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Abstract
Introduction: Thoracic diseases include a variety of common human primary malignant tumors, among which lung cancer and
esophageal cancer are among the top 10 in cancer incidence and mortality. Early diagnosis is an important part of cancer treatment,
so artificial intelligence (AI) systems have been developed for the accurate and automated detection and diagnosis of thoracic tumors.
However, the complicated AI structure and image processing made the diagnosis result of AI-based system unstable. The purpose
of this study is to systematically review published evidence to explore the accuracy of AI systems in diagnosing thoracic cancers.

Methodsandanalysis:We will conduct a systematic review and meta-analysis of the diagnostic accuracy of AI systems for the
prediction of thoracic diseases. The primary objective is to assess the diagnostic accuracy of thoracic cancers, including assessing
potential biases and calculating combined estimates of sensitivity, specificity, and area under the receiver operating characteristic
curve (AUC). The secondary objective is to evaluate the factors associated with different models, classifiers, and radiomics
information. We will search databases such as PubMed/MEDLINE, Embase (via OVID), and the Cochrane Library. Two reviewers will
independently screen titles and abstracts, perform full article reviews and extract study data. We will report study characteristics and
assess methodological quality using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. RevMan 5.3 and
Meta-disc 1.4 software will be used for data synthesis. If pooling is appropriate, we will produce summary receiver operating
characteristic (SROC) curves, summary operating points (pooled sensitivity and specificity), and 95% confidence intervals around the
summary operating points. Methodological subgroup and sensitivity analyses will be performed to explore heterogeneity.

PROSPERO registration number: CRD42019135247

Abbreviations: AI = artificial intelligence, AUC = area under the receiver operating characteristic curve, CAD = computer-aided
detection, CNN = convolutional neural networks, LDCT = low-dose helical computed tomography, SROC = summary receiver
operating characteristic, SVM = support vector machine, VOI = volume of interest.
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1. Introduction

Thoracic diseases include a variety of common human primary
malignant tumors, among which lung cancer and esophageal
cancer are among the top 10 in cancer incidence and mortality.[1]

Though the survival rates of most cancers have improved over
the past few decades, lung cancer survival rates have declined,
mainly because the cancer is often well advanced, with limited
treatment options by the time it is detected.[2] The 5-year survival
rate of patients with advanced non-small cell lung cancer is 14%
to 15.7%.[3] In contrast, early stages are often curable, and
detection during the early stage could drastically improve patient
outcomes, minimize overtreatment, and even save lives.[4–6]

Although low-dose helical computed tomography (LDCT) can
detect more patients with early-stage lung cancer and has few
complications, it still requires radiation exposure, has a high
false positive rate and may lead to potential overdiagnosis[7];
moreover, 96.4% of lung nodules detected by LDCT
screening are not cancerous, and there is no definite method
to classify whether these nodules are cancerous or benign,
which can lead to a greater economic and psychological burden
to patients.[5]
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With the increasing awareness of cancer prevention and the
vast amount of data generated every day from parallel streams of
screening, doctors need to analyze a large number of medical
images. Therefore, it is becoming increasingly important to
effectively and accurately identify lesions and optimize and
simplify the clinical workflow.[8,9] These new challenges have
prompted scientists to develop a reliable early detection method
that is not a new imaging technology but a way to address
challenges in areas such as cancer detection andmonitoring based
on medical imaging data.[10,11] It is hoped that this technique can
simulate the process of traditional imaging diagnosis, which
mainly relies on the qualitative characteristics (texture, intensity
shape, etc) of the lesions, the outline of the tumor, and anatomic
relationships. The focus of this technique is to master these
phenotypic descriptions of lesions, known as “semantic charac-
teristics.”[12,13] Decades ago, scientists began trying to explore a
way to use third-party tools to help clinicians extract semantic
features. In recent years, with the development of computer
equipment and radiomics, artificial intelligence (AI) has made
great progress in medical imaging diagnosis of diseases.[11,14,15]

AI is a science that applies intelligent machines and systems to
imitate the ability of intelligent human activities. The use of AI in
the diagnosis of thoracic tumors has come a long way. In 1956,
computer-aided detection (CAD)[16] was first proposed to predict
the existence of pulmonary nodules. With advances in computer
technology, CAD was implemented in the 1980s as a tool for the
automatic detection of suspicious pulmonary nodules and their
location for radiologists.[17,18] However, due to the difficulty in
modeling and low accuracy, CAD has not been well developed.
During this period, LeCun designed the first truly convolutional
neural network, and the emergence of support vector machine
(SVM), random forest, and LSTMalso laid the foundation for the
subsequent rise of AI. In the last decade, these technologies,
together with deep learning, have pushed thoracic cancer
diagnosis toward the direction of AI,[19–21] especially for the
3 important functions of disease diagnosis: detection, characteri-
zation, and monitoring. AI-based detection tools can be used to
reduce oversight, track disease progression, and improve
diagnostic accuracy; for example, they can be used to detect
and monitor the presence of small nodules in thoracic LDCT and
distinguish benign and malignant tumors in thoracic LDCT.[4,22–
24] This greatly alleviates the challenges of clinical work.

