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The aryl hydrocarbon receptor (AhR) is an important cytosolic, ligand-dependent 
transcription factor. Emerging evidence suggests the promoting role of the AhR in the 
initiation, promotion, progression, invasion, and metastasis of cancer cells. Studies on 
various tumor types and tumor cell lines have shown high AhR expression, suggesting 
that AhR is activated constitutively in tumors and facilitates their growth. Interestingly, 
immune evasion has been recognized as an emerging hallmark feature of cancer. A 
connection between the AhR and immune system has been recognized, which has 
been suggested as an immunosuppressive effector on different types of immune cells. 
Certain cancers can escape immune recognition via AhR signaling pathways. This review 
discusses the role of the AhR in tumor immunity and its potential mechanism of action in 
the tumor microenvironment.

Keywords: aryl hydrocarbon receptor, tumor immunity, tumor development, immune surveillance, cancer 
immunotherapy

iNTRODUCTiON

In 2011, Hanahan and Weinberg proposed eight hallmarks of cancer: self-sufficiency in growth 
signals; blockade of antigrowth signals; limitless replicative potency; sustained angiogenesis; anti-
apoptosis; metabolic reprogramming; tumor infiltration and metastasis; and evasion of the immune 
system (1). Increasing evidence suggests that the development and progression of cancer cells result 
from a cancer-induced immunosuppressive situation, one that the immune system cannot recognize. 
“Immune evasion” is an emerging hallmark feature of cancer (2).

The aryl hydrocarbon receptor (AhR) is an important cytosolic, ligand-activated receptor 
expressed in various mammals (3, 4). This receptor was studied first as a receptor to the exogenous 
ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (5). A connection between the AhR and the 
immune system had been recognized through a pathway reacting with TCDD, which had been 
reported to be an immunosuppressive effector on T cells and dendritic cells (DCs) in animals and 
humans (6).

In 2005, Funatake and colleagues hypothesized that regulatory T cells can be generated through 
an AhR-dependent mechanism (7). Some studies showed that AhR-deficient mice are prone to 
autoimmunity (8, 9), whereas AhR-responsive mouse strains with constitutive expression of the 
AhR have been shown to be more susceptible to developing malignancies (10). Some studies sug-
gested that several types of human cancer cells showed higher numbers of copies of the AhR than 
normal cells (11). The potential function of the AhR in carcinogenesis in different types of cancer 
has been explored for several years (12, 13). The AhR may affect the proliferation, tissue invasion, 
metastasis, and angiogenesis of cancer cells. In addition, certain cancer types can escape from 
immune recognition via an AhR pathway, as shown in malignant gliomas by Opitz and colleagues 
(14). A tumor-promoting role of the AhR as well as its function in the immune system have been 
recognized. However, studies on the role of the AhR in tumor immunity are scarce.
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FigURe 1 | Functional structure of the aryl hydrocarbon receptor (AhR). The functional structure of the AhR protein consists of three parts: the basic helix–loop–helix 
(bHLH) motifs, the Per-ARNT-Sim (PAS) domains, and a Q-rich domain. bHLH motifs are involved in the activity of aryl hydrocarbon response elements (AHREs) 
binding and AhR nuclear translocator (ARNT) binding. PAS domains are required for ARNT binding and ligand binding. Transcriptional activation can be observed in 
Q-rich domain.
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Here, we present a brief overview of recent investigations on 
the role of the AhR and potential mechanism of action (MoA) in 
tumor immunity. We hope our review serves as a “roadmap” to 
guide future studies and even future therapeutic perspectives for 
malignancies.

BACKgROUND OF THe AhR

Fundamental information of the AhR
The AhR belongs to basic helix–loop–helix/Per-ARNT-Sim 
(bHLH-PAS) transcription factor families (5). Poland and 
Knutson stated that TCDD, benzo(a)pyrene, and polycyclic 
aromatic hydrocarbons (PAHs) exert their biologic actions by 
binding directly to the AhR, a cytosolic receptor (15). The AhR 
is a unique member of the bHLH-PAS family known to be in 
an activated state by integrating with exogenous or endogenous 
ligands (16, 17).

The functional structure of the AhR protein comprises three 
parts: the bHLH motif, the PAS domains, and a Q-rich domain. 
The basic domain of the bHLH motif is located at the N-terminal 
region of the AhR protein. The latter binds the AhR to the pro-
moter region of target genes at consistent regulatory sequences 
termed “aryl hydrocarbon response elements” (AHREs), as well 
as at dioxin-response elements (DREs). The PAS domains help 
the formation of a heterozygous protein complex by connecting 
with the AhR nuclear translocator (ARNT) and binding with the 
ligand. At the C-terminal region of the protein is a Q-rich domain 
that affects the recruitment and transcriptional activation of the 
motif (Figure 1).

In the absence of ligands, the AhR is located in the cytoplasm 
as one part of a protein complex comprising heat shock protein 
90, p23, and AhR-interacting protein (18–20). Upon binding 
to ligands such as TCDD, 6-formylindolo[3,2-b]carbazole 
(FICZ), kynurenine, or 2-(1′H-indole-3′-carbonyl)-thiazole-4-
carboxylic acid methyl ester (ITE), the AhR complex is activated. 
This action is followed by translocation to the nucleus, release 
from chaperone proteins, and interaction with ARNT. The 
chaperone proteins can protect the AhR from proteolysis and 
retain a propitious construction for ligand binding (21). The 
AhR–ARNT heterodimer correlates with signaling factors (e.g., 
chromatin remodeling factors, histone acetyltransferases, and 
transcriptional factors) and finally binds to DREs or AHREs to 
promote transcriptional regulation (22, 23). Classical AhR target 

genes include cytochrome P450 (Cyp)1a1, Cyp1a2, Cyp1b1, and 
AhR repressor (Figure 2).

