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ABSTRACT 

Hydroxychloroquine (HCQ) was proposed as an early therapy for coronavirus disease 

2019 (COVID-19) after in vitro studies indicated possible benefit. Previous in vivo 

observational studies have presented conflicting results, though recent randomized 

clinical trials have reported no benefit from HCQ amongst hospitalized COVID-19 

patients. We examined the effects of HCQ alone, and in combination with azithromycin, 

in a hospitalized COVID-19 positive, United States (US) Veteran population using a 

propensity score adjusted survival analysis with imputation of missing data. From March 

1, 2020 through April 30, 2020, 64,055 US Veterans were tested for COVID-19 based 

on Veteran Affairs Healthcare Administration electronic health record data. Of the 7,193 

positive cases, 2,809 were hospitalized, and 657 individuals were prescribed HCQ 

within the first 48-hours of hospitalization for the treatment of COVID-19. There was no 

apparent benefit associated with HCQ receipt, alone or in combination with 

azithromycin, and an increased risk of intubation when used in combination with 

azithromycin [Hazard Ratio (95% Confidence Interval): 1.55 (1.07, 2.24)]. In conclusion, 

we assessed the effectiveness of HCQ with or without azithromycin in treating patients 

hospitalized with COVID-19 using a national sample of the US Veteran population. 

Using rigorous study design and analytic methods to reduce confounding and bias, we 

found no evidence of a survival benefit from the administration of HCQ. 

 

KEYWORDS:  

hydroxychloroquine, covid-19, treatment outcome, propensity score, gradient boosting, 

pharmacoepidemiology, survival analysis 
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ABBREVIATIONS:  

CI, Confidence interval; HCQ, Hydroxychloroquine; HR, Hazard ratio; SARS-CoV-2, 

Severe acute respiratory syndrome coronavirus 2; US, United States; VA, Veterans 

Affairs Healthcare Administration 

 

In the swell of the coronavirus disease 2019 (COVID-19) pandemic, the world rushed to 

find therapeutic and prophylactic treatments, and hydroxychloroquine (HCQ) became an 

early front-runner(1, 2). HCQ is a common anti-malarial/-rheumatologic drug with 

immunosuppressive functions. Early in vitro studies suggested HCQ might be 

repurposed to treat infections with a strong immune component(1, 3, 4), such as 

COVID-19. This was appealing considering its low cost and widespread availability. The 

United States (US) Food and Drug Administration issued an emergency use 

authorization for HCQ on March 28, 2020(5) prior to the completion of a randomized 

controlled trial, only to revoke it less than 3 months later, following concerns about HCQ 

associated adverse events reported by observational studies(6, 7). 

Around the same time as the US Food and Drug Administration’s retraction, 

several randomized controlled trials, ORCHID, RECOVERY and SOLIDARITY 

discontinued their HCQ arms due to interim analyses showing no benefit in reducing 

COVID-19 inpatient mortality (8-10). These trials recently made their results public (11-

13). While randomized controlled trials are a gold standard for evaluating the 

effectiveness of a drug(14), none of those investigating HCQ treatment explored the 

combination with azithromycin in their study design. Azithromycin has also been given ORIG
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to COVID-19 positive patients, and one small observational study hypothesized that the 

combination of the two drugs reduced viral load (1). 

Results from observational studies of HCQ in treating COVID-19 have been 

inconsistent, and subject to bias(15-19). Early studies claiming a benefit were from 

small samples with limited data and little control of potential confounders. Timing of 

treatment during hospitalization was often poorly defined, no studies appeared to 

control for secular trends in the timing of treatment, and several studies used data from 

HCQ use prior to the US Food and Drug Administration’s initial emergency use 

authorization(20). Particularly, the study design and analytic techniques may not have 

been able to account for the various sources of potential and residual confounding(21-

23). 

In a recent meta-analysis of HCQ and mortality in patients hospitalized with 

COVID-19(16), 25 of the 29 studies used observational data, and 10 of these peer-

reviewed and pre-print publications used some form of propensity adjustment. One 

main goal of propensity analysis is to balance confounding factors in order to emulate a 

randomized controlled trial setting(24). Recent studies on propensity scoring have found 

that machine learning methods can achieve better balance than traditional regression 

methods in observational studies (25-29). Gradient boosted modeling using decision 

trees allows for interactions among the variables used in propensity score calculation 

and makes no assumptions about the shape of the relationship between the confounder 

and treatment received(25).  

