of models). It was slightly lower for temperature-compensated models compared to strongly 
temperature-dependent models (Figure 3C).

The sensitivity analysis (performed in analogy to the analysis of temperature dependence of firing 
rate) revealed that the temperature-dependence of the sodium conductance (Q10(h) and Q10(gNa)) 
influenced energy consumption of spike generation the most (Figure 3D).

The impacts of conductance parameters on f-I curve temperature dependence and energy con-
sumption were not significantly correlated in this case (ρ = −0.23, p=0.56). In particular, the key 

Figure 3. Temperature dependence of the metabolic cost (spiking and maintenance of the resting potential). (A) Illustration of the periods during which 
spiking cost and resting-potential cost were estimated in terms of the Na+ current (two corresponding examples at the higher and lower temperature; 
red and blue curves, respectively). Energy consumption during spiking was averaged per spike and across the suprathreshold parts of the f-I curve. (B) 
Distribution of the temperature dependence of the spiking cost (Q10(spiking cost)). Top: all models; middle and bottom: distribution across the 25% of 
models with lowest and highest temperature dependence of firing rate (RMSD), respectively. Spiking cost decreased at higher temperature for the 
majority of models. In particular, values of minimal energy consumption at the higher temperature were similar for the subgroups of models with lowest 
and highest temperature dependence. (C) Distribution of the temperature dependence of the resting cost (Q10(resting cost)), analog to (B). Resting-
potential cost decreased for the majority of models; top, middle and bottom panels comprising subgroups of models as in (B). (D) Temperature depend-
ence of firing rate and spiking energy consumption are determined by different sets of conductance parameters. While potassium-channel temperature 
dependencies have the largest impact on firing rate (Figure 2C), the energy consumption per spike was predominantly determined by sodium-channel 
temperature dependence. Faster sodium inactivation (Q10(h)) and lower peak sodium conductance (Q10(gNa)) fostered energy efficiency at higher 
temperature. (E) Parameters that reduce resting energy at high temperature also reduce RMSD (same sign of the impact values as in Figure 2C). (F and G) 
Impacts on energy consumption were robust against ±20% perturbations of the model's peak conductances at 18°C (Figure 2E, ‘Materials and methods’).
DOI: 10.7554/eLife.02078.009
The following figure supplements are available for figure 3:

Figure supplement 1. Alternative measures of metabolic cost and energy efficiency of spiking. 
DOI: 10.7554/eLife.02078.010

Figure supplement 2. Potassium-current based resting cost. 
DOI: 10.7554/eLife.02078.011
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parameters of largest influence on these features belonged to different channel groups: potassium 
channels in case of temperature compensation and sodium channels in case of energy efficiency of spike 
generation. We verified that the large influence of sodium channels was not biased by our sodium-
current-based definition of metabolic cost. Three alternative measures—two quantifying energy effi-
ciency based on the separability of sodium and potassium currents (Alle et al., 2009), the other 
defined by the total potassium current—all confirmed the temperature dependence of sodium channel 
inactivation Q10(h) as the most influential parameter for spiking cost (Figure 3—figure supplement 1).

The sodium-current based resting cost was qualitatively influenced in a similar way as temperature 
dependence of firing rate (Figure 3E): for all four relevant Q10 parameters a reduction of resting cost 
co-occurred with a reduction in temperature dependence of firing rate (same sign of corresponding 
impacts, Figure 2C). For a potassium-current based resting cost the temperature dependence of leak 
channels had the dominant impact (Figure 3—figure supplement 2). In contrast to the sodium-current 
based resting cost, the potassium-current-based cost was larger at higher temperatures. For the 
majority of models, inactivation of A-type potassium channels was lower at the higher temperature 
(due to a more negative resting potential) and hence increased the A-type current.

In summary, striving for temperature compensation does not have to compromise a neuron's 
energy efficiency. Both results (for spiking and resting cost) generalize beyond the specific choice of 
peak conductances in the Connor–Stevens model (Figure 3F,G).

Model-based inference of the auditory transduction function
In the previous paragraphs, we have shown that spike generation by itself can achieve a remarkably 
high invariance to temperature changes. The receptor neurons, however, have an additional pro-
cessing stage involved in transferring the external input signal to a firing-rate response: the so-called 
transduction mediated by the mechanosensitive channels in the vicinity of the tympanal membrane. 
Transduction precedes spike generation and translates vibrations of the tympanal membrane caused 
by the sound pressure wave into receptor currents through these channels, which in turn drive spike 
generation (Gollisch and Herz, 2005). This mechanism may also contribute to temperature compen-
sation. We therefore explored how temperature compensation can benefit from linking spike genera-
tion with the transduction process.

Little is known about the temperature dependence of transduction in the grasshopper. Here, we 
combined the computational analysis of spike generation with the experimental findings for the sound-
intensity to firing-rate relation in order to predict on a phenomenological level which features of the 
auditory transduction and its temperature dependence would improve temperature compensation. 
The experimentally measured receptor neuron responses to sound stimuli ( )dB

=r Iρ  can be expressed 
as a cascade of mechanosensory transduction ( ( )dB

=
C
I Iθ , with current IC and sound intensity IdB) and 

spike generation ( ) ( ) ( )( )dB
: = =

C C
I r I Iφ φ φ θ .

