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The success of pregnancy relies on the fine adjustment of the maternal immune system

to tolerate the allogeneic fetus. Trophoblasts carrying paternal antigens are the only

fetal-derived cells that come into direct contact with the maternal immune cells at

the maternal–fetal interface. The crosstalk between trophoblasts and decidual immune

cells (DICs) via cell–cell direct interaction and soluble factors such as chemokines and

cytokines is a core event contributing to the unique immunotolerant microenvironment.

Abnormal trophoblasts–DICs crosstalk can lead to dysregulated immune situations,

which is well known to be a potential cause of a series of pregnancy complications

including recurrent spontaneous abortion (RSA), which is the most common one.

Immunotherapy has been applied to RSA. However, its development has been far

less rapid or mature than that of cancer immunotherapy. Elucidating the mechanism

of maternal–fetal immune tolerance, the theoretical basis for RSA immunotherapy, not

only helps to understand the establishment and maintenance of normal pregnancy but

also provides new therapeutic strategies and promotes the progress of immunotherapy

against pregnancy-related diseases caused by disrupted immunotolerance. In this

review, we focus on recent progress in the maternal–fetal immune tolerance mediated

by trophoblasts–DICs crosstalk and clinical application of immunotherapy in RSA.

Advancement in this area will further accelerate the basic research and clinical

transformation of reproductive immunity and tumor immunity.

Keywords: trophoblasts, decidual immune cells, maternal-fetal immunotolerance, recurrent spontaneous

abortion, immunotherapy

INTRODUCTION

A new life begins when an egg and a sperm meet at the ampulla of the mother’s fallopian
tube and combine to form a fertilized egg, which further develops into a blastocyst. A series of
processes including implantation, decidualization, and trophoblast differentiation and invasion
ultimately lead to successful placentation and embryo development (1, 2). Immunologically
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speaking, either the embryo or the trophoblast carrying paternal
antigens is similar to a semi-allogeneic transplant for the mother.
However, instead of being attacked by the maternal immune
system, the embryo or fetus grows naturally and safely in the
womb until delivery. Hence, successful pregnancy is considered
to be an immunological paradox that challenges the basic
principles of transplantation immunology.

For decades, many researchers have devoted themselves
to exploring the immunological truth behind pregnancy. The
first attempt to explain the immune refutation was made by
famous transplant scientist Peter Medawar in the 1950s (3).
He proposed three possible theories, namely, the presence of
the placental barrier, the immaturity of fetal antigens, and the
inertness of the maternal immune system, which had greatly
promoted the development of reproductive immunology at that
time and still have important guiding significance nowadays.
After years of research, it has been discovered that the complex
and delicate dialogs between trophoblasts and decidual immune
cells (DICs) are the key link in driving the establishment and
maintenance of maternal–fetal immunotolerance. Trophoblasts
are the only fetal-derived cells that come into close contact with
the mother’s immune system. Moderate proliferation, migration
and invasion of trophoblasts in early pregnancy are crucial
to placenta formation and fetal growth, and are regulated by
multiple factors (4, 5). Dysfunction of trophoblast cells may
lead to a series of pregnancy-related complications including
RSA and preeclampsia (PE) (6, 7). On the other hand, DICs
refer to a large number of immune cells accumulating in the
decidua during early pregnancy which account for approximately
40–50% of decidual cells (8, 9). Among them, decidual NK
cells, decidual macrophages and decidual T cells occupy the
vast majority, and the rest include granulocytes, dendritic cells,
mast cells, other innate lymphoid cells (ILCs), decidual B
cells and so on (8, 10). DICs have specific phenotypes and
are involved in the regulation of crucial processes including
local inflammation and immune responses, trophoblast invasion
and vascular remodeling (8). Actually, the phenotypes and
functions of DICs can be finely adjusted by trophoblasts, the
active builder of immune tolerance in pregnancy. Aberrant
interaction between trophoblasts and DICs will cause immune
tolerance disorder, which is closely related to a variety of
adverse pregnancy outcomes such as recurrent spontaneous
abortion (RSA), intrauterine growth retardation (IUGR), and PE
(11). Therefore, this review will elaborate on the complicated
and delicate interaction between trophoblasts and DICs in the
formation of maternal–fetal immunotolerance, in the hope of
providing new ideas for the diagnosis and treatment of clinical
pregnancy-related diseases.

THE DIFFERENTIATION AND
CHARACTERISTICS OF TROPHOBLASTS

As the only component containing paternal antigens at the
maternal–fetal interface, trophoblasts serve a core role in
mediating maternal tolerance toward the embryo. It is necessary
to have knowledge of the differentiation and characteristics