In this paper we apply careful study design and statistical analytic approaches, 

leveraging machine learning methods to evaluate the effectiveness of HCQ, with or 
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without azithromycin, in the treatment of COVID-19 in the US Veteran population. We 

empirically assess the bias of the results by considering a priori-defined clinical 

confounders and a range of sensitivity analyses. Finally, we compare our analytic 

results to existing literature on HCQ effectiveness for COVID-19 and draw conclusions 

about the implications surrounding confounding in the context of an evolving pandemic. 

METHODS 

Veteran Affairs Healthcare cohort 

The Veteran Affairs Healthcare Administration (VA) is the largest single-payer US 

healthcare system, with 6 million Veterans under care in the last two years. Structured 

electronic health records in a Corporate Data Warehouse include all clinical encounters. 

Record domain include demographics, laboratory results, vital signs, health factors, 

pharmacy prescription fills, hospitalizations, and outpatient visits. A COVID-19-specific 

research database was constructed in the Knowledge, Discovery, and Innovation 

computing environment at the Department of Energy’s Oak Ridge National Laboratory. 

The work for this analysis under the US Food and Drug Administration-led COVID-19 

Insights Partnership projects was approved by both Department of Energy and VA 

institutional review boards and is a joint activity involving VA and Department of Energy 

investigators. 

Study design  

We designed our study cohort to mimic criteria that might be expected in a 

clinical trial setting (Figure 1). Key variables, index date, and exposure criteria are 

illustrated following a template developed for communicating reproducible observational 

study designs in pharmacoepidemiology(30). Day 0 or index date was classified as the 
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day of first hospitalization on the same day or after first positive diagnosis for severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 

Identification of COVID-19 cases 

The VA COVID-19 research cohort includes individuals who were tested for 

SARS-CoV-2 inside or outside of a VA facility. We used the VA’s National Surveillance 

Tool, the authoritative data source for defining positive and negative SARS-CoV-2 

cases(31), to identify Veterans who had a positive diagnosis as our study COVID-19 

cases. 

Inclusion criteria 

We restricted the sample to individuals hospitalized within the VA only due to 

limited HCQ use and outcomes data for patients outside of VA hospitals. The base 

cohort included COVID-19 cases prior to April 30, 2020, when HCQ usage dramatically 

decreased (Figure 2). We included cases where onset of infection was no later than 

hospital admission or June 1, 2020. We excluded patients who had received HCQ or 

azithromycin for non-COVID-19 illnesses, i.e., anyone using HCQ in the year prior to or 

using azithromycin within 14 days before the index date. Additionally, we excluded 

patients who were discharged, intubated, or died within 48 hours of admission, to avoid 

immortal time bias. We removed patients who received care at hospitals that were not 

prescribing HCQ to ensure all individuals had a non-zero probability of receiving 

treatment.  

Exposure assessment 

Initiation was defined as the date of first inpatient prescription fill from index date 

until the end of follow-up. For an intention-to-treat analysis, we classified individuals into 
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four groups (Both: HCQ + azithromycin, HCQ alone, azithromycin alone, and neither 

drug) based on initiating one or both of the drugs within the first 48 hours following 

hospitalization. For example, any individuals that started only HCQ within the 48-hour 

window, but who were later prescribed azithromycin after 48 hours, were considered 

HCQ alone.   

Outcomes assessment 

Outcome: mortality - VA all-cause mortality information was based on the 

Beneficiary Identification Records Locator Subsystem, clinical records and social 

security death index data(32). Time-to-death was measured from index date, and 

censored anyone who remained alive at 30 days. 

Outcome: invasive ventilation/intubation - We considered only invasive ventilation 

using diagnostic International classification of diseases series 10 (0BH13EZ, 0BH17EZ, 

0BH18EZ, 5A1935Z, 5A1945Z, 5A1955Z) and current procedural terminology (31500) 

codes. Amongst COVID-19 positive hospitalized patients, over 95% of the intubations 

occurred within 21 days of admission, thus we analyzed the outcome using time-to-

intubation during this 21-day period, with censoring at death or discharge. 

Covariates and confounders 

Potential confounders were assembled in clinically meaningful identification time 

frames (Figure 1). For uncommon laboratory tests that were measured acutely (lactate 

dehydrogenase, c-reactive protein, d-dimer, and ferritin), we used evidence of 

measurement as the covariate of interest. Patient demographics (age, sex, region of the 

US, urbanicity), height and weight, smoking status, alcohol use disorder, and evidence 

of recent long-term care were taken from data prior to index date. Additional variables 
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considered as potential confounders of treatment and both primary outcomes were 

chronic medications, concurrent inpatient treatments (for COVID-19 or HCQ 

contraindications), chronic conditions (based on diagnostic codes and including a frailty 

score(33)), and acute laboratory results and vital signs (those related to acute illness). 