Let us think of the Connor–Stevens spike generation model at the colder temperature (illustrated 
in Figure 4A, blue curve). When combined with an (upstream) nonlinear translation of sound intensity 
to current (Figure 4B, blue curve), it yields the full sound-intensity to firing-rate relation (Figure 4C, 
blue curve), which corresponds to the quantity measured experimentally. Hence, if the receptor neu-
ron response as a function of sound intensity is known from experimental data and we assume a spe-
cific spike generation model (i.e., a specific f-I curve), we can mathematically infer the transduction 
nonlinearity that gives the best match to the experimentally recorded sound-intensity to firing-rate 
relation by nonlinear regression (Figure 4C, blue curves). We use the term reverse-engineering for this 
approach. It can be used at the higher temperature as well and enables us to derive for each of the 
more than 260.000 spike generation models the corresponding ideal transduction curve that best 
matches the experimentally recorded sound-intensity to firing-rate relation at this higher temperature 
(Figure 4B,C, red curves). Comparing the reverse-engineered transduction curve at the colder tem-
perature to the reverse-engineered curve at the higher temperature (for each spike generation model), 
allows us to identify trends in the temperature dependence of mechanotransduction, which would 
foster a temperature robustness of the firing rate.

Specifically, we exploited the fact that experimental response curves (firing rate to sound intensity) 
were well fitted by a sigmoidal function (Figure 1C) and also assumed a sigmoidal shape for the trans-
duction curves (Hudspeth et al., 2000; Fisch et al., 2012). Accordingly, we reverse-engineered the 
ideal transduction sigmoid at the warmer temperature for each spike generation model (e.g., those 
contributing to Figure 2C), so that the resulting sound-intensity to firing-rate relation best matched a 
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representative receptor neuron response (Figure 4C, for details on representative receptor neu-

ron response, ‘Materials and methods’). The model response curves ( )( )dB
=r Iφ θ  matched the  

experimental representative response curve very well (R2 >0.98 for 99.5% of all models). Temperature 
dependence of the reverse-engineered transduction was then quantified based on the Q10 values  
(i.e., the relative changes with temperature) of the three parameters that define each transduction 
sigmoid: saturation current, half-maximum sound intensity, and dynamic-range width (Figure 4D).

Evaluating the distribution of changes of the ideal transduction curves with temperature across all 
spike generation models, we found that the largest temperature dependence of these ‘matching’ 
transduction curves was to be expected for their dynamic-range width (median Q10 ∼ 2). In addition, 
changes in saturation current and half-maximum sound level also contributed to fostering temperature 
compensation of firing rate (Figure 4D). These results show in particular that a suitable temperature 
dependence of the transduction process can support temperature compensation, even in cases where 
spike generation is less temperature robust.

Discussion
We studied the temperature sensitivity of the firing rate in individual neurons of the grasshopper 
auditory periphery and found responses to auditory stimulation to be surprisingly temperature com-
pensated. Based on biophysically-motivated neuron models, we identified mechanisms that account 
for the experimentally observed cell-intrinsic temperature compensation. Our theoretical analysis 
suggests that spike generation itself can be relatively temperature insensitive, even though the con-
ductances involved are affected by temperature changes. Importantly, mechanisms increasing the 
robustness to temperature changes need not compromise the energy efficiency of action-potential 

Figure 4. Reverse engineering mechanosensory transduction functions that favor temperature compensation of 
firing rate. (A) Example of a model-based f-I curve, denoted ( )=

C
r Iφ , at two temperatures. (B) Example of a 

sigmoidal transduction function converting sound intensity to current, ( )dB
=

C
I Iθ . (C) Representative receptor 

neuron responses, ( )dB
=r Iρ , at two temperatures (dotted lines), as well as a receptor neuron response, ( )( )dB

=r Iφ θ , 
‘constructed’ from the f-I curve in A and the transduction function in B. For each model of spike generation, the 
optimal transduction function, ( )dB

=
C
I Iθ , minimizing the error between the corresponding ‘constructed’ receptor 

neuron response and the representative receptor neuron response (dotted line in C) was derived. (D) The statistics 
of temperature dependence of the optimal transduction functions, IC, across all models. The width of the dynamic 
range depended most on temperature and increased with heating for nearly all optimized transduction functions. 
But the temperature dependence of the saturation current and the half-maximum sound intensity (mainly when 
decreasing with temperature) were also found to contribute to temperature compensation. Note that the ranges 
marked by the whiskers cover all data (including outliers) in this plot.
DOI: 10.7554/eLife.02078.012
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generation nor the resting cost. In general, the capacity to transmit rate-based information of sound 
intensity moderately increased with temperature due to the increase in steepness of the f-I curve. We 
also predict optimal temperature dependencies of the tympanum-mediated transduction process 
from sound to receptor current that contribute to temperature compensation. On a side note, we 
introduced a computationally efficient way to optimize visualization of model-derived observables 
in a high-dimensional parameter space in the context of dimensional stacking (LeBlanc et al., 1990; 
Taylor et al., 2006).