of trophoblasts to fully understand the cross-communication
initiated by trophoblasts in maternal immunotolerance. In the
pre-implantation stage, the blastocyst differentiates into inner
cell mass (ICM) and trophectoderm (TE). After implantation,
ICM cells further differentiate into embryonic lineages, giving
rise to all kinds of tissues in the developing fetus, whereas TE
cells subsequently become the precursor lineage, forming the
embryonic part of the placenta (Figure 1) (12). The placenta,
a unique and transient organ consisting of both maternal
and fetal tissues, not only is in charge of nutrition exchange
between the mother and the fetus but also participates in
the immune adaptation of the maternal immune system (13,
14). Malfunction of placenta is identified as a potential cause
of various pregnancy complications including RSA, PE, and
preterm (15, 16). The villus, the functional unit of placenta, is
composed of epithelial trophoblasts differentiated from TE and
a stromal cell core containing fetal endothelial cells, Hofbauer
cells, and mesenchymal stromal cells, among others (17).
Cytotrophoblasts (CTBs), one type of epithelial trophoblasts,
encircle the stromal cell core and express receptors involved
in cellular proliferation and differentiation such as epidermal
growth factor receptor(EGFR), neuropilin-2 (NRP2), and
hepatocyte growth factor receptor(HGFR) which are predicted
to interact with Hofbauer cells and placental fibroblast cells
(Figure 1, Table 1) (18). There are two distinct differentiation
pathways in CTBs, generating syncytiotrophoblasts (STBs)
and extravillous trophoblasts (EVTs), the other two types of
epithelial trophoblasts (Figure 1) (18). STBs, responsible for
producing placental hormones, scarcely express any major
histocompatibility complex (MHC, also known as human
leukocyte antigen [HLA]) class I or class II molecules, which
allows them to escape immune attack mediated by allogeneic
recognition from T cells (19). By contrast, EVTs, which are in
charge of invading the decidua and participating in spiral arteries
remodeling, express HLA-C, HLA-E, and HLA-G along with
increased expression of receptors involved in immune regulation
including atypical chemokine receptor 2 (ACKR2) and C-X-C
chemokine receptor type 6 (CXCR6) (Figure 1, Table 1) (18).

Recently, single-cell RNA sequencing performed on placental
cells has identified three subsets of CTBs. The proliferative
subpopulation was predicted to replenish the CTB pool. The
non-proliferative subset was divided into two other subgroups
on the basis of the expression of Syncytin-2, of which the
positive one was proved to be STB progenitors (Table 1)
(17). Not only that, EVTs from the first trimester were also
identified as three subsets, and EVT subsets expressed more
than 40 polypeptide hormone genes including CSH1, FSTL1,
PAPPA2, TAC3, and several PSG genes. This is contradictory
to previous cognition that other placental subsets hardly secret
hormones except STBs (Table 1) (17). New insights on the
phenotypes and functions of various types of placental cells
have greatly enriched and deepened our understanding of
the human placental lineage specification and deserve further
research in the future. For example, do these new hormone genes
expressed by EVT subsets also play a role in the induction of
immune tolerance? This is a new scientific question waiting to
be answered.
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FIGURE 1 | Differentiation and development of trophoblasts. The blastocyst developed from the fertilized egg further differentiates into inner cell mass (ICM) and

trophectoderm (TE). ICM develops into the fetus, while TE differentiates into cytotrophoblasts (CTBs or villous cytotrophoblasts, VCTs) which further differentiate into

syncytiotrophoblasts (STBs or SCTs) and extravillous trophoblasts (EVTs). The EVTs that invade the decidua can be divided into intravascular EVTs (enEVTs) and

interstitial EVTs (iEVTs) according to the specific location. EGFR, epidermal growth factor receptor; NRP2, neuropilin-2; HGFR, hepatocyte growth factor receptor;

ACKR2, atypical chemokine receptor 2; HLA, human leukocyte antigen; CXCR6, C-X-C chemokine receptor type 6.

TABLE 1 | New subsets of placental trophoblasts during early pregnancy

identified by single cell RNA seq.

CTB EVT

Subsets Proliferative

(Replenishment of

the CBT pool)

RRM2+ (cell cycle and

division)

The proximal end of cell

column

Non-proliferative RRM2low/−

The distal end of cell column

Receptors EGFR HLA-C

NRP2 HLA-E

HGFR HLA-G

ACKR2

CXCR6

Functions Proliferation Immunomodulation

Differentiation Invasion

There are three CTB subsets present in the first trimester placenta according to cell cycle

analysis: the proliferative subset and other two non- proliferative subsets (17). Based

on the expression level of RRM2 EVT can be divided into three subtypes: the positive

one located at the proximal end of cell column and the other two subtypes with little

or low expression of RRM2 which locates at the distal end of cell column (17). CTB,

cytotrophoblast; EVT, extravillous trophoblast; EGFR, epidermal growth factor receptor;

NRP2, neuropilin-2; HGFR, hepatocyte growth factor receptor; RRM2, ribonucleotide

reductase regulatory subunit M2; HLA, human leukocyte antigen; ACKR2, atypical

chemokine receptor 2; CXCR6, C-X-C chemokine receptor type 6.

THE FORMATION OF MATERNAL-FETAL
IMMUNOTOLERANCE

Trophoblasts communicate with decidual cells in specific
microenvironments, namely, the important maternal–fetal
interface which appears in early pregnancy when EVTs invade
the decidua and encounter various DICs as well as a large
number of decidual stromal cells (DSCs) (Figure 2) (20). The
maternal–fetal interface is the key site to establish a specific
immune microenvironment and maintain maternal–fetal

immune tolerance. Various types of DICs greatly influenced by
EVTs are characterized with specific phenotypes and functions.
Decidual natural killer (dNK) cells are the most abundant,
reaching more than 70% of decidual lymphocytes, followed by
decidual macrophages (dMΦ) with 10–20% and then decidual
T cells, which make up 10–20% of total DICs (Figure 2) (21).
EVTs actively engage in precise dialogs with DICs to tolerate
the allogeneic fetus (22). However, aberrant crosstalk between
EVTs and DICs leads to dysregulated immune responses and
imbalanced maternal–fetal immune tolerance, which can bring
about a series of pregnancy complications including RSA,
the most common event occurred in early pregnancy (9). In
the following sections, we will elaborate the characteristics of
immune cell subgroups and their intricate interaction with
trophoblasts to conduce pregnancy tolerance, depicting the
network of maternal–fetal immunity.