1.1. Background
1.1.1. Artificial intelligence. AI overlaps with computer science
and robotics, but it focuses more on empirically processing
machine behavior. It is similar to studying animal behavior by
combining evolutionary characteristics shaped by physiology,
biochemistry, ecology, and the environment.[25,26] AI has shown
significant impact and potential value in the following 4 areas
related to clinical work: managing population health; as a
frontline health worker virtual health assistant; as a patient
virtual health assistant; and as physician clinical decision support
tools.[4] AI plays important roles in the diagnosis and treatment of
tumors, including providing accurate descriptions of changes in
disease over time, such as changes in tumor size over time;
parallel tracking of multiple lesions; and detecting the association
of subtle phenotypic differences within tumors with geno-
types[27,28]; thus, AI has the potential to improve clinicians’
ability to predict outcomes comprehensively. In simple terms, AI
is a classifier that imports the feature semantics required for
classification into the classifier and then differentiates the input
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images through complex image feature analysis to achieve the
purpose of diagnosis.[29–31] In addition, AI can also aggregate
multiple streams of data into powerful integrated diagnostic
systems, such as combining radiographic images with genomic
data and pathological grades to thereby complement clinical
decision making. It is worth mentioning that deep learning, as a
subset of AI, has the ability of automatic learning by mining data
to find links that humans cannot detect.[4,21] However, there have
been no studies to evaluate which model is better at diagnosing
thoracic tumors than traditional machine learning.

1.1.2. Machine learning. Machine learning algorithms can be
divided into 3 types: supervised learning, unsupervised learning,
and reinforcement learning. Among them, the development of
supervised learning has led to the best results.[32,33] Supervised
learning obtains a model by training samples and then uses this
model for diagnosis. SVM, random forest, and decision tree are
the most widely used in the field of thoracic diseases.[34,35]

Between 1980 and 2010, machine learning has eclipsed neural
networks. Until recent years, there have been many studies using
this type of model. However, the development of unsupervised
learning in this field has been slow. Although smooth results
have been obtained by clustering algorithms (such as the EM
algorithm)[36] and data dimensionality reduction (such as Laplace
feature mapping),[37] no representative model has been used for
thoracic disease diagnosis.
SVM, a representative machine learning method first proposed

by Cortes and Vapnik in 1995, has shown many unique
advantages in solving the problems of small sample sizes and
nonlinearity as well as in high-dimensional pattern recognition
and can be generalized and applied to other machine learning
problems such as function fitting. SVM is a binary classification
model whose basic model is defined as the largest linear classifier
in the feature space, which can be transformed into the solution of
a convex quadratic programming problem. SVM is a milestone
in the diagnosis of thoracic cancers by AI. By implicitly
mapping input vectors to high-dimensional space, SVM can
handle nonlinear problems well and improve the efficiency of
diagnosis.[38,39]

1.1.3. Deep learning. The development of deep learning is
closely related to neural networks. Convolutional neural
networks (CNN) and LSTM have been proposed as early as
the 1980s.[21] Unfortunately, neural networks have not been used
successfully because of their long time calculation,[40] and they
are at a disadvantage compared with machine learning
algorithms such as SVM. However, with the increase in data
flow and the improvement of accuracy requirements, the ability
of machine learning technology to process raw data has begun to
show deficiencies. With the advent of high-efficiency GPUs,
ReLUs, dropout layer, cross-validation, and other devices and
technologies, neural networks have once again become remark-
able.[41–43] In 2006, the deep belief network proposed by Hinton
opened a new era of deep learning. He proposed to use a neural
network to reduce the dimensionality of data, which is called
sparse coding or automatic coding.[44]