Temperature dependence of firing rate in single neurons
Neuronal processing is significantly challenged by variation in temperature due to the changes in 
chemical and physical processes. In many neurons across invertebrates and vertebrates, firing rate has 
been observed to at least double with increases of temperature, corresponding to Q10 values of two 
or above (French and Kuster, 1982; Coro and Perez, 1990; Warzecha et al., 1999). It was hence 
surprising to observe that neurons in the auditory periphery of grasshoppers show Q10 values on the 
order of 1.5 and consequently are remarkably temperature compensated (Hazel and Prosser, 1974; 
Boulant and Dean, 1986). The temperature robustness of these neurons is hence comparable to that 
of ‘warm-insensitive’ neurons in the mammalian brain (Curras and Boulant, 1989).

Temperature compensation has been studied in the context of neurons embedded in a network in 
a variety of systems (see, e.g., Wechselberger et al., 2006; Tang et al., 2010; Robertson and Money, 
2012). Temperature compensation in grasshopper receptor neurons, by comparison, must be based 
on cell-intrinsic processes. A similar temperature compensation that must be based on a single-cell 
mechanism has so far—to our knowledge—only been described experimentally for tarsal hairs in the 
locust (Miles, 1985).

The cell-intrinsic mechanisms identified in our computational study attribute the observed robust-
ness to a balancing of opposing processes. Phenomenologically, a rise in slope (consistent across the 
whole parameter range explored) is compensated for by an increase in the threshold of the f-I curve, 
minimizing the effect of temperature across a broader range of inputs. While alterations in threshold 
can be produced by changes in peak conductances of ion channels, they have also been described 
experimentally by heating in invertebrate systems (Burkhardt, 1959; Abrams and Pearson, 1982; 
Kispersky et al., 2012) in agreement with our observations. Biophysically, a heating-induced increase 
in the speed of repolarizing gating kinetics is opposed by an increase in peak potassium conductances 
which promote a more negative resting potential (as can be derived from Equation 2). Although the 
balancing is not perfect, average deviations on the order of not more than 50% can be easily achieved 
with strongly temperature-dependent conductances (in particular, Q10 ∈ [2; 4] for all activation- and 
inactivation rates) for ∼18% of the models. The temperature dependence of both delayed-rectifier and 
A-type potassium channels has a particularly large impact on temperature compensation. This matches 
experimental observations in neurons of the pancreas of mice (Xu et al., 2006) and molluscan neurons 
as well as previous simulations of an extended Hodgkin–Huxley model (Rush and Rinzel, 1995) and is 
consistent with the effect of peak conductances on firing rate, for example (Schreiber et al., 2004). 
Our results also hold for reference models quantitatively different from the original Connor-Stevens 
model—both for the total fraction of temperature-compensated models RMSD <0.5) and the strong 
influence of potassium channel dynamics on the temperature dependence of firing rate (Figure 2E), 
‘Materials and methods’ for details. These findings show that our results generalize beyond the spe-
cific quantitative choice of peak conductance parameters of the Connor–Stevens model. This is further 
supported by the fact that a structurally different Traub–Miles model could also exhibit a temperature 
dependence of firing rate as low as that described for the Connor–Stevens model.

Energy efficiency and information transfer
For auditory receptor neurons in the grasshopper energy efficiency of spike generation is likely to be 
a relevant factor, also see Niven and Farris (2012). Firing rates in these cells approach 400 Hz and 
likely entail a high total cost of electrical signaling. Our results, however, show that temperature com-
pensation need not impair energy efficiency of spike generation nor of maintenance of the resting 
potential. The rate of sodium channel inactivation (Figure 3D) proved to be most relevant in setting 
the energy consumption per spike generated, which is consistent with simulations and dynamic clamp 
experiments in various model systems (Alle et al., 2009; Hasenstaub et al., 2010; Sengupta et al., 
2010). We demonstrated that energy efficiency improved with heating for a wide range of temperature 
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dependencies of ion channels, as was previously described for a model with fixed Q10 values  
(Yu et al., 2012). A fast sodium inactivation limits the duration of the spike; this was consistent with 
the experimental data, as spike width decreased with heating. Most importantly, the key parameters 
regulating the energy efficiency of spiking were different from those regulating temperature compen-
sation of firing rate (Figure 2C, Figure 3D). The results could be confirmed for alternative measures of 
energy (separability of sodium and potassium currents as well as the total potassium current). Apart 
from confirming the role of sodium channel inactivation, these analyses substantiated that the delayed-
rectifier potassium channel kinetics (which were most influential to the robustness of firing rate) did not 
substantially contribute to metabolic costs based on potassium currents. Overall, our analysis focusses 
on a major source of metabolic cost: the flow of Na+ and K+ ions which on larger time scales can be 
compensated by the Na-K-ATPase. For completeness it should be noted, however, that in living cells 
metabolic costs can also arise from the flow of other ions not included in our study, like Ca2+.

Summarizing the considerations on metabolic cost, we find most noteworthy that from an evolu-
tionary perspective, the relevant features—robustness of firing rate to temperature changes and 
reduction of metabolic cost—could both be achieved in parallel.