Decidual NK Cells
A Brief Description of the Phenotype and

Characteristics of dNK Cells
NK cells, as important members of the innate immune system,
are involved in antiviral and anti-tumor immunity. In general,
peripheral blood NK (pNK) cells account for about 10% of total
lymphocytes, and the phenotype of the vast majority (90–95%)
is CD3−CD56dimCD16+, representing stronger cytotoxicity,
whereas the remaining 10% is CD3−CD56brightCD16−, mainly
secreting various cytokines. This shows a distinct phenotype of
dNK cells characterized by CD3−CD56brightCD16−CD9+KIR+

from that of pNK cells, which also indicates that the local
microenvironment of the decidua is closely related to the
differentiation of dNK cells (23).

Interaction Between Trophoblasts and dNK Cells in

Maternal–Fetal Tolerance
Whether peripherally or locally, execution of cytotoxic and/or
cytokine secretion functions of NK cells is dependent on the
recognition of MHC ligands by their membrane surface receptor
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FIGURE 2 | A diagram of the maternal-fetal interface in the first trimester. The thick lines surrounding CTBs represent STBs. Area A indicates the floating villi and

interstitial spaces. Area B represents the villous column formed by trophoblasts. Area C represents the decidua layer. Area D indicates the myometrium. The important

maternal-fetal interface is composed of EVTs, DSCs, and decidual immune cells. CTB, cytotrophoblast; enEVT, endovascular EVT; iEVT, interstitial EVT; pNK,

peripheral natural killer cell; pT, peripheral T cell; Mo, monocyte; RBC, red blood cell; EC, endothelial cell; dMΦ, decidual macrophages; dNK, decidual natural killer

cell; dT, decidual T cel; DSC, decidual stromal cell.

repertoire (24). Human trophoblasts, as the only cell type
carrying paternal antigens at the mother–fetus interface, express
a unique repertoire of MHC ligands. The MHC ligands HLA-
C, HLA-E, and HLA-G expressed by EVTs are the targets of
dNK cells (Figure 3). The surface receptors of dNK cells can be
divided into activating receptors and inhibitory receptors. To be
exact, the activation or inhibition of dNK cells hinges on the
binding ability of the inhibitory receptors with corresponding
MHC ligands expressed by EVTs, indicating a crucial role of EVTs
on regulation of dNK cell functions (22). In humans, HLA-C
can be classified into two allotypes due to its dimorphism, HLA-
C1 and HLA-C2 (25). The corresponding receptors expressed on
dNK cells are killer cell immunoglobulin receptors (KIRs), which
include inhibitory receptors (KIR2DL2 or KIR2DL3 specific for
HLA-C1 and KIR2DL1 specific for HLA-C2) and activating
receptors (KIR2DS1 specific for HLA-C2) (Figure 3) (26). On
the basis of the presence of activating receptors, hundreds of
KIR genotypes can be divided into two haplotypes, A (inhibitory
receptors only) and B (activating and inhibitory receptors)
(26). Although the combination of KIR inhibitory receptors
with HLA-C is indispensable for dNK cells to recognize and
tolerate fetal antigens, the lack of appropriate activation of
dNK cell function mediated by KIR activating receptors may
lead to adverse pregnancy outcomes such as IUGR, PE, and
RSA (27–29).

In addition to the allogeneic recognition of HLA-C with
KIRs, the interaction between HLA-E and CD94/NKG2

receptors on dNK cells is also one of the basic mechanisms
regulating its activity (Figure 3). Here is a brief introduction to
the CD94/NKG2 receptors library. Genes including CD94
(KLRD1), NKG2D (KLRK1), NKG2F (KLRC4), NKG2E
(KLRC3, encoding NKG2E and NKG2H), NKG2C (KLRC2),
and NKG2A (KLRC1, encoding NKG2A and NKG2B) are
grouped into a cluster (30). Except NKG2D and NKG2F,
both of which are activating receptors, the CD94 molecule
generally forms a heterodimer transmitting inhibitory signals
with NKG2A/NKG2B and a heterodimer having activating
functionality with NKG2C/NKG2E/NKG2H (30). Engagement
of CD94/NKG2A with HLA-E expressed by EVTs (Figure 3)
inducing inhibitory signals is an essential mechanism by
which dNK cells maintain tolerance to the semi-allogeneic
fetus (31).

HLA-G expressed by EVTs regulates the activity of dNK
cells in several ways. On the one hand, HLA-G can directly
bind inhibitory receptors KIR2DL4 and Immunoglobulin-like
transcript 2 (ILT2, also known as leukocyte immunoglobulin-
like receptor subfamily B member 1 [LILRB1]) on dNK cells
(Figure 3) (32, 33) or indirectly enhance the affinity between
inhibitory receptor CD94/NKGA and HLA-C (34). On the other
hand, HLA-G-induced immunotolerance can be achieved by
a special biological process, termed trogocytosis, which means
transfer of membrane proteins between cells. Successful HLA-
G trogocytosis endows the recipient cells with a transient
immunosuppressive phenotype (35). HLA-G can be captured
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FIGURE 3 | The interaction between HLA ligands on EVTs and inhibitory

receptors on dNK cells. The pattern diagram shows the expression profile of

HLA antigens on EVTs and the corresponding inhibitory receptors on dNK

cells. All inhibitory receptors contain at least one ITIM motif in their intracellular

regions. EVT, extravillous trophoblasts; HLA, human leukocyte antigen; dNK,

decidual natural killer cell; KIR, killer cell immunoglobulin receptor; LILRB1,

leukocyte immunoglobulin-like receptor subfamily B member 1; ILT2,

immunoglobulin-like transcript 2.

via trogocytosis and internalized via endocytosis by dNK cells
during interaction of HLA-G+ EVTs with dNK cells. Degradation
of internalized HLA-G occurs after cytokine activation and
is accompanied with restoration of cytotoxicity, suggesting
trogocytosis of HLA-G is closely related to the tolerant phenotype
of dNK cells (36).