The AhR is distributed in almost all tissues in humans and 
expressed abundantly in the placenta, liver, and lungs (24, 25). 
The AhR can be activated in epithelial cells, Langerhans cells, 
microglias, T  cells, B  cells, natural killer (NK) cells, DCs, and 
macrophages (26–32).

AhR Ligands
The AhR is activated or inhibited by various types of exogenous 
and endogenous ligands that bind to it. Different types of ligand 
interactions with the AhR protein result in different effects (33).

Exogenous/Xenobiotic Ligands
The best-characterized high-affinity exogenous/xenobiotic 
ligands for the AhR are environmental contaminants such as 
halogenated aromatic hydrocarbons, polychlorinated biphenyls, 
and PAHs. A well-known prototypic exogenous ligand for the 
AhR is TCDD, an environmental pollutant with high toxicity. 
TCDD is a specific epigenetic carcinogen and a potential tumor 
promoter (12, 34). Exposure to TCDD can produce diverse 
specific toxic (immunotoxicity, hepatotoxicity, tumor promotion, 
cardiotoxicity, reproductive toxicity, dermal toxicity, teratogen-
esis, wasting syndrome, lethality, and endocrine disruption) and 
biologic effects (35). A rich body of evidence (in vivo and in vitro) 
supports these phenomena. AhR(−/−) mice are not sensitive to the 
toxic activities of TCDD or TCDD-like toxicants (36–38).

Endogenous Ligands
It is reasonable to suspect that endogenous ligands must exist for 
the AhR because it can be activated in some cell types without 
an exogenous ligand being present (39). Different types of 
endogenous ligands have been isolated from mammalian tissues, 
such as indigo and indirubin from human urinary products (40), 
ITE from the lungs (39), kynurenine and kynurenic acid from 
the brain (41), and others such as equilenin, arachidonic acid 
metabolites, and FICZ (42).

Almost all of the endogenous/natural ligands that depend on 
DRE have been proposed to be AhR agonists. Indigo and indiru-
bin compete for receptor occupancy with TCDD and upregulate 
the activity of Cyp1a1 monooxygenase in human hepatoma cell 
lines and in rodent models (43, 44). Equilenin is an estrogen 
produced by pregnant mares and has been recognized as an AhR 
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FigURe 2 | Mechanism of activation of the aryl hydrocarbon receptor (AhR). The AhR is abundantly expressed in lung, liver, and brain. It can be activated in many 
cell types, including epithelial cell, microglia, macrophage, B cell, T cell, etc. Without a ligand, AhR is inactivated in the cytoplasm as a part of a complex with heat 
shock protein (HSP)90, AhR-interacting protein (AIP), and p23. After binding with an exo/endogenous ligand, the AhR will be activated and translocates to the 
nucleus to interact with AhR nuclear translocator (ARNT) and simultaneously detaches from the complex. The AhR/ARNT heterodimer finally binds to the dioxin-
response elements (DREs), which is called the promoter region of target genes [classical target genes include cytochrome P450 (Cyp)1a1, Cyp1a2, Cyp1b1, and 
AHRR], to promote transcriptional activation.
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agonist. Equilenin has been studied in human HepG2 cells; a 
half-maximal response (EC50) of 30 µM of equilenin can produce 
a considerable increase in expression of Cyp1a1 mRNA and 
DRE-mediated reporter activity (45). Potential endogenous AhR 
ligands from metabolites of arachidonic acid include lipoxin A4 
and prostaglandins (PGs). AhR activation by lipoxin A4 induces 
expression of Cyp1a1 and Cyp1a2 monooxygenases, and lipoxin 
A4 also serves as a substrate of these enzymes. This phenomenon 
has been shown in mouse hepatoma cells (46). Furthermore, 
PG-G2 function has been examined in a murine hepatoma cell 
line by dose–response assays, indicating that it can induce DRE-
dependent transcription with a higher EC50 than that elicited 
by lipoxin A4. PG-G2 may be a weak ligand of the AhR (47). 
Moreover, heme metabolites could be candidate endogenous 
ligands for the AhR, of which bilirubin has been suggested to be 
the most important. Sinal and Bend demonstrated that the gene 
expression and enzymatic activity of Cyp1a1 can be modulated 
directly by bilirubin via an AhR pathway in mouse hepatoma cells 
(48). Among the endogenous ligands mentioned earlier, ITE and 
kynurenine have garnered more attention from immunologists 
and oncologists in recent years.

2-(1′H-Indole-3′-Carbonyl)-Thiazole-4-Carboxylic Acid Methyl 
Ester
2-(1′H-Indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl 
ester (ITE) was extracted from porcine lung tissues and shown 

to be an agonist of the AhR by Song and colleagues in 2002 
(39). They extracted and purified ITE by ultraviolet spectros-
copy, electron-impact mass spectrometry, Fourier-transform 
infrared spectroscopy, and proton nuclear magnetic resonance 
spectroscopy. Upon exposure to ITE, the AhR binds to the DRE 
domain and induces increased expression of Cyp1a1 mRNA and 
DRE-dependent reporter activity, showing that ITE is a ligand 
and agonist of the AhR. Competitive-binding studies and experi-
ments based on sucrose gradient sedimentation have suggested 
that ITE competes with TCDD for binding with the AhR from 
human, murine, killifish, and zebrafish. Its binding affinity (Ki) to 
the AhR (3 nM) has been shown to be slightly lower than that of 
the classical AhR ligand TCDD (Ki = 0.5 nM).