All potential confounders were included in the propensity model. Complete descriptions 

of diagnostic and medication codes can be found in Web Tables 1-2 and Web Appendix 

1.  

Statistical analyses 

All analyses were performed using R software (R Foundation for Statistical 

Computing, Vienna, Austria)(34) and publicly available packages.  

Missing data - Missing covariate information was imputed using the multiple 

imputation from chained equations “mice” package in R(35, 36). Ten imputed data sets 

were generated, analyzed separately, and the final results were subsequently combined 

using Rubin’s rules to determine final effect sizes and confidence intervals(37).  

Propensity score calculation - Propensity scores for each treatment were 

estimated from a Gradient Boosting Machine (GBM)(38), an ensemble of models that 

take baseline measures and characteristics as inputs and outputs the patient’s 

predicted probability (or propensity score) for receiving each treatment (Both, HCQ 

alone, azithromycin alone, or neither). We employed decision trees as base learners for 

GBM, using the “gbm” and “WeightIt” R packages to fit our models(39, 40). The 

hyperparameters were set as: interaction depth of 4, maximum of 5000 trees, and 

shrinkage of 0.1. We optimized the maximum of standardized mean differences 

between potential confounders across the treatment arms.  
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For each patient, the propensity score was converted to a stabilized inverse 

probability of treatment weight. We evaluated the propensity scores using the “cobalt” 

package in R to look at the distributions of average standardized mean differences 

between each pair of treatments(41). The relative influence(42) was calculated as the 

normalized amount of change in the balance metric for each variable when it was used 

to split a node. 

Outcome models - The stabilized inverse probability of treatment weights from 

the propensity modeling steps were included as subject-level weights in Cox 

proportional hazards multivariable models for estimating treatment effects on mortality 

and intubation using the “survival” package(43) in R. An alpha level of 0.05 was used. 

Sensitivity analyses 

We assessed design assumptions and data restrictions with a series of sensitivity 

analyses to address questions regarding timing, analytic design, and methods. To 

consider whether timing of treatment initiation made a difference in survival, we 

considered a shorter 24-hour exposure window, with corresponding adjustments in 

exclusions and outcomes. We explored the effect of the secular prescribing trend(s) by 

limiting analyses to time windows framed by regulatory guidelines and patterns of use 

within the VA. The final set of sensitivity analyses focused on the statistical and 

machine learning methods and assumptions. We additionally considered a set of 

doubly-robust models, where select confounders were included in both the propensity 

and outcome models(44, 45). Complete details about cohort restrictions and sensitivity 

analyses performed can be found in Web Table 3 and Web Appendix 2.  
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RESULTS 

Characteristics of users  

As of April 30, 2020 there were 7,193 SARS-CoV-2 positive cases out of 64,055 

individuals tested overall(46), yielding an analytic cohort of 1,769 individuals (Figure 3). 

The mean number of days between a positive laboratory result and hospitalization was 

2.1 days (Web Figure 1). In the first 48 hours of hospitalization, 429 (24%) individuals 

initiated HCQ and azithromycin, 228 (13%) HCQ alone, and 342 (19%) azithromycin 

alone, while 770 (44%) were not prescribed either of these two treatment strategies 

(Table 1, Web Table 4).  

Those who initiated azithromycin alone or in combination with HCQ, in the first 48 

hours of hospitalization, were younger (mean 67.6 and 67.8 years of age, respectively), 

compared to those initiating HCQ alone (70.2 years) or neither treatment (71.5 years) in 

the same exposure time-frame. Non-Hispanic blacks were more likely to receive at least 

one treatment than other race/ethnicity groups, and those in urban settings were more 

likely to be prescribed some form of HCQ. Those coming from long-term care or nursing 

facilities were less likely to initiate either treatment within the first 48 hours of admission. 

Acute laboratory measurements, such as lactate dehydrogenase and C-reactive protein, 

were more commonly available on those initiating both treatments. 

Propensity model 

Before weighting, the exposure groups differed with respect to multiple 

covariates (Table 1). Overall, the GBM was able to balance a large majority of the 

variables in the primary analysis model. Complete love and balance plots can be found 

in Web Figures 2-15. The week of admission variable did not achieve the recommended 
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threshold of 0.1(47), nor even 0.2 for the average standardized mean difference 

comparing those initiating Both treatments to any of the others. Similarly, the average 

standardized mean difference for week of admission comparing HCQ alone to Neither 

or azithromycin alone groups was approximately 0.2. Figure 4 displays the average 

relative importance or influence of a given predictor in the primary propensity model. 