Nevertheless, temperature compensation and energy efficiency would be of little use if the funda-
mental function of information transmission was impaired. Our sensitivity analysis revealed that higher 
temperatures are also advantageous for the transmission of information about sound intensity. This 
conclusion is based on our finding that the slope of the f-I curve increased with heating. The capacity 
to transmit information was affected most by the temperature dependence of the delayed-rectifier 
potassium conductance. These data, however, need to be interpreted with care. We cannot exclude 
that channel-type specific stochastic dynamics further influence information transfer in ways not 
captured by our approach. Implementing the specific stochastic dynamics for the whole parameter 
space of more than 260.000 models, however, goes beyond the scope of this study and merits future 
investigation.

Optimization of the input layer is important
Auditory receptor neurons in the grasshopper constitute the bottom layer of a feedforward net-
work: approximately 80 receptor neurons converge to ∼15 local neurons, which in turn project to 
∼20 ascending neurons (Vogel and Ronacher, 2007). All auditory input passes through this peripheral 
network, which preprocesses information and extracts behaviorally-relevant features (Clemens et al., 
2011). The large investment into high firing rates and a comparatively high redundancy between neu-
rons in this layer (Machens et al., 2001) also increases the need for energy-efficient spike generation. 
Optimization of receptor neurons in terms of temperature compensation hence seems a reasonable 
‘strategy’, as all effects of temperature on receptor neurons will be passed on to downstream neurons, 
where they may multiply. Although we currently do not know to which extent other parts of the 
auditory system are compensated, it is likely to ‘pay off’ to constrain the effects of temperature in the 
initial stages. Downstream neurons, in contrast, may be expected to adopt different strategies, as they 
can make use of different mechanisms: balancing of inhibition and excitation for robustness to temper-
ature changes (Robertson and Money, 2012) as well as an increase in population and temporal 
sparseness for energy efficiency and information transfer (Clemens et al., 2012).

Temperature dependence of the transduction process
While the considerations above refer to spike generation, little is known about the temperature 
dependence of the preceding transduction process. One hypothesis is that a change in the half-
maximum sound intensity of the transduction process could foster temperature compensation in firing 
rate. Our computational analysis shows that, indeed, a slight shift of transduction to lower sound 
intensities with higher temperatures may be favorable. Such a shift would occur if the amplitude of the 
tympanal vibration increased with heating and a stimulus of given intensity hence opened more trans-
duction channels. However, the computationally-derived changes are relatively moderate (Figure 4D). 
This is consistent with the observation that the tympanal vibration in cicadas is relatively tempera-
ture independent (Fonseca and Correia, 2007).

The other two parameters characterizing transduction (saturation current and dynamic-range width) 
reflect properties of the transduction channels (i.e., their peak conductance and activation range, 
respectively). The increase in dynamic-range width with heating can be interpreted as a decrease in 
gating force in a gating-spring model for the transduction as proposed for mechanosensory 
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transduction in bullfrog saccular hair cells (Howard and Hudspeth, 1988). Again, increases in temper-
ature are advantageous, because the gating-force magnitude is inversely related to transduction 
accuracy (van Netten et al., 2003). Depending on the spike-generation process, increases or 
decreases in the saturation current foster temperature compensation. The former may directly 
arise from the temperature dependence of the transduction channels' maximal conductance. The 
latter may require additional heat-sensitive channels with a modulatory influence on the transduction 
process, such as thermosensitive transient receptor channels (TRPA) (Kang et al., 2012), which in 
principle could down-regulate the saturation level of the transduction function via their increased 
calcium response (Chadha and Cook, 2012).

Generally, the analysis shows that the transduction process can contribute to temperature compen-
sation. While spike generation alone is sufficient to mediate robustness of the firing rate, a matched 
temperature dependence of the transduction process may allow for more flexibility in the ‘choice’ of 
spike generation parameters, including the possibility to meet additional constraints.

Conclusions
Altogether, our data show that auditory receptor neurons in the grasshopper represent an example of 
remarkable cell-intrinsic temperature compensation in the absence of network effects. Our computa-
tional analysis clarifies that spike generation alone can achieve this high degree of invariance of firing 
rate to temperature changes. The identified mechanisms generalize to spike generation in other cell 
types. Moreover, additional nonlinear processing by static nonlinearities (here interpreted as the trans-
duction process involving the tympanal membrane, but on a wider scope also reflecting properties of 
synaptic transmission) may foster temperature compensation, if well matched with the temperature 
dependence of spike generation. Overall, the dependence of neuronal processing on temperature 
merits further investigation, in particular as temperature fluctuations are an oftentimes underestimated 
variable in mammalian systems too.

Materials and methods
Experimental animals and electrophysiology
Experiments were performed on adult L. migratoria, obtained from a commercial supplier and held 
at room temperature (22–25°C). Intracellular recordings from auditory neurons within the metatho-
racic ganglion were conventionally conducted as described elsewhere (Franz and Ronacher, 2002; 
Wohlgemuth and Ronacher, 2007), using glass microelectrodes filled with a 3–5% solution of Lucifer 
yellow in 0.5 M LiCl. Neuronal responses were amplified (BRAMP-01; npi electronic GmbH, Tamm, 
Germany) and recorded by a data-acquisition board (BNC-2090A; National Instruments, Austin, TX) 
with 20 kHz sampling rate. To control for temperature, the preparation was placed directly on a Peltier 
element connected to a 2 V battery and a potentiometer. Temperature was monitored and recorded 
with a digital thermometer (GMH 3210, Greisinger electronic GmbH, Regenstauf, Germany) connected 
to a NiCr-Ni-thermoelement (GTF 300, Type K, Greisinger electronic GmbH, Regenstauf, Germany). 
For each experiment, recordings were conducted first at a fixed higher tissue temperature (in the 
range of 28–29°C), then the preparation was cooled down to a lower temperature (in the range of 
21–23°) and recordings were repeated.