The biologic function of ITE in the immune system has been 
studied. Quintana and colleagues showed that the progression of 
experimental autoimmune encephalomyelitis (EAE) is inhibited 
effectively by ITE treatment in  vivo and that ITE acts on DCs 
and T cells through binding with the AhR (49). Nugent LF et al. 
also studied ITE for its capacity to suppress the development of 
experimental autoimmune uveitis (EAU) and relevant immune 
responses. They showed that ITE can suppress EAU development 
and immune-cell responses against the uveitogenic antigen, 
reduce the proportion of cells expressing interleukin (IL)-10, 
interferon (IFN)-γ, and IL-17, and increase the proportion of 
forkhead box P3 (Foxp3)+ cells (50). Kai et al. suggested that the 
AhR is expressed abnormally in different histotypes in human 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Xue et al. AhR and Tumor Immunity

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 286

ovarian cancers and that ITE inhibits the proliferation and migra-
tion of OVCAR-3 and SKOV-3 cells through an AhR pathway. 
Unlike TCDD, ITE is hypotoxic or even non-toxic in vitro and 
in vivo, so ITE could be developed as a potent immunosuppres-
sant agent for the treatment of immune diseases and ovarian 
cancer (51, 52).

Kynurenine
The tryptophan metabolites kynurenine, FICZ, and kynurenic 
acid have been described as natural endogenous AhR ligands 
that mediate immunosuppressive functions. Kynurenine appears 
to be the most intriguing tryptophan metabolite in several types 
of cancers. In numerous cell types, most of the tryptophan is 
metabolized via a kynurenine pathway (53, 54). Kynurenine trig-
gers nuclear translocation of the AhR, thereby enabling activation 
of its target genes. Indoleamine-2,3-dioxygenase (IDO)1, IDO2, 
and tryptophan-2,3-dioxygenase 2 (TDO-2) (55) have been 
shown to be the significant rate-limiting enzymes metabolizing 
tryptophan to kynurenine. The expression of IDO1 and TDO-2 
has been shown to be controlled by the AhR. Such enzymatic 
activity leads to the exhaustion of tryptophan in the local micro-
environment, suppression of antigen-specific T-cell responses, 
and promotion of the differentiation of T regulatory (Treg) cells 
during tumor development (56). Emerging evidence suggests that 
increased expression of IDO in many types of cancers is accom-
panied with immune escape and cancer-associated inflammation 
in their microenvironment (57). Opitz et al. demonstrated that 
kynurenine derived from TDO-2-mediated tryptophan metabo-
lites can inhibit antitumor immune responses and promote 
the survival and motility of tumor cells in an autocrine, AhR-
dependent manner (14).

THe AhR AND THe TUMOR 
MiCROeNviRONMeNT

The physiological effects of AhR activation have been suggested 
to have significant roles in immune modulation and carcino-
genesis. The AhR is expressed at high levels and is chronically 
active in blood tumors (58, 59), such as T-cell leukemia (60) and 
lymphoma (61), as well as in solid tumors such as glioblastoma 
(14), ovarian cancer (51), lung cancer (62), liver cancer (63), and 
head and neck carcinomas (58). Murray et  al. suggested that 
detection of AhR activity in the microenvironment can serve 
as a potent diagnostic indicator for tumor aggressiveness (64). 
Depending on the cancer type, two types of results are associ-
ated with AhR activity and the prognosis. Saito et al. indicated 
that, in hormone-dependent breast cancers, AhR activation is 
associated with attenuated aggressiveness and a better prognosis 
(65). However, higher AhR activity has been suggested as being 
correlated with increased aggressiveness and a poor prognosis in 
non-small-cell lung cancer (66).

The AhR and Tumor Development
Strong evidence suggests that constitutively high AhR expression 
and nuclear localization can be observed in invasive tumor tis-
sues and malignant tumor cell lines (67, 68). The AhR may have 
important roles in various stages of tumorigenesis owing to its 

involvement in the inflammatory response and cell-cycle pro-
gression (64, 69, 70). The underlying MoA of the AhR in cancers 
was reviewed in detail by Feng and colleagues (17). With regard 
to abnormal activation of the AhR with exogenous/endogenous 
stimulation, certain physiological and pathological processes are 
disturbed: the proliferation and differentiation of cells, apoptosis, 
extracellular matrix (ECM) remodeling, angiogenesis, metabo-
lism, and survival. In this way, expression of the target genes is 
not regulated, and malignant tumors are formed.