Notably total station size and week of admission were the most important factors across 

all imputations and sensitivity analyses (Web Figures 16-18).  

Primary analysis 

Of the 429 individuals initiating both HCQ and azithromycin in the first 48 hours 

following VA hospital admission, 90 (21%) died within 30 days after admission and 64 

(15%) were intubated within 21 days of admission (Table 2, Web Table 5). After 

weighting, those initiating both treatments had a 22% increased hazard of death 

(HR=1.22, 95% CI: 0.91, 1.63) and 55% increased hazard of intubation (HR=1.55, 95% 

CI: 1.07, 2.24), compared to those on neither treatment within the first 48 hours after 

hospitalization.  

Comparing those exposed to HCQ alone versus neither treatment in the 48 hours 

following admission, there were non-statistically significant increased risks of both 

mortality within 30 days of index (HR=1.21, 95% CI: 0.82, 1.76) and intubation within 21 

days of index (HR=1.33, 95% CI: 0.82, 2.15). Meanwhile, those initiating azithromycin 

alone in the first 48 hours had similar hazards for death (HR=0.90, 95% CI: 0.64, 1.27) 

and intubation (HR=1.03, 95% CI: 0.66, 1.61) compared to neither treatment. None of 

these analyses indicated a benefit of HCQ or azithromycin. 

Sensitivity analyses 
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There were few measurable changes in the effect estimates and confidence 

intervals of the two comparisons (Both vs. neither; HCQ alone vs. neither) for many of 

the sensitivity analyses. Figure 5 summarizes the average treatment effect HR (95% CI) 

for those initiating any combination of HCQ compared to neither treatment in the 48 

hours following admission. Complete results, including event counts and number 

exposed, from all sensitivity analyses can be found in Web Tables 6-7. 

Censoring at change in treatment (adding either azithromycin or HCQ after 48 

hours post-hospitalization) produced substantially different results for mortality (HCQ vs. 

Neither HR: 1.42, 95% CI 0.92-2.18; Both vs. Neither HR: 1.63, 1.18-2.25; Figure 5A). 

This corresponded to 75 fewer “cases”, mostly from the neither group. A similar pattern 

of inflated hazard ratios and fewer cases can be seen for the intubation outcome (Figure 

5B).  

Dropping the index dates that occurred prior to Pharmacy Benefits 

Management’s guidelines for HCQ emergency use authorization posted on March 30, 

2020, left just over two-thirds of the total sample (N=1,218). This did not affect the 

intent-to-treat hazard ratio for HCQ alone versus neither drug in terms of mortality, but it 

did shift the final estimate for Both vs. neither away from the null (HR: 1.41, 95% CI 

0.98-2.03), indicating greater harm. For the intubation outcome, the HR shifted again, 

however, these may not be interpretable due to the small number of cases. 

  

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



  14 

DISCUSSION 

Key findings  

We found no benefit in COVID-19 mortality and intubation from HCQ alone or in 

combination with azithromycin when administered shortly after hospital admission. The 

direction of the effect was consistent across all models, and comparable to recent 

studies of HCQ for the treatment of SARS-CoV-2 infection in the inpatient hospital 

setting(11, 12, 48-50).  

Research in context  

A previous analysis of HCQ effectiveness amongst veterans demonstrated no 

evidence of benefit for those prescribed HCQ with or without azithromycin, with 

indication of harm from HCQ alone(20). The sample size was small (N=807), with a 

restricted follow-up window for certain individuals. 

In contrast, a study from the Henry Ford hospital system estimated that any form 

of HCQ led to significant reductions for in-hospital mortality (HCQ vs. neither HR=0.66; 

Both vs. neither HR=0.71)(51). The study differed in population demographics, size and 

by the use of a multivariate modeling approach that included a limited number of 

confounders in the models. This study was criticized for insufficiently controlling for 

confounding by indication, i.e. sicker patients were less likely to receive HCQ(52). 

Additionally, the Henry Ford study did not account for secular trends, which we 

demonstrate are an important factor to include in analyses. 

Methodological differences 

Using a sample twice the size of the prior VA study (1,769 vs. 807), we found 

similar average treatment effects of HCQ with or without azithromycin compared to 

neither treatment. Those differences that exist in our findings can likely be explained by 
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our use of an adjudicated algorithm-based case definition (National Surveillance Tool) 

that captures laboratory-identified cases as well as those not in the VA system. 