To control for differences between the temperatures of the Peltier element and the tissue at the 
inner side of the tympanal membrane at the attachment site of receptor neurons, the dependence 
between those variables was measured directly and used for calibration (Figure 1—figure supplement 1). 
The calibration shows that at the higher Peltier temperature (30°C) tissue temperature only reached 
28°C (in the steady state) due to heat dissipation. After the cooling process the difference between 
Peltier and tissue temperature in the steady-state was less than 0.5°C. Moreover, cooling down proved 
to be slower in the tissue than at the Peltier element. In order not to underestimate Q10 values, we 
took a conservative approach: Electrophysiological recordings started 3–5 min after induction of 
the temperature change. Tissue temperature was derived from the calibration curve at the onset of a 
recording (lasting 40 s). Although temperature may still have been subject to small changes during the 
recording, this procedure ensured that temperature changes (i.e., the difference between high and 
low temperature) were—at most—slightly underestimated, favoring larger Q10 values. Consequently, 
the estimated Q10 values constitute an upper bound. In contrast, we cannot exclude that real Q10 
values may even be slightly smaller, that is even more temperature compensated.
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After completion of the recordings, Lucifer yellow was injected into the recorded cell by applying a 
hyperpolarizing current. Subsequently, the thoracic ganglia were removed, fixed in 4% paraformalde-
hyde, dehydrated, and cleared in methylsalicylate. The stained cells were identified under a fluores-
cent microscope according to their characteristic morphology. Altogether, nine receptor neurons were 
recorded in eight preparations.

Acoustic stimulation
To obtain spike rate vs intensity curves (response curves), we used acoustic broad band stimuli (100 ms 
duration, 1–40 kHz bandwidth) repeated five times each at 8 intensities, rising from 32 to 88 dB SPL. 
Acoustic stimuli were stored digitally and delivered by a custom-made program (LabView 7 Express, 
National Instruments, Austin, TX). Following a 100 kHz D/A conversion (BNC-2090A; National 
Instruments, Austin, TX), the stimulus was routed through a computer-controlled attenuator (ATN-01M;  
npi electronic GmbH, Tamm, Germany) and an audio amplifier (Pioneer stereo amplifier A-207R, 
Pioneer Electronics Inc., USA). Acoustic stimuli were broadcast unilaterally by speakers (D2905/970000; 
Scan-Speak, Videbæk, Denmark) located at ± 90° and 30 cm from the preparation. Sound intensity was 
calibrated with a half inch microphone (type 4133; Brüel & Kjær, Nærum, Denmark) and a measuring 
amplifier (type 2209; Brüel & Kjær, Nærum, Denmark), positioned at the site of the preparation.

Analysis of experimental data
Experimental spike times were extracted from the digitized recordings by applying a voltage threshold 
above background noise level. Mean spike rates were calculated for each intensity to obtain response 
curves (spike rate r vs sound intensity IdB) per neuron, stimulation side, and temperature. We fit a three-

parameter sigmoid to each response curve, ( ) dB 50,

dB sat

–
= = 1+exp –

I I
r I r

w

             

ρ

ρ
ρ , with saturation spike 

rate rsat, half-maximum sound intensity I50,ρ, and dynamic-range width wρ.

Quantification of temperature effects
Unless noted otherwise, temperature dependence of a given observable x was quantified by the tem-
perature coefficient
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10

+
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T
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Δ
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Q10(x) is the factor by which x changes after a temperature increase of 10°C. Q10 > 1 and Q10 < 1 
indicate an increase or decrease, respectively, of x with heating, while Q10 = 1 indicates perfect tem-
perature invariance. For plots of Q10 values data points were presented as outliers when they fell 
outside the interval [q11.5 · iqr,q3 + 1.5 · iqr], with the 25th and the 75th percentile defining q1 and q3 
and an interquartile range iqr = q3 − q1.

Temperature dependence of action-potential width
We also quantified the temperature-dependence of action-potential width at half-maximum amplitude, 
Q10(AP width), for every neuron during the stimulus period, separately at each stimulus. Figure 1C 
shows the distribution of Q10(AP width) pooled across all stimulus amplitudes (median 0.66). Our 
results qualitatively agree with the finding of broader action potentials at lower temperatures reported 
for various vertebrate and invertebrate neurons (Thompson et al., 1985; Bestmann and Dippold, 
1989; Janssen, 1992; Gabbiani et al., 1999). Further, our results agree quantitatively with those 
reported for locust motor neurons and locust L-neurons (Burrows, 1989; Simmons, 1990).