The AhR has been suggested to affect cell proliferation in 
different tumor models and cancer cell lines. In the Hepa1c1c7 
cell line, an AhR-defective variant showed delayed progression 
through the G1 phase in comparison with a wild-type counter-
part (71). Studies in a human adenocarcinoma (A549) cell line 
revealed that DNA binding with the AhR was necessary for 
the cell cycle and that interaction with an AhR agonist could 
transform the AhR to its DNA-binding form that stimulated the 
growth of cancer cells (72). Another study using flow cytometry 
found that, in AhR-overexpressing cancer cells, 10% were in the 
S phase and none were in the G2/M phase and that increased 
expression of transcription factors, replication factors as well as 
proliferation of cell-nucleus antigens was observed. These results 
suggested that the AhR can promote proliferation of malignant 
tumor cells (73). The AhR can also induce cell-cycle arrest. TCDD 
shows its suppressive effects on gastric cancer cells, breast cancer 
cells, and retinoblastoma cells to induce growth arrest at the G1-S 
phase, which can be modulated by persistent phosphorylation of 
the retinoblastoma tumor suppressor protein via cluster of dif-
ferentiation (CD) K4/6 complexes (74, 75).

Tissue invasion and metastasis are hallmarks of aggressive 
malignancies. Loss of cell–cell contact triggers the progression 
and promotion of tumor cells. Increased expression of the AhR 
is associated with deregulation of cell–cell contact and tumor 
malignancy. For example, after exposure to the xenobiotic 
ligand TCDD, cell–cell contact is destroyed, and cell migration 
and epithelial–mesenchymal transformation (EMT) induced 
via a c-Jun N-terminal kinase-dependent pathway and loss of 
E-cadherin expression (13). Owens et  al. suggested that disso-
ciation of sarcoma (Src) kinase from the AhR complex disrupts 
cadherin-dependent cell–cell contact (76). Hence, the AhR can 
reduce cell–cell contact and adhesion and increase the motility 
and invasiveness of cancer cells, which finally results in the inva-
sion and metastasis of cancer cells.

Another key element involved in the pathogenesis and metas-
tasis of tumor cells is the ECM. Studies have shown that ECM 
remodulation-associated proteolytic enzymes such as cathepsins 
(77), urokinase plasminogen activator (uPA) (78), and matrix 
metalloproteinases (MMPs) (79) are intriguing components of 
an AhR pathway. Son and Rozman showed, in mouse hepatoma 
cells, that AhR activation by ligand binding induced expression of 
uPA protease (80). Similar results have been demonstrated in the 
studies of Villano and colleagues (81) and Haque and coworkers 
(82), suggesting that activation of an AhR pathway can enhance 
MMP expression and result in tumor invasiveness.

Angiogenesis is the physiological process through which new 
blood vessels form from pre-existing vessels. Angiogenesis and 
the provision of nutrients and oxygen to support the proliferation 
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of cancer cells also have roles in the aggressiveness and metastasis 
of tumor cells. During this period, AhR–ARNT heterodimers 
interact with hypoxia-inducible factor (HIF)-1α to counteract 
oxygen deprivation and simultaneously upregulate the expres-
sion of HIF-1, IL-8, and vascular endothelial growth factor 
(VEGF) and downregulate expression of transforming growth 
factor (TGF)-β (83, 84). Angiogenesis is impaired in AhR(−/−) 
endothelial cells and in AhR-null mice as shown in experiments 
involving aortic rings. However, this situation can be rescued by 
VEGF addition. Furthermore, addition of anti-VEGF or knock-
ing out of VEGF in AHR(+/+) cell types results in a reduction of 
angiogenesis. Experiments on TGF-β in stroma cells elicit the 
opposite result. The data mentioned earlier suggest that the AhR 
could be an intriguing regulator and potential therapeutic target 
for angiogenesis and metastasis during tumor development.

Tumor suppressors regulate the orientation of tumor cells to 
proliferation or to senescence and apoptosis. Among numerous 
tumor suppressors, p53 protein shows an obvious interaction with 
the AhR according to experiments in vitro and in vivo (85, 86). 
In the HepG2 cell line, exposure to TCDD and hypoxia result in 
inhibition of p53 expression and activation via a pathway involv-
ing estrogen receptor (ER)α and human double minute-2 and, 
finally, promotion of tumor progression (67, 87). Furthermore, 
the AhR has also been reported to affect cancer stem cells and 
crosstalk with an ER- and inflammatory factor-associated signal-
ing pathway in the pathologic phase of carcinogenesis (88, 89).

Inflammation is also a common feature of tumors. Studies 
have shown an interaction between AhR activation and expres-
sion of inflammatory signaling molecules such as IL-6, IL-10, 
TGF-β, VEGF-A, signal transducer and activator of transcription 
(STAT) 6, and nuclear factor-kappa B (NF-κB) (90–93). Kolasa 
and colleagues found, in a human breast cancer cell (MCF-7) line, 
that simultaneous exposure to environmental PAHs and tumor 
necrosis factor (TNF)-α induced increased expression of IL-6 
and that this effect could be counteracted by silencing the AhR, 
implying that AhR may have a key role in IL-6 regulation within 
the tumor microenvironment (93). The MoA was suggested to be 
driven by occupancy of AhR–ARNT complexes in DREs, which 
mediated displacement of histone deacetylase-1 with the IL-6 
promoter and subsequently acetylated NF-κB. Dinatale and col-
leagues presented similar results in head and neck squamous cell 
carcinoma (HNSCC) lines (58). In the presence of lipopolysac-
charide (LPS) in bone marrow dendritic cells (BMDCs), secretion 
of IL-6, IL-10, and IL-22 has been shown to be regulated through 
AhR activation (94). Furthermore, the AhR has been shown to 
bind to NF-κB subunit RelB and that interaction of RelB and AhR 
in the breast cancer cell lines MCF-7 and MDA-MB-436 induced 
IL-8 expression (95). John and coworkers observed, in an inflam-
matory environment in HNSCC lines, that the AhR was likely 
to regulate the expression or function of several growth factors 
directly (96). The research mentioned earlier suggests that AhR 
activation may contribute to inflammatory signaling within a 
tumor microenvironment through multiple MoAs.