However, given the 95% agreement between COVID-19 case definitions based on VA 

laboratory test only and National Surveillance Tool positive definitions, it is also possible 

that the search terms used in the prior paper were not able to capture all SARS-CoV-2 

positive cases. Magagnoli et al. additionally restricted follow-up through April 29, 2020, 

meaning that the outcomes of those hospitalized towards the end of April would not 

have had enough time to be observed.(20) In a sensitivity analysis using a similar 

enrollment restriction (hospitalized on or before April 30), but with adequate follow-up 

time for all individuals, we saw no change in our results or conclusions.  

Strengths 

Relative to other observational cohorts in the US, the VA has more longitudinal 

data, with limited loss to follow-up. This allows for a more complete assessment of 

patients’ comorbidities and outcomes. 

Chronological bias(53) is a challenging feature of research related to HCQ. It can 

be introduced by variable prescribing patterns for the drug(54), in conjunction with the 

geographic spread of the disease(55) and a constantly-evolving knowledgebase about 

the disease and its therapeutics(52). We explored multiple sensitivity analyses that 

demonstrated consistent results when timing of hospitalization and hospital size and 

capacity were accounted for in the models. 

We considered the importance of timing of treatment with a sensitivity analysis 

setting the exposure window to 24 hours, as in other studies (48, 56). This resulted in 

similar estimates to the primary analysis for mortality (HCQ vs. neither HR=1.24, Both 
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vs. neither HR=1.15). Given that 11% of the sample added one or more of the 

treatments in the 24-48 hour window, our use of the 48-hour window may be preferable 

as it more effectively avoids misclassification. We excluded individuals who died, were 

intubated, or discharged within the 48 hours, because the patients would not have had 

enough time to experience benefit or harm from HCQ. While this ensured the 

circumvention of immortal time bias when defining the group with neither treatment, we 

recognize that this may present additional limitations. 

Limitations 

Our results may not generalize to those intubated prior to receiving treatment nor 

to those with less severe illness who are discharged almost immediately. Compared to 

the overall US population, VA users are older, mostly male, with more comorbidities and 

lower socioeconomic status (55). Our results may differ from studies of younger and 

healthier populations with a higher proportion of women. However, older, male and 

sicker individuals are at higher risk for severe COVID-19, which warranted the study of 

this drug early-on, despite historical data indicating that these might also be the 

individuals most at risk for adverse events from HCQ (3).  

Propensity weighting was unable to completely eliminate covariate imbalance 

across the treatment groups. To address this limitation, we performed a series of 

doubly-robust models(44, 45) (as described in Web Appendix 1), where covariates were 

included in both the propensity and outcome models. The estimated HRs and 

confidence intervals were similar to the primary analysis, further confirming the lack of 

benefit from HCQ. ORIG
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Our analysis did not account for any changes in HCQ or azithromycin status 

following the 48-hour exposure assessment, such as new prescriptions or treatment 

discontinuation. We attempted to address the change in treatment after 48 hours 

through a sensitivity analysis censoring at the addition of another treatment. This per-

protocol on-treatment analysis has been shown to confer bias in the clinical trial 

setting(57), thus is not preferred over the intention-to-treat method used. In fact, we 

observed this bias in the shifted HRs and confidence intervals that made HCQ (both 

with and without azithromycin) appear harmful compared to neither treatment. 

After 48 hours from index date, approximately 25% of the combination treatment 

patients were in the intensive care unit, compared to 5% in the neither group, 19% in 

the azithromycin alone group, and 13% for those on HCQ alone. We did not look at this 

particular outcome or adjust for it as a confounder in the propensity models. However, in 

a sensitivity analysis removing these individuals, the HRs for both mortality and 

intubation of the combined treatment group, relative to neither treatment, shifted 

completely to the null, indicating that HCQ may have been seen as a “rescue” therapy in 

intensive care unit patients. Of note, even with this restriction, there is no evidence of 

benefit. 

Despite our array of sensitivity analyses, we acknowledge that there is still a 

possibility of some unmeasured and residual confounding that we were unable to 

account for. However, the GBM approach allowed us to control for many variables, and 

any remaining unmeasured confounders would likely require strong associations with 

both the treatment assignment and outcomes, to explain away the null relationship 

observed in the data. 
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Implications 

In the early months of the pandemic, there was much uncertainty surrounding 

risk factors of COVID-19 and subsequent deaths, which translated to inconsistent 

results and conclusions from studies with moderate to severe levels of bias(16). With 

our best attempts to adjust for possible confounding, we found confirmatory evidence 

for an increased risk of intubation for those who were treated with the combination of 

HCQ and azithromycin for COVID-19 in a hospital setting. We found no inpatient 

survival benefit to the administration HCQ, with or without concomitant azithromycin.  