Adaptation
We checked that our results on the temperature dependence of firing rate were not compromised by 
the effects of adaptation. To this end, we re-analyzed the experimental data, separately focusing on the 
early phase of stimulus presentation (10–40 ms post stimulus onset), and the late phase (70–100 ms post 
stimulus onset). Effects of adaptation were reflected in a ratio of the respective parameter values (early-
versus-late phase) that differed from one. While individual characteristics of experimentally measured 
firing-rate curves were subject to adaptation (e.g., the slope at half-maximum sound level was steeper early 
on and shallower in the later part), the early-to-late ratios did not significantly change with temperature.
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Single-neuron models
Model definition
We performed simulations of neuronal membrane potential dynamics using a single-compartment 
Connor–Stevens model (original model described in Connor et al., 1977; parameters taken from 
Dayan and Abbott 2005):

( ) ( )
( ) ( )

3

4 3

= – – – –

= – · – – · · –

– · · – · · – .

m C L Na K A

C L L Na Na

K K A A
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I g V E g m h V E
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The original model was defined at a temperature of 18°C, where the parameters take the following 
values: peak conductances gL = 0.003, gNa = 1.2, gK = 0.2, gA = 0.477 (mS/mm2), and reversal poten-
tials EL = −17, ENa = 55, EK = −72, EA = −75 (mV). All gating variables, x ∈ {n,m, h, a,b}, follow first-order 
kinetics:
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x∞ denotes the steady-state (in-)activation function of x, τx the time constant of (in-)activation, and 
α and β  opening and closing rates of x, respectively. Specifically,
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All simulations were performed in Matlab (variable-order solver ode15 s [Shampine and Reichelt, 
1997] with time step 0.01 ms).

Temperature dependence of the model
The dependence on temperature T(°C) was introduced to the model at the level of reversal potentials 
E(T), peak conductances gX(T), and time constants of (in-)activation τx(T). The Nernst equation defined 
the temperature dependence of reversal potentials:

0 0

0

[ion outside]
= ln ( + ) = ( )· 1+ .

[ion inside] + 273.15

RT T
E E T T E T

zF T

  ⇒    
ΔΔ

 

R denotes the universal gas constant, z the valence of the considered ion, and F the Faraday con-
stant. T0 = 18°C sets the reference temperature, ΔT  temperature differences. Temperature depend-
ence of gX(T) is determined by the choice of the parameter Q10,gX:
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For ΔT = 0 each gX(T) takes the value of its original definition at 18°C. For a given gating variable, 
temperature dependence of its opening and closing rates are identical and read:
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Exploration of the parameter space
The model totals nine temperature-dependence parameters which span the parameter range explored: 
Q10,gX, with X ∈ {L,Na,K,A}, and Q10,x, with x ∈ {n,m, h, a,b}. Each parameter was sampled in four 
steps within realistic intervals (Partridge and Connor, 1978; Hille, 2001; Tang et al., 2010): 

10, 10,[1.2,2.0], [2.0,4.0]
Xg xQ Q∈ ∈ , resulting in a total number of 49 models. Step currents of different 

amplitudes (IC ∈ [0.05, 0.6] µA/mm2, varied in 0.05 µA/mm2 steps) and 100 ms duration served as 
stimulus to the model neurons. Preceding and following a stimulus, periods of 50 ms were simulated 
without current stimulation. For each model, simulations were performed at 28°C and referenced with 
model behavior at 18°C to derive the temperature dependence.

Quantification of f-I curve temperature dependence
Spike rates f in response to N = 12 current amplitudes IC defined the f-I curve for a given temperature 
(spike detection threshold −30 mV). Temperature dependence of the f-I curve was quantified as the 
root-mean-squared difference between firing rates at the two temperatures across input currents, 
normalized by the average spike rate elicited at the lower temperature:
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with Tcold = 18°C and Thot = 28°C. In agreement with the functional shape of type I spiking (Ermentrout, 
1996), f-I curves for each Q10 parameter combination were fit to a square root model,
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where A denotes slope and I0 firing threshold of the f-I curve (quality of fit R2 >0.97 for 99% of the 
models).

Fisher information
For a spike generation process f(I), Fisher information J(I) is a measure of how accurately a particular 
input current I can be decoded from the firing-rate response f(I). It is formally defined as

( ) ( ) ( )
2

= ln | | ,J I P f I P f I df
I

    
∂
∂∫  

with the conditional probability density of the spike rate given an input current, ( )|P f I , characterizing 
the output noise (i.e., spike-rate variability). We consider two empirical response models for the spike 
rate density: Poissonian and input-independent Gaussian, reading
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respectively. For the Poisson case, b denotes the time bin during which a certain spike count Nsp is 
observed. It is assumed to be sufficiently large so that sp /N b is well approximated by the mean firing 
rate f(I). σ2 denotes the variance of the Gaussian probability density. The corresponding Fisher 
information is given by
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=  and
P

f I
J I

f I

′

 

( ) ( )( )2

2
= ,

G

f I
J I

′
σ  

respectively. To compare Fisher information across different temperatures, it was averaged across a 
fixed interval of output firing rates [fmin, fmax]. Accordingly, the input current interval [Imin, Imax] was com-
puted for each model and temperature. Average Fisher information reads

( ) ( )
max

–1

max min

min

= – .

I

I

J I I dI J I〈 〉 ∫
 

For low noise, the average Fisher information is a lower bound to the neuron's capacity to transmit 
information (Kostal et al., 2013),

( )
low

= ln .
2

dI J I

C
e

        

∫
π

 

Exploiting the square-root shape of firing-rate curves, ( ) 0
= · –f I A I I , and ( ) ( )–1/2

0
= /2· –f I A I I′ , it 

follows that
2

2 2

max min max min

1 1
= .

