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Editorial
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The continued development of diagnostic and therapeutic
advances for HIV has transformed this once rapidly fatal
infection into a chronic disease with an extended lifespan.
Initially these benefits were only available to patients in
resource-rich countries (RRCs), but since 2003 there has
been a global effort through donors and access pricing to
provide antiretroviral access to the millions of HIV-infected
individuals in resource-limited countries (RLCs) [1–4].
Current combination antiretroviral therapy (cART) achieves
viral suppression in a majority of adherent patients [5]. Viral
load tests with greater sensitivity have led our appreciation
of continued low-level viremia in apparently “suppressed”
patients cART while assays that detect latent tissue reservoirs
with integrated viral DNA have provided new insight into
treatment goals, the source of viral rebound when treatment
is interrupted, and the lack of further benefit from treatment
intensification [6–11]. A sustained chronic inflammatory
state thought to arise in part from translocation of gut
microbial products, even during suppressive cART, has led
to new mechanistic understanding of chronic ART effects
on end organs [12, 13]. These advances have led to new
research efforts to augment suppression with pharmacologic
strategies to purge the latent viral reservoirs and reduce
translocation of intestinal microbial products, to reduce end-
organ disease including cardiovascular, neurologic, renal,
and bone. The presence of opportunistic infections such as
tuberculosis and coinfections including malaria and viral
hepatitis (HCV, HBV), as well as cancer, creates additional
diagnostic and therapeutic challenges [14].

Clinical and translational pharmacology researchers have
made important contributions to our understanding of the
complex relationship between antiretroviral pharmacokinet-
ics, pharmacodynamics, and pharmacogenomics [15–27]. As
cART regimens are optimized their use in patients with
comorbidities is complicated by pharmacologic challenges
that include maintaining medication adherence, preventing
and managing drug-drug interactions, identifying optimal
doses for malnourished patients, drug toxicity monitoring,
and pharmacogenomic testing. Each of these areas con-
tributes to the goal of maximizing ART exposure while
minimizing risk factors that lead to complications of chronic
cART and concurrent medication use. As a result of efforts
to treat as many HIV-infected individuals as possible, the
requirement for medications for comorbid diseases, the chal-
lenge to conducting relevant clinical pharmacology research
as quickly as possible is considerable [28]. Ongoing research
in the areas of preexposure prevention with oral ART or
vaginal or rectal microbicides, and “treatment as prevention”
to reduce new HIV infections, along with nanomedicine
strategies, pediatric cART dosing, pregnancy, and geriatric
considerations also include therapeutic drug monitoring and
novel clinical pharmacology components [29–41].

In this special issue, some of these challenges are
addressed. With varied global dietary patterns as well as
nutritional status, M. Lamorde et al. report on their inves-
tigation of “Effect of food on the steady-state pharmacokinetics
of tenofovir, and emtricitabine plus efavirenz in Ugandan
adults.” Other important patient factors are addressed
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by T. Kakuda et al. in their study of the “Pharmacokinetics
and pharmacodynamics of darunavir and etravirine in HIV-
1-infected, treatment-experienced patients in the gender, race,
and clinical experience trial.” T. Mudzviti et al. have examined
“The impact of herbal drug use on adverse drug reaction profiles
of patients on antiretroviral therapy in Zimbabwe” and A.
Reda et al. investigated the “Determinants of adherence to
antiretroviral therapy among HIV-infected patients in Africa.”
With regard to coinfections, F. Fehintola et al. studied
“nevirapine-based antiretroviral therapy impacts artesunate
and dihydroartemisinin disposition in HIV-infected Nigerian
adults.” W. WirachMaek-a-nantawat et al. have provided a
review of “Challenges in providing treatment and care for viral
hepatitis among individuals co-infected with HIV in resource-
limited settings.” Lastly, in a comprehensive review article K.
Dooley et al. have reported on “TB and HIV therapeutics:
pharmacology research priorities.”

In summary, this issue provides some excellent examples
of research groups that are leading the way while additional
planning and capacity building proceed. The need to con-
duct clinical pharmacology research is essential and will
require expanding research facilities with instrumentation
and training for the next generation of researchers in
this field. The conduct of this comprehensive research
agenda will be facilitated through planning of a global,
translational pharmacology research effort that includes aca-
demic, industrial, regulatory, and community partnerships
in RRCs and RLCs. The need for human and laboratory
capacity building integrated with a comprehensive clinical
pharmacology quality assurance program is significant and
should be further integrated with research planning and
implementation on a global scale. This approach is likely to
accelerate the use of new treatments in countries that are
most impacted by HIV and other infectious diseases within
the global community. The Fogarty International Center
at the National Institutes of Health in the United States,
along with other international research funders like the
Wellcome Trust and the European and Developing Countries
Clinical Trials Partnership, is training current and future
global health scientists. The mechanism for building new
research centers with state of the art instrumentation remains
a challenge to meeting clinical pharmacology research needs
around the world. Development of a plan to address these
needs is the focus of an annual workshop at the International
AIDS Conference and has provided a forum for discussion,
needs assessment, and strategic planning to advance this
effort.
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