At the same time, the CNN, a particular type of deep,
feedforward network, has had many practical successes, even
during the period when neural networks were out of favor.
However, it was not until 2012, when Alex Net won the
ImageNet classification contest, that CNN again attracted
attention. CNN is a multilayer structure that is composed of a
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convolutional layer, nonlinear processing unit, and subsampling
layer. The convolutional layer is the core of the CNN and is used
to extract the corresponding features of images. Its functions are
similar to those of filters (or similar to the retina of the eye). Then,
the result obtained by the convolution layer is activated by
nonlinear mapping (ReLU). The next pooling layer will compress
the input characteristic graph, reduce the spatial dimension of the
input data, and simplify the network computing complexity,
including maximum pooling and average pooling. To avoid
overfitting in this process, the dropout layer regularizes the
information, then reduces the dimensions of the output
characteristic graph, changes the 2D matrix to 1D, multiplies
the weight, and finally passes the output value to the classifier
(such as the softmax classifier).[45,46]

1.1.4. Radiomics. Radiomics information, which comes from
the high-throughput mining of large-scale image features from
medical images, enables data to be quantified and applied to the
process of AI systems, which significantly affects the accuracy
of diagnosis. Radiomics typically consists of 5 components:
data selection, medical imaging, feature extraction, exploratory
analysis, and modeling. First, we need to determine 3 points: the
imaging protocol, the volume of interest (VOI), and a prediction
target. To avoid unnecessary confounding variability, a standard
imaging protocol should be selected. Then, there is image
segmentation, where VOIs are obtained manually or (semi-)
automatically. This stage usually determines which voxels in the
image are analyzed, so the process is prone to introducing biases in
evaluatingderivedradiological features,whichmayalsobea factor in
the differences between different diagnostic models. Next comes the
core of radiomics, which is the high-throughput extraction of
quantitative image features to characterize VOIs. The feature
eigenvalues depend on factors that can include image preprocessing
(e.g., filtering or intensity) and reconstruction (e.g., iterative
reconstruction). In addition, it is also influenced by tag naming,
algorithms, and software implementation of the feature extraction
algorithm. Next, the features from the previous step are combined
with the prediction target to create a single dataset. Finally, the
previously generated single dataset is combinedwith the AImodel to
form the“semantic feature” set, and the images that are later used for
classificationare alsoquantifiedaccording to the above steps.[15,47,48]

1.2. Objective

However, the complicated AI structure and image processing
made the diagnosis result of AI-based system unstable. Therefore,
to establish a more comprehensive and extensive summary of the
AI diagnostic models for thoracic cancers, we will conduct a
systematic review and meta-analysis. Our main objective is to
assess the accuracy of the diagnosis of thoracic diseases, including
assessing potential biases and calculating combined estimates of
sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC). The second objective is to evaluate
factors related to diagnostic accuracy and different models
(machine learning vs deep learning), classifiers (including CNN,
SVM, random forests, LSTM, etc), and radiomics information
(image segmentation methods, feature extraction methods).

2. Methods

2.1. Search strategy

This review adopts recommendations based on the conduct and
reporting of systematic reviews andmeta-analyses outlined by the
3

Preferred Reporting Items for Systematic Reviews and Meta-
analyses statement. We will search the following databases for
relevant studies: PubMed/MEDLINE, Embase (via OVID), and
the Cochrane Library, for reports on the diagnostic accuracy of
AI in thoracic diseases published between 1946 and December
2019. There will be no language restrictions. We developed a
search strategy using a combination of keywords and medical
subject headings (MeSH)/EMTREE terms, and the following
expressions will be used:(Endoscope OR gastroscope OR “Spiral
Cone-Beam Computed Tomography” OR CT OR CAT) AND
(((nodule OR cancer OR tumor) AND (lung OR pulmonary OR
thoracic)) OR ((“squamous cell carcinoma” OR carcinoma
OR cancer OR neoplasm OR “adenosquamous carcinoma” OR
“basosquamous carcinoma” OR Barrett’s) AND (esophageal)
OR esophagus))) AND (Computer aided OR Machine learning
OR Deep learning OR Algorithms OR Artificial Intelligence).

2.2. Eligibility criteria and exclusion criteria
2.2.1. Eligibility criteria. All the articles will be assessed
independently by 2 researchers. The inclusion criteria are as
follows: assessment of the diagnostic accuracy of AI for
diagnosing thoracic cancer (including early lung cancer and
early esophageal cancer); medical imaging data including CT
images and white light endoscopic images; and inclusion of
sensitivity, specificity, or sufficient information to construct the
2�2 tables (outcome).

