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ABSTRACT The draft genome sequences of 21 Salmonella isolates obtained from
poultry production chains in Hat Yai City, Songkhla Province, Thailand, are reported
in this study. Our study revealed that there was Salmonella environmental contami-
nation along poultry production chains and cross-contamination among poultry
through inanimate surfaces in the environment.

In Thailand, Salmonella is one of the common causes of foodborne infections (1), and
poultry is the most consumed meat (2). Studies have shown that Salmonella contami-

nation of poultry meat can occur during processing along the production chain (3). To
understand the possible sources of Salmonella contamination, our study aimed to char-
acterize Salmonella isolates from poultry production chains in Thailand using whole-
genome sequencing analysis.

In 2016, 163 samples from Hat Yai City, Songkhla Province, Thailand, were collected—
environmental samples from broiler farms (n = 32), environmental samples from a broiler
slaughterhouse (n = 47), and environmental and raw chicken meat samples from wet mar-
ket retail stalls (n = 84). A total of 56 Salmonella isolates were recovered from the samples
using the ISO 6579:2007 protocol with slight modifications (4). Randomly selected
Salmonella isolates (one colony per sample) were stored in brain heart infusion broth with
15% glycerol until further usage. Then, 21 isolates (from farms [n = 5], a slaughterhouse [n
= 5], and retail stalls [n = 11]) were selected based on phenotypic resistance profiles and
cultured in universal preenrichment broth at 37°C for 24 h, followed by DNA extraction
using the DNeasy blood and tissue kit (Qiagen, Valencia, CA, USA). Library preparation was
performed using the NEBNext Ultra DNA kit (New England Biolabs [NEB], USA). Samples
were sequenced on a HiSeq 4000 sequencer (Illumina, San Diego, CA, USA) with 2� 151-
bp reads. All “pass filter” reads (as called using bcl2fastq version 2.20.0.422) were used in
subsequent analyses. Multilocus sequence type (MLST) and resistance gene predictions
were made using SRST2 version 0.2.0 (5) with MLST databases (6) from PubMLST (https://
pubmlst.org) and the ARGannot resistance gene database (7). De novo assemblies were
performed using Velvet version 1.2.10 with the VelvetOptimizer helper script version 2.2.4
(8) and a minimum contig cutoff of 500bp, scaffolded with OPERA-LG version 2.0.6 (9),
and finished with FinIS version 0.3 (10). The assembled genomes were annotated using
Prokka version 1.13.3 (11) and analyzed with the following tools: in silico serotyping using
SeqSero version 1.0 (12), identification of Salmonella pathogenicity islands (SPI) using
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SPIFinder version 1.0, and identification of plasmid replicons using PlasmidFinder version
2.1 (Centre for Genomic Epidemiology, Denmark) (13). Upon submission to GenBank,
assemblies were reannotated using the NCBI Prokaryotic Genome Annotation Pipeline
(14). Default parameters for software were used except where otherwise noted.

The draft genome sizes ranged from 4,661,649 to 5,100,460 bp with GC contents of
51.90 to 52.27% (Table 1). The number of contigs for each isolate ranged from 25 to
80. Sequence type 1541 (ST1541) (Salmonella enterica serovar Corvallis or Salmonella
enterica serovar Chailey) was the most commonly predicted serotype (38.1%, 8/21).
Out of 21 isolates, 16 (76.2%) were predicted to carry at least one resistance gene. Five
types of plasmid replicons were found in 28.6% (6/21) of isolates. All isolates (except iso-
late SGEHI2016-PSU-BS-095SL) contained at least 3 types of SPIs. Our study suggested
that Salmonella contamination had occurred in the environment along poultry produc-
tion chains and that there was cross-contamination among poultry through environmen-
tal surfaces. Furthermore, our study provided baseline information on the genomic diver-
sity of Salmonella isolates found in the poultry production chains in Thailand.

Data availability. The raw reads and assembled genomes were deposited in
GenBank under BioProject number PRJNA644105. The accession numbers for the indi-
vidual isolates are listed in Table 1.
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TABLE 1Whole-genome sequencing characterization of 21 Salmonella isolates recovered from samples in farms, a slaughterhouse, and retail
stalls in Hat Yai, Songkhla Province, Thailand