In addition to specific HLA molecules, trophoblasts can help
to maintain the unique phenotype and restrained activity of dNK
cells in other ways. Our team previously found that trophoblasts-
derived galectin-9 interacting with T cell immunoglobulin mucin
receptor 3 (Tim-3) on pNK cells promoted a shift toward the
dNK cell-like phenotype. Moreover, trophoblasts limited excess
activation of dNK cells evoked by lipopolysaccharide (LPS)
stimulation in a galectin-9/Tim-3 dependent manner (37). All
the results suggest that the checkpoint Tim-3-mediated signaling
plays a role in the trophoblasts–dNK cells communication. Other
researchers implied that the autophagy level of trophoblasts is
bound up with the cytotoxicity of dNK cells. Tan et al. showed
that trophoblasts with upregulated autophagy levels induced
by rapamycin greatly inhibited the expression of CD16 and
activating receptors such as NKG2D, NKp30, and NKp46 on
dNK cells via IGF2 signaling (38). Besides, indirect regulation
of dNK cells by trophoblasts was also proved. Our group
demonstrated that C-X-C motif chemokine ligand 16 (CXCL16)
secreted by trophoblasts induced M2 macrophage polarization

and the instructed M2 facilitated the inactivation of NK cells via
the decreased expression of interleukin (IL)-15 (39).

Recently, an interesting result of the transcriptome analysis
of single cells from first-trimester pregnancy has attracted most
attention. Analysis revealed that there were threemain subgroups
of dNK cells: dNK1, dNK2, and dNK3 cells. The same subgroup
classification was also characterized in another study using mass
cytometry (40). Compared with dNK2 and dNK3 cells, dNK1
cells expressed higher levels of KIRs and LILRB1, which are
inhibitory receptors for HLA-C and HLA-G, respectively, as
mentioned above, and produced more perforin and granzyme B
(18). The specific inhibitory receptor CD94/NKG2A for HLA-E
was expressed by both dNK1 and dNK2 cells (18). This finding
suggests that dNK1, rather than dNK2 or dNK3, may be the main
subgroup that recognizes and interacts with EVTs.

Whether it is the novel subpopulations of placental cells
mentioned above or the breakthrough new classification of
decidual NK cells summarized here, researchers benefited
from single-cell sequencing, one of the most popular research
techniques, have been able to discover something new from
what they already know. However, it is worth noting that
although single-cell sequencing can provide rich biological
information for comprehensive and in-depth researches, the
existence and difference of mRNA levels do not necessarily
mean the same changes in protein levels. In short, the results
of single-cell sequencing are not guaranteed to be completely
reliable, but they can indeed provide hints or guidance for future
research directions.

In summary, as the most abundant immune cells in the
decidua during early pregnancy, the specific phenotype and
function of NK cells require the fine adjustment of the
local microenvironment of the decidua, including trophoblasts.
However, it should be reminded that there is no guarantee that
decidual NK cells will always play a friendly role in pregnancy.
When the microenvironment is abnormal, such as in the case of
inflammation, NK cells may become adversely activated, which
not only fails to be the guardian of the fetus, but becomes the foe
to pregnancy (41–43).

Decidual Macrophages
Dynamic M1/M2 Shift of Decidual Macrophages
Macrophages, the pivotal regulators and effectors of
inflammation and innate immune responses (44), are the
immune cells with the highest plasticity in the hematopoietic
system. They are distributed in all tissues and play important
roles in almost all kinds of biological processes of the body,
both physiologically and pathologically (45). Tissue-resident
macrophages derive from a wide range of sources, including
(1) bone marrow-derived monocytes, (2) embryonic progenitor
located in the yolk sac or fetal liver, and (3) self-renewal (46). In
response to specific microenvironmental stimuli, macrophages
undergo specific functional polarization, resulting in classically
activated M1 macrophages and alternatively activated M2
macrophages (47). M1 macrophages characterized by CD80
and CD86 are supposed to participate in antigen presentation
and secretion of proinflammatory cytokines, whereas M2
macrophages with surface markers CD206 and CD163 take
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charge of tissue remodeling and immune tolerance mediated
by Th2 activation (48). In vitro, monocytes are induced to
polarize toward the M1 phenotype with LPS and IFN-γ and
toward the M2 phenotype with IL-4 and IL-13 (45). Disturbed
M1/M2 macrophages balance at the maternal-fetal interface
was proved to participate in the adverse pregnancy outcome
(49, 50). Excessive activation of decidual macrophages displaying
higher expression of pro-inflammatory cytokines and lower
anti-inflammatory cytokines was detected in patients with
recurrent miscarriage (49, 51, 52).