2.2.2. Exclusion criteria.Wewill exclude studies fromwhichwe
cannot obtain or calculate the data from the text, appendices, or
after contacting the main authors; moreover, duplicates or
subcohorts of already published cohorts, reviews, case reports,
conference abstracts, animal experiments, and meta-analyses will
be excluded from the study.

2.3. Study selection and data extraction

We will use EndNote software (Thomson Reuters, Toronto,
Ontario, Canada) to store and remove duplicate references. The
articles will be screened independently by the 2 authors (GJ,
GXT) based on the titles and abstracts, and those not meeting the
criteria will be eliminated. Disagreements will be solved by
discussion and submission to the third author (WHW) if
necessary. After this initial phase, the full texts of all remaining
articles will be independently reviewed by the 2 authors (GJ,
GXT) for inclusion or exclusion in the final study. Conflicts will
be resolved in the same way as when they were initially screened.
Two authors (YP, PW) will extract the study characteristics

from each included study, and the extraction of data from the
selected articles will be independently performed by 2 inves-
tigators. Disagreements will be resolved through discussion and
consensus or by consulting a third member (YY) of the review
team. The data to be collected will include the following: author,
year of publication, number needed to treat, race, model,
algorithm, image source, diagnostic gold standard, sensitivity
(SEN), specificity (SPE), true positive (TP) rate, false positive (FP)
rate, false negative (FN) rate, true negative (TN) rate, nodule
segmentation, feature extraction and selection, nodule classifica-
tion, and AI for diagnosing thoracic disease.

2.4. Quality evaluation

Two reviewers (HYZ, ZQW) will appraise all the included
studies by using a checklist based on the Quality Assessment of

http://www.md-journal.com
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Diagnostic Accuracy Studies 2 (QUADAS-2) guidelines. The
QUADAS-2 includes 4 parts regarding patient selection, index
test, reference standard, and flow and timing risk of bias. The risk
of bias is classified as “low,” “high,” or “unclear.”[49]

2.5. Data analysis

Wewill first extract the 2�2 contingency table (TP, FP, TN, FN).
Some primary studies do not directly provide all the data in a 2�
2 table. We will calculate the missing data based on the existing
data in the paper, such as SEN, SPE, and the number of cases,
through the calculator in Review Manager 5.3. For the meta-
analysis, the pooled SEN and SPE with 95% confidence intervals
for diagnosis by AI will be calculated. The descriptive forest plot
and summary receiver operating characteristic (SROC) curves
will be derived by Meta-disc 1.4. We will plot the 95% CI and
prediction regions around the averaged accuracy estimates in the
SROC space, and the AUC will be calculated. SROC curves are
defined by sensitivity (y-axis) and specificity (x-axis), and AUC is
the final comparison indicator. The criteria for AUC classification
are 0.90 to 1 (excellence), 0.80 to 0.90 (good), 0.70 to 0.80 (fair),
0.60 to 0.70 (poor), and 0.50 to 0.60 (failure).[50]
2.6. Assessment of heterogeneity

Initially, we will visually inspect the forest plots of each study’s
sensitivities and specificities as well as SROC curves related to the
individual study results to examine heterogeneity. Statistical
heterogeneity will be evaluated informally from the forest plots of
the study estimates and more formally using the I2 statistic (I2>
50%= significant heterogeneity). In addition, different diagnostic
thresholds of the included studies may lead to heterogeneity; we
will use the Spearman correlation coefficients to test whether
there is a threshold effect. When there is a threshold effect,
sensitivity and specificity will be negatively correlated, and the
results will present a “shoulder-arm” point distribution on the
SROC curve.
2.7. Publication policy

Publication bias will be explored with Begg and Egger funnel
plots.

3. Discussion

In recent years, with the emergence of deep learning technology,
many AI models have been used for the diagnosis of thoracic
diseases, but the accuracy of these models varies greatly.
Although there is evidence that AI can improve the accuracy
of thoracic cancer diagnosis, the evidence is limited, and there has
been no systematic evaluation. We will use appropriate methods
and quality assessment tools to systematically evaluate the
models used to diagnose thoracic diseases and provide evidence
for clinical practice. When establishing a diagnostic strategy that
can accurately reflect the current evidence, greater scientific rigor
is needed. We will also conduct subgroup analysis based on the
model used, the type of classifier, and radiomics information.
One major limitation is that the proportion of malignant

tumors in the original study sample is much higher than that in
the normal population, which may lead to overfitting and more
optimistic results. In addition, the original studies are mainly
retrospective, and the quality of the original studies will affect the
quality of the systematic evaluation.
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