The AhR has been suggested to be a promoter for the initia-
tion and progression of tumor cells, but this view is controversial. 
Several studies have demonstrated that the AhR may be a tumor 
suppressor under certain circumstances (74, 97). Wang et  al. 

reported that ITE inhibited the proliferation and migration of 
ovarian cancer cells in vitro and in mice models through the AhR 
pathway. They also found that TCDD could suppress the prolif-
eration of cancer cells in an AhR-dependent manner at a certain 
dose (51). Iida and colleagues suggested that N-nitrosobutyl(4-
hydroxybutyl)amine suppressed the AhR signaling pathway and 
finally induced bladder cancer (98).

The AhR and the immune System
The AhR has been reported to take part in the modulation of 
innate immunity and adaptive immunity, which may be involved 
in tumorigenesis and tumor immune surveillance.

The AhR and Innate Immunity
The AhR and NK Cells
Natural killer cells are important components of the innate 
immune system and contribute substantially to antitumor 
immune responses. Many aspects of the biology of NK cells have 
been shown to be tightly linked with immune surveillance (99). 
Upon activation, NK cells can “wipe out” tumor cells by: (i) rec-
ognizing tumor-induced immune-activating ligands on host cells 
via receptor activation; (ii) responding to tumor cells without the 
major histocompatibility complex or other immune-suppressive 
ligands; (iii) activating cytokines secreted by tumor cells or tumor 
cell-stimulated immune cells; and (iv) interacting with tumor-
infiltrating immune cells such as DCs and macrophages (100).

Increasingly, the AhR has been shown to regulate subsets of 
immune cells with regard to differentiation and activation via 
cytokine stimulation. However, studies focusing on the relation-
ship between the AhR and NK cells are scarce. Emerging evidence 
supports a role for NK cells in tumor surveillance (101). Shin and 
colleagues showed, using in vivo experiments, that the cytolytic 
activity and capacity to suppress formation of RMA-S tumors of 
NK cells is impaired in the absence of the AhR. AhR activation 
with the endogenous ligand FICZ can potentiate NK  cells to 
increase IFN-γ secretion and simultaneously enhance cytolytic 
activity and antitumor activity in an NK cell-dependent manner 
(100). Wagage and colleagues suggested that AhR activation in 
NK cells is required for IL-10 production. They isolated NK cells 
from Toxoplasma gondii-infected AhR(−/−) mice and found that 
IL-10 secretion was impaired and associated with increased 
resistance to such infection (32). Zhang et al. demonstrated that 
liver-resident NK  cells expressed the AhR constitutively and 
that in AhR(−/−) mice in vivo, deficiency of the AhR in NK cells 
resulted in increased susceptibility to cytokine-induced cell death 
(102). These data suggest that the AhR may affect NK cells via 
inflammatory signaling pathways to induce tumor development 
and immune surveillance.

The AhR and Macrophages
Macrophages induce innate immune responses to pathogens 
through toll-like receptors. Tumor-associated macrophages 
(TAMs) are critical components of the tumor microenviron-
ment. Masuda et  al. demonstrated that interaction between 
the AhR and STAT1 negatively regulated IL-6 production by 
inhibiting NF-κB activation and that AhR–specific protein 1 
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complexes suppress histamine production in macrophages upon 
LPS stimulation (28). Climaco-Arvizu et al. showed that the AhR 
can affect the balance between the inflammatory M1 phenotype 
and anti-inflammatory M2 phenotype by comparing AhR-null 
mice with wild-type mice: the AhR gene altered macrophage 
polarization. Activated M2 macrophages have been regarded as 
being pro-tumor phenotypes in many tumor types (103). Yeung 
et al. suggested that M2 macrophages contributed to a poor prog-
nosis in hepatocellular carcinoma (HCC) and promoted tumor 
invasiveness through C–C motif chemokine 22-induced EMT 
(104). Partecke et al. showed M2 macrophages to be promoters of 
tumor growth in pancreatic cancer. C57BL/6 mice were injected 
orthotopically with murine pancreatic cancer cells (6606PDA), 
and macrophages were depleted by clodronate liposomes. 
Treatment with M2 macrophages induced tumor growth (105). 
Zhang et  al. investigated the role of M2 macrophages in the 
progression of colon cancer and found that M2 macrophage-
conditioned medium induced the migration of SW480 cells and 
CD47 expression (106). However, the role of the AhR in TAMs 
has not been explored. Taken together, these data suggest that the 
AhR affects tumor development and immune responses within 
tumor environments via TAMs.