At different stages of pregnancy, the maternal immune system
presents different inflammatory states. In the beginning, a
moderate inflammatory environment is conducive to embryo
implantation. Then, the local decidua needs to establish an
anti-inflammatory and immune-tolerant microenvironment to
ensure the survival and growth of the embryo. At the time of
delivery, the microenvironment of the decidua shifts toward
the proinflammatory direction again (53). The phenotype and
function of macrophages at the maternal–fetal interface change
accordingly. Before implantation, dM8 polarize toward the
proinflammatoryM1 phenotype.When EVTs begin to invade the
decidua after implantation, a mixedM1/M2 profile is present and
gradually transforms into a tolerant M2 phenotype until delivery
(21). Indeed, single-cell sequencing confirmed M1 and M2
macrophages coexisting at thematernal–fetal interface during the
first trimester (18). Notably, it is previously agreed that decidual
M2 macrophages highly express IL-10, an immune regulatory
cytokine that plays a crucial role in immunotolerance, but the
result of single-cell RNA sequencing revealed a higher expression
level of IL-10 in decidual M1 macrophages than that in decidual
M2 macrophages (18). Because IL-10 itself is one of the stimuli
inducing M2 polarization, there is a possibility, which remains to
be confirmed, that decidual M1 macrophages promote their own
transformation to the tolerant M2 phenotype via the secretion
of IL-10. What is clear, however, is that the predominance of
decidual M2 macrophages contributes to the maintenance of an
immunotolerant environment.

The Conversation Between Trophoblasts-dM8 in

Promoting M2 Polarization Shift
Numerous studies have shown that trophoblasts zealously
promote the predominant M2 polarization of dMΦ in multiple
ways to maintain an anti-inflammatory and immune-tolerant
environment (Figure 4). Interesting findings reported by
Abumaree et al. (54) that the phagocytosis of trophoblast debris
by macrophages led to increased expression of programmed
cell death 1 ligand 1 (PD-L1) and IL-10, as well as decreased
expression of costimulatory molecules (CD80, CD86, CD40,
and B7H3) and proinflammatory cytokines including IL-
1β, IL12p70, and IL-8. Our team has demonstrated that
the chemokine CXCL16 secreted by trophoblasts recruited
peripheral monocytes to the decidua by interacting with
the receptor CXCR6 (55) and promoted the polarization of
macrophages into the M2 phenotype which exhibit decreased
IL-15 production, so as to facilitate the inactivation of NK cells
(39). We also found that the receptor activator for nuclear
factor-κ B ligand (RANKL), expressed by DSCs and in particular

trophoblasts, interacted with RANK on dM8 and activated
the downstream AKT/signal transducer and activator of
transcription (STAT)-6 signaling, inducing M2 polarization,
which further induced CD4+ T cells to present a Th2 bias (56).
Placenta-derived soluble factors macrophage colony stimulating
factor (M-CSF, also known as CSF-1) and, in particular, IL-10,
both of which were primarily produced by trophoblasts, were
capable of inducing homeostatic M2 macrophages characterized
by the decidual-like CD14+CD163+CD206+CD209+ phenotype
and production of IL-10 and CCL18 (57). Higher level of IL-
10 is produced by placental villous trophoblasts during first
and second trimesters. And it has been demonstrated that in
both human and mouse, IL-10 exerts anti-inflammatory and
immunosuppressive effect on multiple decidual immune cells
including macrophages and mediates the immune tolerance in
pregnancy (58). Observations in IL-10−/− mouse suggest that
IL-10 deficiency is strongly associated with adverse pregnancy
outcomes including RSA, PE, and preterm delivery (42, 59–
61). Besides, IL-34, a newly discovered cytokine sharing the
same receptor as M-CSF, was produced by trophoblasts and
DSCs and could polarize macrophages into a decidual-like
phenotype in vitro (62). Recently, Ding et al. (63) found that
trophoblasts skewed macrophages toward M2 polarization via
secreting IL-6 that activated signal transducer and activator
of transcription (STAT)-3 signal in a co-culture system. In
addition to chemokines and cytokines, trophoblasts could also
secrete hyaluronic acid, the most abundant component of the
extracellular matrix, which interacted with CD44 and activated
the downstream PI3K/Akt-STAT-3/STAT-6 signal pathway to
promote M2 polarization (Figure 4) (64).

The interaction of checkpoint PD-1 and its ligand PD-L1
has also been reported to involve in decidual M2 polarization
(Figure 4). Zhang et al. (65) showed that trophoblasts expressed
PD-L1 and activated PD-1 on dM8, conducing to the M2
phenotype with immunomodulatory characteristics. Recently,
soluble PD-L1 (sPD-L1) was found to be elevated throughout
gestation and predicted to suppress maternal immune responses
(66, 67). A research found that sPD-L1 produced by trophoblasts
could induce unique CD14+CD206+CD86− macrophages,
which expressed IFN-β in response to TLR4/LPS activation.
IFN-β produced by the induced macrophages in turn promoted
the secretion of sPD-L1 by trophoblasts (68). Similar to sPD-
L1, trophoblast-produced soluble HLA-G5, translated from one
of seven alternatively spliced transcripts of HLA-G, drove the
differentiation of macrophages toward an immunoregulatory
phenotype accompanied by increased expression of indoleamine
2,3-dioxygenase (IDO) 1 and IL-6, both of which are closely
related with the inhibition of T cell function (69).

Decidual T Cells
As the main adaptive immune cells at the maternal–fetal
interface, decidual T cells have always been one of the hotspots in
the study of reproductive immunity. The number and functions
of decidual T cells are precisely regulated in both human and
mice pregnancy, and their abnormalities or dysfunction may
lead to many pregnancy diseases such as miscarriage and PE
(70–72). Decidual T cells mainly include two cell subgroups:
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FIGURE 4 | Mechanisms of the M2 polarization of decidual macrophages by trophoblasts. Tros express chemokine CXCL16, extracellular matrix HA, cytokines

(RANKL, IL-6, IL-10, M-CSF, and IL-34), and checkpoint ligands PD-L1 and sPD-L1, which act on macrophages to promote them to polarize toward M2 phenotype

via different signal pathways. Tros, trohoblasts; CXCL16, C-X-C motif chemokine ligand 16; RANKL, receptor activator for nuclear factor-κ B ligand; HA, hyaluronic

acid; IL, interleukin; M-CSF, macrophages colony stimulating factor; sPD-L1, soluble programmed cell death 1 ligand 1; sHLA-G, soluble human leukocyte antigen G;

CXCR6, C-X-C chemokine receptor type 6; RANK, receptor activator for nuclear factor-κ B; STAT, signal transducer and activator of transcription.