Our study reflects the challenges of modeling effectiveness during the start of a 

pandemic and demonstrates that consistent data over a period of time are critical for 

disentangling the effects of confounding by indication. While we are unable to account 

for compassionate use of HCQ, we do show that sensitivity analyses in both study 

design and modeling can allow researchers to account for a large number of potential 

confounders using electronic health record data when a priori relationships are not well 

established.  
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Table 1. Select Baseline Characteristics of a National Sample of Hospitalized US Veterans with COVID-19 Between 

March 1, 2020 and April 30, 2020 by 48-Hour Treatment Exposure 

Baseline Characteristic 
a 

Neither drug 

(N = 770) 

Azithromycin alone 

(N = 342) 

HCQ alone 

(N = 228) 

HCQ + Azithromycin 

(N = 429) 
P 

N % 
Median 

(IQR) 
N % 

Median 

(IQR) 
N % 

Median 

(IQR) 
N % 

Median 

(IQR) 

Demographics and 

Lifestyle 
             

   Age  71.47 (13.12)  67.64 (13.55)  70.24 (12.80)  67.81 (13.22)  <0.001 

   Male 736 95.6  322 94.2  219 96.1  413 96.3  0.527 

   Race/Ethnicity             <0.001 

      Non-Hispanic White 321 41.7  107 31.3  65 28.5  139 32.4   

      Non-Hispanic Black 341 44.3  190 55.6  138 60.5  225 52.4   

      Hispanic 77 10.0  21 6.1  15 6.6  42 9.8   

      Other 31 4.0  24 7.0  10 4.4  23 5.4   

   Days to admission b 2.6 (8.1)  0.8 (4.4)  1.0 (2.3)  0.6 (2.3)  <0.001 

   Week of admission 15.3 (2.1)  14.0 (1.9)  14.5 (1.4)  14.0 (1.2)  <0.001 

   Total station size 61485 (31509)  64346 (31385)  49902 (20603)  57189 (28718)  <0.001 

   Urban 707 91.8  310 90.6  217 95.2  408 95.1  0.031 

   Coming from LTC 

facility c 
130 16.9  18 5.3  23 10.1  20 4.7  <0.001 

   In ICU at 48 hours 134 17.4  77 22.5  41 18.0  124 28.9  <0.001 

   Smoking status d, e             0.042 

      Never 167 30.1  90 35.3  50 35.2  111 39.5   

      Current 239 43.1  85 33.3  54 38.0  104 37.0   

      Former 148 26.7  80 31.4  38 26.8  66 23.5   

Prior Laboratory 

Measures f 
             

   Hemoglobin (g/dL)   
12.8 (11.1, 

14.1) 
  

13.5 (12.0, 

14.6) 
  

13.2 (11.4, 

14.3) 
  

13.4 (12.2, 

14.6) 
<0.001 

   HbA1c g (percent)   
6.2 (5.6, 

7.3) 
  

6.1 (5.6, 

7.1) 
  

6.2 (5.7, 

7.4) 
  

6.2 (5.7, 

7.1) 
0.733 
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   LDL-C (mg/dL)   
78.0 (58.0, 

102.5) 
  

90.3 (69.0, 

121.4) 
  

81.0 (59.0, 

108.6) 
  

87.0 (64.0, 

110.0) 
<0.001 

   Lymphocyte count 

(K/cmm) 
  

1.6 (1.3, 

2.2) 
  

1.7 (1.4, 

2.2) 
  

1.7 (1.4, 

2.1) 
  

1.7 (1.4, 

2.2) 
0.617 

Acute Laboratory 

Measures h 
             

   eGFR (mL/min)   
63.1 (38.5, 

85.1) 
  

61.6 (39.7, 

83.8) 
  

55.2 (32.2, 

81.8) 
  

62.7 (41.8, 

82.6) 
0.156 

   WBCs (K/cmm)    
6.0 (4.6, 

7.9) 
  

6.1 (4.9, 

8.4) 
  

6.1 (4.5, 

8.1) 
  

6.3 (4.9, 

8.2) 
0.383 

   ALT (U/L)   
24.0 (16.0, 

39.0) 
  