The AhR and DCs
Considerable attention has been paid recently to the immu-
noregulatory role of the AhR in DCs. Nguyen et  al. showed 
that LPS and CpG oligonucleotides stimulated BMDCs to 
express the AhR. AhR(−/−) mature BMDCs induced immune 
responses with a reduction in expression of kynurenine and 
IL-10 by treatment with LPS or CpG compared with mature 
wild-type BMDCs. Upon coculture with BMDCs and naïve 
T  cells, differentiation from naïve T  cells to Treg cells was 
found to be inhibited in AhR(−/−) mature BMDCs. Treatment 
with l-kynurenine to the system stated earlier rescued this 
situation. Nguyen et al. concluded that the AhR regulated DC 
immunogenicity negatively via a kynurenine-dependent MoA 
(107). Thatcher et  al. demonstrated that AhR-knockout mice 
developed intense allergic responses to the allergen ovalbu-
min with increased activation of DCs. Deficiency of the AhR 
resulted in enhanced activation of T cells by pulmonary DCs 
and intense pro-inflammatory allergic responses (108). Wang 
and colleagues explored the influence of AhR activation by ITE 
and FICZ on the differentiation, maturation, and function of 
monocyte-derived DCs (MODCs) in patients with Behçet’s 
disease. AhR activation by FICZ or ITE inhibited DC biology 
with reduced production of TNF-α, IL-1β, IL-6, and IL-23 and 
increased secretion of IL-10 (109). Vogel et  al. showed that 
the AhR modified maturation of BMDCs accompanied with 
increased expression of IDO and altered secretion of cytokines, 
chemokines, and DC-specific surface markers and receptors 
(110). Kado et al. demonstrated that the AhR modulated toll-
like receptor-induced expression of cytokines and DC-specific 
surface markers in human MODCs involving NF-κB RelB 
and the immune regulatory factor caudal type homeobox-2 
by treatment with ligands, such as TCDD, FICZ, and I3C, but 
not kynurenine (111). Taken together, these studies suggest 
that AhR activation through exogenous or endogenous ligands 

affects the function and differentiation of DCs with regard to 
maintaining immune homeostasis.

Dendritic cells also act as antigen-presenting cells in terms of 
initiating adaptive immune responses, including the differentia-
tion and polarization of T cells and B cells. Jurado-Manzano et al. 
found that FICZ activated the AhR in MODCs, promoted the 
differentiation and maturation of DCs, and induced naïve T cells 
to differentiate into CD4+CD25+Foxp3+ Treg-like cells to cause 
immune tolerance (112). Ping and colleagues showed, in allergic 
rhinitis (AR) patients, that the AhR modulated the increased 
secretion of IL-10 in DCs and CD4+ T cells, reduced expression 
of IL-1β and IL-6 in DCs and IL-17 in CD4+ T cells, via ITE treat-
ment, and subsequently inhibited the response of T-helper (Th)17 
cells to suppress the AR (113). De Araújo et al. demonstrated the 
fundamental role of the IDO–AhR axis in adjusting the balance 
between Th17 cells and Treg cells in pulmonary paracoccidioi-
domycosis through its effects on plasmacytoid DCs (114). The 
research results mentioned earlier were confined to inflammatory 
or autoimmune diseases. However, there are very few reports on 
the relationship between the AhR and DCs in tumors, and further 
investigations are warranted.

The AhR and Adaptive Immunity
An adaptive immune response is triggered via activation, dif-
ferentiation, and clonal expansion of lymphoid lineage cells 
(T and B cells). Studies have shown that tumors “escape” from 
immune surveillance via inactivation or deletion of self-reactive 
T cells and B cells, which is an important early event in tumor 
development (114, 115).

AhR and T Cells
Type-1 regulatory T cells (Tr1), thymus-derived Treg cells, and 
Th17  cells have central roles in mediating immunosuppressive 
effects within the tumor microenvironment by suppressing the 
proliferation and cytokine secretion of effector cells (116). The 
AhR regulates CD4+ T-cell differentiation, and thus, AhR levels 
are increased in this process (117, 118). The AhR can induce 
Treg cells and Th17  cells based on the TCDD concentration 
in EAE, suggesting that the balance between Treg cells and 
Th17 cells has a key role in autoimmune disease (8). Considering 
the immunosuppressive effects of AhR ligands on autoimmune 
disease, it is rational to propose that AhR activation in the tumor 
microenvironment is associated with an increased proportion of 
Treg cells and may explain (at least in part) the tumor-promoting 
properties of TCDD.

On account of the phenomena observed in models of autoim-
mune disease, one could infer that TDO-derived kynurenine 
induces the differentiation of Treg cells and suppresses tumor-
specific CD8+ T  cells. For instance, Opitz et  al. suggested that 
kynurenine affected the proliferation of CD4+ and CD8+ T cells 
in a concentration-dependent manner and verified that kynure-
nine suppressed antitumor immune responses through the AhR 
in sections of human gliomas (14, 119). Presence of the AhR 
is necessary in T  cells for optimal generation of Foxp3+ Treg 
cells and kynurenine induces generation of Foxp3+ Treg cells 
in an AhR-dependent manner (30). The AhR is also crucial for 
the formation of Tr1 cells in mice and humans, which inhibit 
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autoimmune responses by interaction with the transcriptional 
factor macrophage-activating factor to enhance expression of 
IL-10, IL-21, and IL-27 (120). AhR activation is also involved in 
the promotion of Th17 to Tr1 transdifferentiation (98).

Whether the AhR can modulate antigen-specific CD8+ T-cell 
responses is controversial. Winans et al. demonstrated that AhR 
deficiency affected primary CD8+ T-cell responses with altered 
patterns of DNA methylation in a cell-extrinsic manner during 
infection with an influenza virus (121). The role of the AhR in 
tumor immunity has not been explored in depth and merits 
further investigation.

The AhR can regulate the apoptosis of process of T cells via 
modulation of expression of Fas and Fas ligand by exposure 
to TCDD or other endogenous ligands. Several key pathway 
molecules in the tryptophan pathway, including IDO-1, TDO-2, 
and kynurenine, participate in controlling immune tolerance 
and promoting tumor escape by regulating T cells and the prolif-
eration, differentiation, and apoptosis of tumor cells via the AhR 
(122). However, the underlying molecular MoA is incompletely 
understood, and deeper investigations are needed.