CD4+ T cells, accounting for 30–45%, and CD8+ T cells,
making up 45–75%. According to cytokine production and
different transcription factor requirements, CD4+ T cells are
further divided into Th1, Th2, Th17, and regulatory T (Treg)
cells, whose proportions of total decidual CD4+ T cells are
5–30, 5, 2, and 5%, respectively (21). However, some studies
have shown that the heterogeneous subpopulations of CD4+

decidual T cells mainly include Th1, Th17 and Treg subsets,
since the mRNA levels of Th2-type cytokines (IL4, IL5, and
IL13) and GATA3 at rest as well as the secretion level of
IL4 after stimulation are extremely low in CD4+ decidual T
cells (73).

Crosstalk Between Trophoblasts and Decidual

Effector T Cells Facilitates Maternal Tolerance
Th1 cells, whose essential transcription factor is T-bet, are
differentiated from naïve CD4+T cells in response to IL-
12 and produce Th1-type cytokines including IL-2, IFN-γ,
and TNF-α, which are associated with cellular immunity and
immune rejection (74, 75). In contrast, Th2 cells characterized
by transcription factor GATA-3 are induced by IL-4 and
responsible for secreting Th2-type cytokines such as IL-4, IL-
5, IL-6, IL-10, and IL-13 (74, 76). Th17 cells, whose specific
transcription factor is RORγt, are another effector T subset in

response to IL-6 and transforming growth factor-β (TGF-β),
secreting proinflammatory cytokines such as IL-17A and IL-22
(74, 76).

For the three major effector subgroups of CD4+ T cells at
the maternal–fetal interface, the attitude of trophoblasts is to
shift Th1/Th2 balance toward Th2 bias and suppress Th17
activation, which is in line with the anti-inflammatory and
immunotolerant microenvironment required by an allogeneic
fetus (77). In fact, trophoblast cells protect themselves from
effector T cells attack through a variety of mechanisms. A
study published in Science revealed that IDO expressed by
trophoblasts as well as macrophages inhibited activity of T cells
to prevent allogeneic rejection by catabolizing tryptophan (78).
Mechanistically, tryptophan deficiency caused cell cycle arrest
and apoptosis of activated T cells (79). In addition, our team has
proved that the thymic stromal lymphopoietins (TSLPs) secreted
by trophoblasts activated CD1c+ dendritic cells by binding to
the TSLP receptor so as to prime CD4+ decidual T cells for
Th2 cell differentiation, reflecting the indirect promotion of
trophoblasts to Th2 bias (Figure 5) (80). Interestingly, it was
found in mice experiments that trophoblasts-derived TSLP
could activate placental DC cells through TSLP-TSLP receptor
interactions, which in turn promoted the expansion of IL-10+NK
cell (81).

Frontiers in Immunology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 642392

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Maternal-Fetal Immunotolerance Mediated by Trophoblasts

FIGURE 5 | Effects of trophoblasts on decidual T lymphocytes to form the

immunotolerance. Tros promote the apoptosis of activated T cells through IDO

and inhibit the cytotoxicity of CD8+ T cells via HLA-C and PD-L1. Th2 bias

and Treg expansion induced by trophoblasts via multiple mechanisms are

summarized in this diagram. Tros, trohoblasts; IDO, indoleamine

2,3-dioxyenase; TSLP, thymic stromal lymphopoietins; TGF-β, transforming

growth factor-β; IL, interleukin; TRAIL, TNF-related apoptosis-inducing ligand;

HLA, human leukocyte antigen; PD-L1, programmed cell death 1 ligand 1.

Crosstalk Between Trophoblasts and the

Immune-Suppressive Treg Cells
As a unique subset of T cells with immunomodulatory and
immunosuppressive properties, Treg cells characterized by
CD4+CD25+FOXP3+ regulate all of effector T subsets and are
the key hub for the maintenance of T immune homeostasis. The
immunosuppressive function of Treg cells is achieved through
cell-to-cell contact-dependent and -independent pathways. The
key to the former pathway lies in the constitutive expression
of immune checkpoint molecule CTLA-4 on Treg cells, which
competitively binds to CD80 and CD86 on antigen-presenting
cells (APCs) with a higher affinity than CD28 expressed by
effector T cells, blocking the indispensable second signal for the
activation of T cells (82, 83). IL-2 signals are necessary for the
activation of T cells including Treg cells (84). The high affinity
IL-2Ra (CD25) on Treg cells not only promotes its own maturity
and expansion by receiving IL2 signals produced by effector T
cells but also promotes the apoptosis of effector T cells via the
consumption of IL-2 (85, 86). While the cell-to-cell contact-
independent pathway refers to the secretion of anti-inflammatory
and immunosuppressive cytokines such as TGF-β, IL-10, and IL-
35 (87, 88), all of which are conversely key regulators of Treg cell
expansion and suppressive activity (89–91).