28.0 (18.0, 

44.0) 
  

30.0 (20.0, 

44.0) 
  

33.0 (22.5, 

49.0) 
<0.001 

   C-reactive protein i 

(mg/dL) 
  

19.0 (6.3, 

71.7) 
  

11.4 (5.5, 

44.2) 
  

21.6 (8.3, 

75.3) 
  

15.4 (8.5, 

42.4) 
0.009 

      Missing  251 32.6  108 31.6  61 26.8  81 18.9   

   D-dimer i (ug/mL)   
13 (3, 

2199) 
  6 (3, 3600)   

1004 (4, 

2195) 
  

1411 (3, 

3071) 
0.555 

      Missing 664 86.2  296 86.5  190 83.3  348 81.1   

Acute Vitals j              

   Body mass index k > 

30 kg/m2 
282 37.0  152 44.6  107 46.9  209 48.7  <0.001 

   Oxygen saturation l < 

93%  
131 18.1  67 20.8  52 24.0  116 28.2  0.001 

   Respiratory rate k > 

22/min 
82 11.0  45 13.2  37 16.6  76 17.9  0.006 

   Temperature l > 

100.4 F  
117 15.6  64 18.8  43 19.2  97 22.8  0.023 

Prior Medications m              

   Any ACE or ARB n 309 40.1  137 40.1  88 38.6  182 42.4  0.784 

   Any Anticoagulant 107 13.9  38 11.1  26 11.4  43 10.0  0.213 

In-hospital Medications 
o 

             

   Dexamethasone 2 0.3  0 0.0  1 0.4  7 1.6  0.007 

   Methylprednisolone 10 1.3  5 1.5  9 3.9  19 4.4  0.002 

   Remdesivir 12 1.6  1 0.3  1 0.4  0 0.0  0.014 

Comorbidity Scores p              
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   Charlson comorbidity 

index g 
4.84 (3.42)  4.13 (2.90)  4.61 (3.24)  4.10 (2.84)  0.005 

   Frailty index 0.31 (0.17)  0.24 (0.16)  0.27 (0.17)  0.24 (0.15)  <0.001 

5-year Cardiovascular 

Diseases 
             

   Coronary heart 

disease 
301 39.1  107 31.3  80 35.1  119 27.7  0.001 

   Cerebrovascular 

accident 
212 27.5  78 22.8  58 25.4  74 17.2  0.001 

   Peripheral vascular 

disease 
212 27.5  64 18.7  59 25.9  100 23.3  0.014 

Prior conditions q              

   Diabetes 395 51.3  151 44.2  123 53.9  205 47.8  0.065 

   Hypertension 616 80.0  246 71.9  179 78.5  312 72.7  0.004 

   Any lung disease r 269 34.9  104 30.4  68 29.8  124 28.9  0.12 

   Dementia 176 22.9  40 11.7  30 13.2  44 10.3  <0.001 

 

a Values are expressed as mean (standard deviation) 
b Days between a SARS-CoV-2 positive laboratory result and hospital admission 
c Any prior admissions to or from a long-term care, skilled nursing, or community housing facility up to six months before hospitalization 
d Smoking taken as mode from health factors data. Number missing omitted from table. 
e Proportions may not sum to 100 due to rounding 
f Prior laboratory measures timing: Two years up to 7 days prior to hospitalization (HbA1c, Hemoglobin, Lymphocytes), Five years up to 7 days 

prior to hospitalization (LDL-C) 
g Variable not used in propensity score model(s) 
h Acute laboratory measures timing: Seven days prior to hospitalization up to date of first medication or 48 hours, whichever came first (ALT, 

eGFR, WBC count), Any measure 48 hours prior up through 48 hours after hospital admission (C-reactive protein, D-dimer) 
i Rare laboratory measures fed into PS model using indicator of collection (C-reactive protein, lactate dehydrogenase, ferritin, and d-dimer) 
j Vitals timing was within two days of index date, except for height and weight, which were from the closest measure before index. 
k Variable included in PS model as a continuous measure only 
l Variable included as both indicator and continuous measure in PS model 
m Prior medications: Prescribed in the year prior to index through outpatient only 
n Indicators for any ACE and any ARB were included separately in the PS model 
o In-hospital medications: received at any point in first 48 hours of hospitalization based on inpatient pharmacy data 
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p Comorbidity scores timing: Charlson comorbidity index two years prior to hospitalization, Frailty index in three years prior to hospitalization 
q Prior conditions timing: Any 1 inpatient code or 2 outpatient codes in the two years up to seven days prior to hospitalization 
r Asthma, bronchitis and chronic obstructive pulmonary disease (COPD) were entered into PS model as separate indicators  