The AhR and B Cells
Recent data have suggested the potential role of the AhR in 
regulation of the function of B  cells involved in the tumor 
microenvironment (123, 124). The AhR has been reported to 
mediate B-cell differentiation from hematopoietic stem cells into 
pro-B cells, mature B cells, and plasma cells (61). For example, 
B cells are sensitive targets for TCDD. In LPS-activated CH12LX 
B lymphoma cells with simultaneous TCDD treatment, the DNA 
binding and transcriptional activity of activated protein-1 and 
immunoglobulin expression were repressed markedly, which 
revealed possible associations between the AhR and the genes 
pivotal to the maturation and function of B cells (123). More than 
1,000 human cancer cell lines generated at the Broad Institute 
of the Massachusetts Institute of Technology and Harvard 
University have undergone microarray analyses. Data revealed 
that myelomas and B-cell lymphomas (diffuse large phenotype 
and unspecified phenotype) showed reduced expression of the 
AhR, but notably increased expression in chronic lymphocytic 
leukemias and Hodgkin’s lymphomas (61). Interaction between 
the AhR and TCDD and other ligands contribute to cancers 
derived from B-cell lineages by affecting the growth and survival 
of cells via the tumor microenvironment. Further studies on the 
function of the AhR in B  cell-associated microenvironment in 
solid tumors must be explored.

THe AhR AND SOLiD TUMORS

The AhR and Malignant gliomas
Emerging evidence has demonstrated the role of the AhR and 
its ligands in brain tumors. The generation of reactive oxygen 
species may have a role in the underlying MoA of AhR-mediated 
glioma, as well as the activation of glutamate receptors, histone 
acetylation, signal transducers, peroxisome proliferator-activated 
receptors, and transcription activators (125). Gramatzki et  al. 
explored AhR expression and its MoA in human glioma cells 

and found that AhR inhibition downregulated expression of 
the TGF-β/Smad [mothers against decapentaplegic homolog 1 
(Drosophila)] pathway (59). Silginer and colleagues identified a 
signaling network composed of the AhR, integrins, and TGF-β. 
They showed integrin inhibition to be a prospective strategy to 
tumor inhibit angiogenesis and to restrain the AhR- and TGF-β-
controlled characteristics of malignancy in glioblastomas (126). 
Dever and Opanashuk explored the function of the AhR in a 
medulloblastoma cell line (DAOY). They suggested that abnor-
mal activation or suppression of the AhR could dysregulate the 
cycle of granule neuron precursor (GNP) cells and that the AhR 
could promote the proliferation of medulloblastoma cells (127). 
Adams et al. provided a new perspective on how dysregulation 
of the kynurenine pathway affects antitumor immune responses. 
Tryptophan metabolites such as 3-hydroxyanthranilic acid, qui-
nolinic acid, and kynurenine as well as regulatory enzymes such 
as IDO-1 and TDO-2 have central roles in antitumor immunity 
and are dependent on the AhR signaling pathway (128). Bostian 
et  al. demonstrated that activation of the AhR pathway via 
TDO-2 increased expression of kynurenine and human Y-family 
polymerase κ, which resulted in genomic instability and high lev-
els of replication stress in glioblastomas (129). Opitz et al. found 
that the TDO–kynurenine–AhR pathway is closely associated 
with malignant progression and a poor prognosis. They found 
antitumor immune responses to be suppressed and the prolifera-
tion and survival of tumor cells to be promoted by TDO-derived 
kynurenine in an autocrine/paracrine AhR-mediated manner 
(14). Taken together, these data suggest that the AhR may affect 
the growth of brain tumors and antitumor immune responses.

The AhR and Breast Cancer
Constitutive activation of the AhR has been examined in different 
models of breast cancer in mice and humans (75, 130, 131). The 
AhR is involved in several cell-signaling pathways, including 
interaction with cytokines, tyrosine kinases, and growth factors. 
Belguise and colleagues and Vogel et al. suggested a connection 
between AhR activity and upregulation of the transcriptional 
genes associated with the invasion and survival of cancer cells 
(132, 133). Goode and coworkers and Parks et al. demonstrated 
that knockdown or inhibition of the AhR led to downregulation of 
expression of tumor cells and metastasis-associated genes, as well 
as inhibition of the invasion and migration of cancer cells (130, 
134). In addition, hyperactivation of the AhR with exogenous 
and endogenous ligands may induce different signaling pathways 
and lead to reduced invasion of breast cancer cells (70, 135, 136). 
Abnormal tryptophan metabolism and increased production of 
tryptophan metabolites have also been documented in human 
breast cancers. D’Amato et al. demonstrated that a TDO2–AhR 
signaling axis in a kynurenine pathway promoted anoikis resist-
ance via NF-κB and highlighted that TDO-2 could be an intrigu-
ing target for the treatment of triple-negative breast cancer (137). 
Bekki et al. explored the anti-apoptotic function of the AhR in 
breast cancer cells by exposure to ultraviolet light, TCDD, and 
kynurenine, respectively. They suggested that TCDD and kynure-
nine mediate tumor immunity via the suppression of apoptosis, 
accompanied with the induction of expression of the COX-2 and 
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NF-κB subunit RelB (138). Saito and colleagues demonstrated the 
AhR to be a newly defined prognostic factor for breast cancers. 
They showed that AhR+ breast cancer patients had a relatively 
better prognosis than those with AhR− breast cancer because of 
the effects of activating AhR on cell proliferation and expression 
of MMPs genes (65). Most of these studies were confined to the 
tumor itself and more attention should be paid to role of the AhR 
in the microenvironment of breast cancers.