Treg cells can be divided into thymic-derived Treg (tTreg)
cells and peripheral Treg (pTreg) cells according to their
differentiation andmaturation locations. The key to the former is

the interactions with self-peptide/MHC class II complexes along
with IL2 receptor signaling, while the latter develops from naïve
T cell precursors after exposure to antigenic stimulation (92).
Besides, a Foxp3 enhancer, conserved noncoding sequence 1
(CNS1), is crucial for pTreg cell differentiation but dispensable
for tTreg cell generation (93). It was suggested that Treg cells
in decidua were mainly composed of pTreg cells. Deletion
of pTreg due to CNS1 knockout showed increased fetal
absorption accompanied by increased immune cell infiltration
and defective spiral artery remodeling (93, 94). However, a
recent study revealed that blunted expansion of tTreg mediated
by RANK deficiency in thymic epithelial cells contributed
to reduced accumulation of tTreg cells in the placenta and
increased fetal loss (95). Increasing evidence has shown
that the differentiation and expansion of Treg cells can be
commendably adjusted by trophoblasts in multiple ways during
pregnancy. First of all, trophoblasts could induce the expansion
of CD25highCD127lowFoxp3+ Treg cells accompanied by an
increased expression of IL-10. This induction was achieved
through the cooperation of several placenta-derived soluble
factors including transforming growth factor-β (TGF-β), IL-
10, and the apoptosis-inducing factor TNF-related apoptosis-
inducing ligand (TRAIL) (57). Indeed, it was demonstrated
that trophoblasts constitutively expressed a high level of
TGF-β, which promoted the recruitment and differentiation
of Treg cells (96). Similar result was obtained in another
experiment that HLA-G+ EVTs co-cultured with matched CD4+

T cells led to the augment of CD4+CD25HIFOXP3+CD45RA+

resting Treg cells (97). Recently, further research has shown
that endovascular extravillous trophoblasts (enEVTs), but not
interstitial extravillous trophoblasts (iEVTs), were capable of
promoting the differentiation of naïve CD4+ T cells into
immunosuppressive Treg cells in a TGF-β1-dependent manner,
establishing immune tolerance along the placental–maternal
circulation (98). As mentioned earlier, IL-35 is also an important
regulator of Treg cell function and differentiation. Studies have
found that IL-35 secreted by trophoblast cells suppressed T cell
proliferation and induced the conversion of naïve conventional
T (Tconv) cells into IL-35-producing induced regulatory T
(iTR35) cells through the downstream phosphorylation of STAT1
and STAT3 (99). In addition, trophoblasts exerted an indirect
induction effect on Treg cell differentiation via first priming
antigen presenting cells (APC) decidual dendritic cells (DCs)
by the secreted TSLPs (Figure 5) (100). There is a view that a
shift from Th17/Treg cell balance toward Treg cell dominance
at the maternal–fetal interface is essential for maintaining the
immunotolerant microenvironment (75). It was found that
the abnormally upregulated CD81 of trophoblasts promoted
the differentiation of T cells into Th17 and reduced the
differentiation into Treg cells through the paracrine effect of IL-6,
which interfered with the immune balance of the maternal–fetal
interface and was involved in PE (101).

Crosstalk Between Trophoblasts and the Inertial

CD8+ Decidual T Cell
CD8+ decidual T cells are the main force at the maternal–
fetal interface to balance the immunotolerance and immune
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defense (102). Unlike the fact that nearly half of CD8+ T
cells in peripheral blood are unprimed naïve cells, it is found
that CD8+ decidual T cells mainly consist of differentiated
CD45RA−CCR7− effector-memory T cells (103). They express
less level of perforin and granzyme B than do peripheral CD8+

effector-memory T cells (104, 105). The gene-expression analysis
indicated that CD8+ effector-memory T cells were characterized
by a mixed signature of T cell dysfunction, activation, effector
function (106). Upon in vitro stimulation, CD8+ T cells were
able to elicit a series of immune reactions including proliferation,
degranulation, and production of IFN-γ, TNF-α, perforin, and
granzyme B. Thereby, CD8+ decidual T cells restrict the
activation to avoid rejecting the fetus but retain the immune
defense against infections (106, 107).

The dominant proportion of CD8+ decidual effector-memory
T cells suggests that antigens have been presented to CD8+

decidual T cells, which can elicit antigen-specific CD8+ T cell
responses. Indeed, analysis of the TCR repertoires of effector-
memory CD8+ T cells revealed that a few TCRβ were clonally
expanded (108). Nevertheless, the antigens targeted by CD8+

decidual T cells are not fully understood and candidate antigens
may be HLA-C, minor histocompatibility antigens (mHags), and
pathogen-derived antigens (104).

The limited cytotoxicity of CD8+ decidual T cells can be
attributed to high expression of a variety of immune checkpoint
molecules including PD-1, TIM-3, LAG-3, and CTLA-4 under
a decidual-specific immune microenvironment (105, 106, 108).
The PD-1+TIM-3+CD8+ decidual T subset possessed increased
proliferation potential and produced Th2 cytokines, exhibiting
tolerant capacity toward trophoblasts, whereas trophoblasts
in turn enriched PD1+TIM-3+CD8+ T cells in an HLA-C-
dependent manner (109). Furthermore, PD-L1, the ligand for
PD-1, has been found to be highly expressed on STBs, moderately
expressed on intermediate trophoblasts, and barely expressed on
CTB (110, 111). Both of STBs and intermediate trophoblasts
come into contact with DICs including CD8+ T cells. The PD-
L1/PD-1 interaction between trophoblasts and CD8+ T cells
gives rise to an inhibitory signal, contributing to inhibition of
CD8+ T cells cytotoxicity and maintenance of immunotolerance
(Figure 5).