– –

A

I I I f f
≡

Δ  (1)

For the Poisson probability density Fisher information is given by
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With Equation 1 it can be expressed as
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For a Gaussian probability density we get
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instead. Fisher information in this case reads

( )
4
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2 2 2
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Because only the slope of the firing-rate curve, A, is temperature-dependent in 〈JP 〉 and 〈JG 〉, the 
temperature dependence of Fisher information is given by

Q10( 〈JP 〉) = Q10( 〈JG 〉) = [Q10(A)]4. 
For the average value across a fixed output interval [fmin, fmax] Fisher information is invariant to shifts of 

the threshold. A heating-induced increase in the accuracy of a decoder hence requires an increase in 
slope of the firing-rate curve, that is Q10(A) > 1. This is true for all spike-generation models considered.

Measures of energy consumption during spiking and rest
Spiking cost
Energy consumption per spike was quantified as the total sodium current (also termed sodium load) 
(Hasenstaub et al., 2010; Sengupta et al., 2010) between stimulus onset tstart and 20 ms post stim-
ulus offset tstop, divided by the number of spikes elicited during this period, Ns :

stop

start

+20ms

+Na load / spike = / ,

t

Na s

t

I dt N∫
 

Considering that the Na-K-ATPase consumes one ATP molecule per 3 Na+ ions, this quantity is 
proportional to the number of ATP molecules per spike. The Q10(Na+ load/spike) averaged across all 
input currents was used for further analysis (and referred to as Q10(spiking cost)).
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In addition, a measure of energy efficiency based on the separation of charges, that is the fraction 
of the sodium current that was not counterbalanced by a simultaneous potassium current (Crotty 
et al., 2006), was implemented. As for estimation of the sodium-current-based cost, the stimulus 
period and the following 20 ms were evaluated. Note that the potassium current in the model com-
prised two components, IK,total = IK + IA . Temperature effects on energy efficiency (estimated by the 
corresponding Q10 values) were highly similar to those on (the inverse of) spiking energy consumption. 
Finally, both measures—the current-based cost and the charge-separation-based energy efficiency—
were also implemented based on the potassium current instead of the sodium current. In other words, 
spiking cost was additionally quantified by the total potassium current, energy efficiency based on the 
fraction of the potassium current that was not counterbalanced by the sodium current.

Resting cost
The resting potential Vr  of the Connor–Stevens model is given by

Vr =
EA · gA(Vr) + EL · gL + EK · gK(Vr) + ENa · gNa(Vr)

gL + gA(Vr) + gK(Vr) + gNa(Vr)
. (2)

The numerical solution of this expression for Vr  was used to evaluate the sodium current at rest,

( ) ( )Na,rest
= · – ,Na r Na rI g V E V  

which defines the sodium-current-based cost of the resting potential (assuming the current is propor-
tional to the activity of the Na-K-ATPase at rest). Likewise, the potassium-current-based cost is defined by

( ) ( ) ( ) ( )+
,rest

= · – · – .K K r K r A r A rI g V E V g V E V  

As the resting state is steady, the cost quantities do not depend on the gating variables' (in-) acti-
vation time constants and, consequently, the corresponding Q10 values do not have an impact on 
Q10(resting cost).

Sensitivity analysis
Sensitivity analysis was performed in the parameter space spanned by the nine temperature-dependence 
parameters (each dimension sampled by four values). To quantify global impact of one parameter on a 
given observable (like RMSD), we evaluated the distribution of point-wise changes in the observable 
along the dimension of a specific parameter. In total, for each parameter, 3 · 48 changes between neigh-
boring points along the corresponding dimension need to be considered. These define a distribution 
of changes, whose median is indicative of the global impact of this parameter on the observable. The 
distribution's 25% and 75% percentiles are indicated as error bars (see, e.g., Figure 2C). For each 
observable, impact values were normalized to give unity when summed across all nine parameters. The 
sign of the impact provides an estimate of the qualitative influence of the parameter on the observable, 
that is whether an increase in the parameter value leads to an increase or decrease in the observable. 
We considered an impact reliable if both percentiles (25% and 75%) had the same sign as the impact.

Note that our impact evaluation constitutes a global sensitivity analysis, comparable to the Morris 
one-at-a-time method (Morris, 1991). In contrast to the latter approach, we use a full factorial (grid) 
set of inputs instead of a random one. Moreover, our measure is based on the median instead of the 
mean of a distribution of differences in the observable. Yet, the interpretation of a high absolute 
impact is comparable to that of a high (absolute) mean elementary effect (the sensitivity measure in 
Morris 1991), as is the interpretation of a large interquartile range of the difference distributions to a 
large standard deviation of the elementary effect.