Sample
IDa Source

Sample
description Predicted serotypeb MLSTc Resistance gene(s)d

No. of
resistance
genes

Plasmid
replicon(s)e

Salmonella pathogenicity
islandsf

001SL Farm Cooling pad water Weltevreden 365 0 SPI-2, SPI-3, SPI-4, SPI-8, C63PI
010SL Farm Cooling pad water Weltevreden 365 aac3-IIa, aadA, inuF,

blaTEM-1D

4 SPI-2, SPI-3, SPI-4, SPI-8, C63PI

020SL Farm Fecal Kentucky 314 0 SPI-2, SPI-3, SPI-4, SPI-8, C63PI
030SL Farm Feed Potential monophasic

variant of
Typhimurium

34 strA, strB, sulII,
blaTEM-1D, tetB

5 ColpVC SPI-2, SPI-3, C63PI

037SL Farm Feed Kentucky 314 0 SPI-2, SPI-3, SPI-4, SPI-8, C63PI
038SL Retail stall Cutting board swab Corvallis or Chailey 1541 strA, strB, sulII, tetA 4 SPI-1, SPI-2, SPI-3, SPI-4, SPI-8,

C63PI
044SL Retail stall Cutting board swab Corvallis or Chailey 1541 qnr-S, strA, strB, sulII,

tetA
5 SPI-2, SPI-3, SPI-4, SPI-8, C63PI

052SL Retail stall Work table swab Corvallis or Chailey 1541 qnr-S 1 SPI-1, SPI-2, SPI-3, SPI-4, SPI-8,
C63PI

058SL Retail stall Work table swab Kentucky 198 aacAad, sulI, blaTEM-1D 3 ColpVC, IncQ1 SPI-1, SPI-2, SPI-3, SPI-4, C63PI
067SL Retail stall Work table swab Altona 1549 0 IncFII(S) SPI-2, SPI-3, SPI-4, SPI-5,

SPI-13, SPI-14, C63PI
081SL Retail stall Cutting board swab Corvallis or Chailey 1541 qnr-S, strA, strB, sulII 4 IncFII(S),

Inc1-I(Gamma)
SPI-2, SPI-3, SPI-4, SPI-5,

SPI-13, SPI-14, C63PI
082SL Retail stall Cutting board swab Corvallis or Chailey 1541 qnr-S, strA, strB, sulII 4 SPI-1, SPI-3, SPI-4, C63PI
089SL Retail stall Carcass washing

water
Corvallis or Chailey 1541 qnr-S, strA, strB, sulII 4 SPI-1, SPI-2, SPI-3, SPI-4, SPI-5,

SPI-13, SPI-14, C63PI
095SL Retail stall Knife swab Corvallis or Chailey 1541 qnr-S 1
099SL Retail stall Work table swab Kentucky 198 aacAad, sulI, blaTEM-1D 3 SPI-1, SPI-3, SPI-4, C63PI
125SL Retail stall Chicken meat Agona 13 0 SPI-1, SPI-3, SPI-8, C63PI
150SL Slaughterhouse Bucket swab Kentucky 198 aacAad, sulI,

blaTEM-1D, tetA
4 SPI-2, SPI-3, SPI-4, C63PI

154SL Slaughterhouse Feather separation
swab

Singapore 462 blaCMY, erm42, strA,
strB, sulII, tetA

6 SPI-1, SPI-3, SPI-4, SPI-5,
SPI-13, SPI-14, C63PI

159SL Slaughterhouse Chicken pen swab Kentucky 198 aacAad, sulI,
blaTEM-1D, tetA

4 SPI-1, SPI-2, SPI-3, SPI-4, C63PI

170SL Slaughterhouse Conveyor swab Singapore 462 blaCMY, erm42, strA,
strB, sulII, tetA

6 IncC SPI-1, SPI-3, SPI-4, SPI-5,
SPI-13, SPI-14, C63PI

179SL Slaughterhouse Wastewater Corvallis or Chailey 1541 qnr-S 1 IncQ1 SPI-1, SPI-2, SPI-3, SPI-4, SPI-8,
C63PI

aA prefix of “SGEHI2016-PSU-BS-” applies for all isolate IDs.
bUsing SeqSero version 1.0.
cUsing MLST databases from https://pubmlst.org/.
dUsing the ARGannot resistance gene database supplied with SRST2.
eUsing PlasmidFinder version 2.1 with a minimum identity of 95% and minimum coverage of 60%.
fUsing SPIFinder version 1.0 with a threshold ID of 95% and minimum length of 60%.
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DNA extraction, library preparation, and sequencing were performed by the
Genome Institute of Singapore, Agency for Science, Technology and Research,
Singapore.
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Total no. of
sequence
reads

N50

length
(bp)

No. of
contigs

GC content
(%)

Total length
(bp)

Total sequence
data (bp)

Genomic
coverage (×) SRA no.

GenBank
accession no.

3,416,142 126,091 76 52.10 5,100,460 1,031,674,884 202 SRR12151691 JADDII000000000.1
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