The AhR and Lung Cancer
Exposure to cigarette smoke and environmental pollutants is 
the dominant pathogenesis for lung cancer. PAHs are exogenous 
ligands that bind to the AhR, which reacts with PAHs via 
Phase I CYP enzymes to sequentially influence the initiation, 
promotion, and progression of lung cancer. Oyama et al. tested 
78 non-small-cell lung cancer samples and observed a direct 
correlation between expression of the AhR and downstream 
expression of CYP1a1, most notably in adenocarcinomas (139). 
Lin et al. also reported that lung adenocarcinoma tissues and 
cell lines expressed increased AhR at mRNA and protein levels 
(140). Gao et  al. found AhR overexpression to be associated 
with an increase in nuclear translocation of RelA, the AhR–
RelA complex, and NF-κB activity, giving rise to upregulation 
of IL-6 secretion (which is critical for lung cancer initiation) 
(141). Lung carcinogenesis has also been hypothesized to be via 
crosstalk with nuclear factor (erythroid-derived 2)-like 2 and 
ER, thereby providing effective targets for the AhR to prevent 
and treat lung cancer.

The AhR and Liver Cancer
The AhR conduces the regulation of the communications, adhe-
sion, migration, and proliferation of cells in liver carcinogenesis. 
Fan et al. showed that AhR activation led to arrest of the G0–G1 
phase in the cell cycle and diminished the competency for DNA 
replication and suppression of cell proliferation. They also found 
that the AhR was a cancer-suppressor gene in the absence of a 
xenobiotic ligand and that its silencing may be linked with cancer 
progression (97). de Tomaso et al. demonstrated that AhR was a 
mediator in the extracellular signal-regulated kinase1/2 signal-
ing pathway and contributed to the regulation of the cell cycle 
in hexachlorobenzene-treated HepG2 cells (142). Andrysik et al. 
investigated if toxic AhR agonists may synchronously relieve 
contact inhibition and reduce gap junctional intercellular com-
munication via regulation of connexin-43 (143). Terashima et al. 
suggested that the AhR induced VEGF expression by activation 
of activating transcription factor 4 during glucose deprivation in 
the HepG2 cell line, which affected the malignancy of liver cancer 
(144). Kennedy et al. found that tumor promotion by TCDD was 
attributed to activation of the AhR and TNF/IL-1 receptors in 
liver cancer (145). Koch et al. observed that flutamide activated 
the TGF-β1 signaling pathway via the AhR and influenced some 
biologic characteristics in human HCCs (146).

The AhR and Solid Tumors in Children
Neuroblastoma is the most common malignant solid tumor 
of infancy. Wu et  al. found AhR expression to be correlated 
negatively with N-myc proto-oncogene (MYCN) expression and 
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highly correlated with the histology grade of differentiation in 
human neuroblastoma tissues, suggesting that the AhR regu-
lates the expression and function of MYCN upstream through 
modulation of E2F transcription factor 1 (147). Huang et  al. 
demonstrated that knockdown of micro-RNA-124 promoted the 
differentiation, cell-cycle arrest, and apoptosis of the neuroblas-
toma cell line SK-N-SH via the AhR signaling pathway (148). 
Little is known about medulloblastoma and the AhR. Dever and 
Opanashuk reported that the AhR was overexpressed in the GNP 
cells from the developing cerebellum and that abnormal activa-
tion/suppression of the AhR led to aberrant regulation of their 
cell cycle and maturation, suggesting that the AhR stimulates the 
growth of medulloblastomas (127).

Other Solid Tumors
The AhR is also constitutively active in prostate cancer, melanoma, 
ovarian cancer, colon cancer, and gastric cancer (51, 149, 150). 
Xie et  al. found that Src-mediated crosstalk between the AhR 
and epidermal growth factor receptor stimulated proliferation of 
colon cancer cells (151). Villano et al. investigated how AhR acti-
vation affected several melanoma cell lines and normal human 
melanocytes. They hypothesized that expression of the AhR and 
ARNT activated by TCDD in the transformed melanoma cell line 
A2058 resulted in increased expression and enhanced activity of 
MMP-1, MMP-2, and MMP-9 (81).

CONCLUDiNg ReMARKS AND FUTURe 
PeRSPeCTiveS

Overexpression and constitutive activation of the AhR have been 
observed in various tumor types and is associated with histology 

grade. The AhR occupies an important place in multiple stages 
of the development and progression of cancer cells; whether it 
functions as an oncogene or suppressor gene merits further 
investigations. Tumor immunity is one of the most important and 
promising fields in oncology. The AhR is not only a transcription 
factor responding to toxins but also crucial in the physiological 
functions of immune-cell compartments. Additional in-depth 
investigations of AhR function in the tumor microenvironment, 
including tumor cells and immune cells, and the relationship 
between immunity and tumors are warranted (Figure 3). Among 
AhR signaling and other pathways, the kynurenine pathway is a 
new and prospective way to link the immune system and tumors. 
The immunosuppressive role of the AhR in tumors suggests that 
targeting the AhR and associated signaling pathways may provide 
a novel therapeutic strategy for cancer.
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