RMSD minimization with a genetic algorithm
Alternatively to the coarse parameter grid search, we also used optimization by a genetic algorithm 

(Mitchell, 1998) to validate the minimum RMSD. To this end, the turboGA function was used (Matlab 
file exchange; settings: population size 1000, 150 generations, 8 bit discretization, initial conditions 
uniformly random). For the Q10 parameter range used in the main article, the minimum RMSD identi-
fied by the genetic algorithm was very close to the minimum value on the grid (0.21 for the genetic 
algorithm, 0.22 on the grid). On average the coordinates of the grid-based minimum deviated 5% 
from the coordinates of the genetic algorithm-based minimum.
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Dimensional stacking
Dimensional stacking is a method to visualize high-dimensional data, that is an observable f as a func-
tion of N parameters, p1,…,pN, evaluated at a discrete set of parameter values. The method is 
described in detail, for categoric observables, in LeBlanc et al. (1990) and Taylor et al. (2006). Mainly, 
the method maps the N-dimensional data to a two-dimensional representation by iteratively slicing 
the data in one dimension and stacking the slices in 2D (Figure 2L). In this representation, the position 
of each pixel in the two-dimensional image corresponds to one parameter combination, and its color 
encodes the value of the observable. The image has N axes of different scales, each associated with 
one parameter. Visual informativeness of a dimensional stacking image crucially depends on the order 
in which the dimensions are stacked, that is, the axes order. The parameter dimensions associated with 
larger variability in the observable should be assigned larger-scale axes; those with lowest variability 
the small-scale axes. Sorting the axes with respect to their impact on the observable prior to dimen-
sional stacking hence leads to a visually informative image, where color changes can be easily related 
to changes of the observable with individual parameters. For this study, we used the ranking of abso-
lute impact scores (described above) to define the ‘optimal’ stack order, extending the optimization 
method described in LeBlanc et al. (1990) and Taylor et al. (2006).

Model robustness
The sensitivity analysis was performed with the Connor–Stevens model with original parameters for 
peak conductances gNa, gK , gA , and gL at the colder temperature (Dayan and Abbott, 2005). To test 
that our results are robust and do not strongly depend on this specific parameter choice, we addition-
ally performed the whole sensitivity analysis for 24 models with peak conductances of the reference 
model perturbed by ±20% (8 models with one individual peak conductance lowered or raised by 20%; 
16 models with all combinations of the four conductances either lowered or raised by 20%). The 
impacts for those models are summarized in Figure 2E and Figure 3F,G (individual changes in peak 
conductances represented by black symbols, combined changes by gray ones). Note that for compu-
tational efficiency only three values per parameter (instead of four) were taken (for perturbed models 
as well as the reference model, as presented in Figure 2E). The fraction of models with RMSD < 0.5 
(across the temperature dependence parameter space) was 18% in the original Connor–Stevens 
model. Variations in peak conductances did not change this finding much: for each perturbed model 
15–19% of its temperature dependence combinations gave RMSD < 0.5.

For completeness, we also checked that a structurally different vertebrate model with type I dynamics 
(Traub-Miles, Traub et al., 1991), as defined in Benda 2002) was able to display temperature compen-
sation despite a substantial temperature dependence of individual conductances (same range of tem-
perature parameters as in the Connor–Stevens models, Figure 2—figure supplement 1). The search 
for the lowest temperature dependence within the parameter space (sodium and potassium kinetics 
Q10(m), Q10(h), Q10(n), and the peak conductances of sodium, potassium and leak Q10(gNa), Q10(gK), 
Q10(gL)) was performed based on the genetic algorithm described above. As the model operates at 
32°, we checked both heating and cooling the model by 10°.

Reverse-engineering the transduction and its temperature dependence
For a given pair of a receptor neuron response ( )dB

=r Iρ  and a spike generation model ( )=
C

r Iφ , the 
transduction function (current IC vs sound intensity IdB) can be inferred. We assumed a sigmoidal shape 

of the transduction function, ( ) dB 50,
dB ,sat

–
= = 1+exp –

C C

I I
I I I

w

            
θ

θ
θ , with transduction saturation cur-

rent IC,sat, half-maximum sound intensity I50,θ, and dynamic-range width wθ. Further, we chose represen-
tative parameters for the receptor neuron response. To this end, the median cold temperature, Tc, the 
median receptor neuron response parameters at cold temperature, pρ ∈ {rsat, I50,ρ,wρ}, and the median 
temperature dependencies of the three receptor neuron response parameters, Q10(pρ), were deter-
mined from the experimental data. Using these, receptor neuron response parameters were inferred 
for temperatures of 18 and 28° (the temperatures at which spike generation simulations were per-

formed), according to pρ,T = pρ · (Q10(pρ))
T − Tc
10 . The resulting representative receptor neuron 

responses were used as objective functions for reverse engineering of the transduction curve. To infer 
the three parameters characterizing the optimal transduction curve for a given spike generation model 

( )=
C

r Iφ , we computed
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dB 50,
dB ,sat 0

–
= ( ( )) = · 1+ exp – –  .
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θ
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φ θ

 

The transduction parameters were chosen such that they minimized the root mean squared error 
between ( )( )dB

Iφ θ  and the representative receptor neuron response ρ(IdB):

( ) ( ) ( ) ( )( ){ }dB

2
dB dB dB dB,  optimal = arg min | – |

I
I I I dIθθ ρ φ θ∫

 

This fitting procedure was repeated for all hot and cold spike generation processes, and the tem-
perature coefficients for the three transduction parameters were computed. The transduction param-
eters at the reference temperature (18°C) were: ( ) 2

,cold dB = 0.40 A /mm
C
I I μ .
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