IMMUNOTHERAPY OF RSA

As mentioned earlier, the establishment and maintenance of
maternal–fetal immune tolerance depends on the harmonious
dialog between trophoblasts and DICs. Abnormal mother–
fetal dialog will lead to dysfunction of maternal–fetal
immunotolerance and thus bring about pregnancy loss and
pregnancy complications.

The research on maternal–fetal immunotolerance is not only
to analyze the immunological truth behind successful pregnancy,
but more importantly, it is expected to provide a new theoretical
basis for the diagnosis and treatment of clinical pregnancy-
related complications caused by immune tolerance disorders
including RSA. RSA has become one of the most frustrating

and difficult problems in reproductive medicine and puts a huge
burden on patients and their families.

Indeed, immunotolerance of pregnancy is similar to tumor
immune escape. Recently, immunotherapy has developed
rapidly; in particular, anti-tumor therapy has achieved
remarkable achievements. Therefore, the application of
immunotherapy in RSA is also worthy of attention and
exploration. The immunotherapy of RSA is summarized
as follows.

Controversial Immunotherapies of RSA
Lymphocyte active immunotherapy (LIT) for pregnancy
preservation is a process in which peripheral white blood cells,
collected from the husband or a third person, are injected into
the prospective mother to prepare her immune system for
tolerating the embryo’s antigens (112). However, a lot of research
advocated that the efficiency of LIT for the treatment of RSA is
inconsistent and controversial (113, 114).

Intravenous immunoglobulin (IVIg) passive immunotherapy
is another approach widely used in many areas of the world. On
the basis of the hypothesis that RSA was associated with a lack of
blocking antibodies normally produced by the mother’s immune
system to protect the fetus against immunologic rejections, IVIg
treatment was attempted as a novel therapeutic approach for
unexplained RSA (URSA) as early as 1989 (115). Although some
randomized clinical trials designed to evaluate IVIg therapeutic
efficacy in women with unexplained RSA have shown that IVIg
is supposed to be more advantageous than LIT (115–117),
others have come up with the opposite conclusion that evidence
is insufficient to support the beneficial effects of IVIg on an
unexplained RSA (118–120).

Promising Strategy for Immunotherapy of
RSA
Given the inconsistent and controversial efficacy of current
immunotherapies such as LIT and IVIg, it is an urgent
mission for reproductive immunologists to explore feasible
immunotherapies. Tumor immunotherapy based on the tumor
immune escape mechanism, has developed dramatically. In
particular, the use of immune checkpoint inhibitors has become
standard therapy in many tumors. The breakthrough in anti-
tumor immunotherapy brings great confidence and new ideas
to the field of reproductive immunology, since reproductive
immunity and tumor immunity display many similarities.
Moreover, the roles of immune checkpoints such as CTLA4, PD-
1, and TIM-3 in multiple critical processes during pregnancy
have been gradually demonstrated by our team and other
researchers. For example, the TIM-3 signal is involved in the
functional regulation of NK cells, the PD-1 signal modulates the
polarization of macrophages and the cytotoxicity of cytotoxic
T cells, and CTLA-4 is an important effector molecule on the
surface of Treg cells. Whether immune checkpoints could be
the targeted immunotherapy for reproductive immune disorders
such as RSA deserves to be further explored.

Besides the immunotherapy targeting checkpoints, the use
of mesenchymal stem cells (MSCs) has been a novel promising
therapeutic approach in many clinical conditions, such as

Frontiers in Immunology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 642392

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Maternal-Fetal Immunotolerance Mediated by Trophoblasts

tumor, autoimmune diseases, and inflammation-related diseases.
Excitingly, our research team found that MSCs executed
immunotherapeutic effect in both the LPS-induced abortion
model and the immune response-mediated spontaneous abortion
model via inhibition of CD4+ T cell proliferation and promotion
of macrophage M2 polarization (52). Consistent results were
obtained by other researches (121–125). Therefore, the prospect
of MSCs as a potential therapeutic strategy for RSA is worth
expecting and needs more clinical trials.

Far less mature than tumor immunotherapy, novel
immunotherapeutic strategies for RSA is on the way, and much
more effort should be paid by reproductive immunologists. All
novel therapies are based on clear physiologic and pathologic
mechanisms. Thus, focusing on the crosstalk of trophoblasts and
DICs and their roles in normal pregnancy and RSA is indeed
critical to revealing the maternal immune tolerance mechanism
and paves the way for the promising immunotherapy of RSA.

CONCLUSION AND PERSPECTIVES

Maternal immune tolerance to the semi-allogeneic fetus is an
important cornerstone for the smooth progress of pregnancy
until successful delivery. Trophoblasts are the only fetal-derived
cells that come into direct contact with the maternal immune
system. Rather than rejecting the fetus, trophoblasts actively
participate in establishing and maintaining immune tolerance
through delicate dialogs with DICs. Abnormal conversation
between trophoblasts and DICs will lead to dysregulated
maternal–fetal immunity, which is supposed to be a potential
cause of pregnancy complications including RSA. Therefore,
further exploration of the interactive dialog between trophoblasts
and DICs is expected to interpret the mechanism of pregnancy
tolerance. More importantly, it will provide a new scientific
basis for the diagnosis and treatment of disorders associated
with pregnancy tolerance abnormalities. At the same time, the

research breakthrough of maternal–fetal immune tolerance will
also inspire and promote the research on tumor immune escape
and transplantation immunity.
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