Abbreviations: ACE: Angiotensin converting enzyme inhibitor; ALT: Alanine aminotransferase; ARB: Angiotensin receptor blocker; eGFR: 

Estimated glomerular filtration rate; HbA1c: Glycosylated hemoglobin; ICU: Intensive Care Unit; IQR: Interquartile range; LDL-C: Low-density 

lipoprotein cholesterol; LTC: long-term care; PS: Propensity score; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; SD: Standard 

deviation; WBC: White blood cell 
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Table 2. Effect of HCQ with or Without Azithromycin on Mortality Over 30 days and Intubation Over 21 Days in a National 

Sample of Hospitalized US Veterans with COVID-19 Between March 1, 2020 and April 30, 2020 

 

Drug 
No. 

Exposed 

Death Intubation 

No. of 
Cases 

No. of Person-
Days 

HR 95% CI 
No. of 
Cases 

No. of 
Person-Days 

HR 95% CI 

Neither drug 770 141 20,376 1.00 (ref) 69 7,241 1.00 (ref) 

Azithromycin alone 342 56 9,174 0.90 0.64, 1.27 39 2,625 1.03 0.66, 1.61 

HCQ alone 228 49 5,853 1.21 0.82, 1.76 32 1,897 1.33 0.82, 2.15 

HCQ and azithromycin 429 90 11,153 1.22 0.91, 1.63 64 3,370 1.55 1.07, 2.24 

 

Abbreviations: CI: Confidence interval; HCQ: Hydroxychloroquine; HR: Hazard ratio 
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Figure 1.  

Title: Study Design Diagram National Sample of Hospitalized US Veterans with COVID-
19 Between March 1, 2020 and April 30, 2020 
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Figure 2.  

Title: New-User Hydroxychloroquine Prescriptions Over Time in a National Sample of 
Hospitalized US Veterans with COVID-19 Between March 1, 2020 and April 30, 2020 

Important dates as annotated on the plot: a) March 18, 2020: Pharmacy Benefits 
Management (PBM) Literature Summary of Off-Label COVID-19 Therapeutic 
Options Posted; b) March 23, 2020: PBM Hydroxychloroquine (HCQ) 
Prioritization Criteria Posted; c) March 28, 2020: US Food and Drug 
Administration (FDA) Approves HCQ Under Emergency Use Authorization 
(EUA); d) March 30, 2020: PBM HCQ Safety Document Posted; e) April 20, 
2020: PBM HCQ Prioritization Criteria Archived (Lack of Effectiveness Data); f) 
April 23, 2020: PBM HCQ Safety Document Updated; g) April 24, 2020: FDA 
Drug Safety Communication 
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Figure 3.  

Title: Study Inclusion and Exclusion Criteria for the Primary Analysis National Sample of 
Hospitalized US Veterans with COVID-19 Between March 1, 2020 and April 30, 2020 
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Figure 4.  

Title: Relative Influence Plot of Variables Included in Propensity Model (Primary 
Analysis) 
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Figure 5.  

Title: Forest Plots Comparing Mortality (A) and Intubation (B) Hazard Ratios Across 
Sensitivity Analyses  

Figure Legend: 

Squares with solid lines and diamonds with dashed lines represent the hazard ratios 
and 95% confidence intervals corresponding to the average treatment effects of 
hydroxychloroquine (HCQ) and HCQ with azithromycin (Both) compared to neither 
treatment, respectively. Sensitivity analyses – Differences from Primary Analysis: 
Censoring – Censoring when subjects add HCQ or azithromycin after 48-hour exposure 
window; 24-Hour Exposure Window – Using a 24-hour window (from hospitalization) for 
exposure definition and corresponding exclusions; Excluding Azithromycin – Removing 
the azithromycin alone group prior to propensity modeling; Laboratory Positive Only – 
Restricting the cohort to only those with a positive laboratory test result in the VA 
laboratory records; Excluding Alternate Treatments – Removing individuals on 
dexamethasone, lopinavir-ritonavir, remdesivir, or tocilizumab in the 48-hour exposure 
window; Index After March 30, 2020 – Restricting index dates to after March 30, 2020 
(or post-issuance of emergency use authorization for HCQ use); Index Before May 1, 
2020 – Restricting index dates to April 30, 2020 or earlier; No Intensive Care Unit – 
Removing any individuals admitted to an intensive care unit within the 48-hour exposure 
assessment window 
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