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Abstract 

Background:  The application of long-read sequencing using the Oxford Nanopore Technologies (ONT) MinION 
sequencer is getting more diverse in the medical field. Having a high sequencing error of ONT and limited through‑
put from a single MinION flowcell, however, limits its applicability for accurate variant detection. Medical exome 
sequencing (MES) targets clinically significant exon regions, allowing rapid and comprehensive screening of patho‑
genic variants. By applying MES with MinION sequencing, the technology can achieve a more uniform capture of the 
target regions, shorter turnaround time, and lower sequencing cost per sample.

Method:  We introduced a cost-effective optimized workflow, ECNano, comprising a wet-lab protocol and bioinfor‑
matics analysis, for accurate variant detection at 4800 clinically important genes and regions using a single MinION 
flowcell. The ECNano wet-lab protocol was optimized to perform long-read target enrichment and ONT library prepa‑
ration to stably generate high-quality MES data with adequate coverage. The subsequent variant-calling workflow, 
Clair-ensemble, adopted a fast RNN-based variant caller, Clair, and was optimized for target enrichment data. To evalu‑
ate its performance and practicality, ECNano was tested on both reference DNA samples and patient samples.

Results:  ECNano achieved deep on-target depth of coverage (DoC) at average > 100× and > 98% uniformity using 
one MinION flowcell. For accurate ONT variant calling, the generated reads sufficiently covered 98.9% of pathogenic 
positions listed in ClinVar, with 98.96% having at least 30× DoC. ECNano obtained an average read length of 1000 bp. 
The long reads of ECNano also covered the adjacent splice sites well, with 98.5% of positions having ≥ 30× DoC. Clair-
ensemble achieved > 99% recall and accuracy for SNV calling. The whole workflow from wet-lab protocol to variant 
detection was completed within three days.

Conclusion:  We presented ECNano, an out-of-the-box workflow comprising (1) a wet-lab protocol for ONT target 
enrichment sequencing and (2) a downstream variant detection workflow, Clair-ensemble. The workflow is cost-
effective, with a short turnaround time for high accuracy variant calling in 4800 clinically significant genes and regions 
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Background
Screening of single genes with traditional techniques 
such as Sanger sequencing [1] is tedious and time-con-
suming, especially in heterogeneous diseases, where 
variants in different genes can result in similar pheno-
types [2]. High-throughput sequencing allows efficient 
and comprehensive screening of all clinically significant 
genomic positions for patients with potential genetic 
defects. However, obtaining sufficient depth of coverage 
(DoC) for accurate variant calling with whole genome 
sequencing (WGS) is still costly for routine clinical tests 
[3]. Thus, target enrichment sequencing of a subset of 
the genome, using medical exome sequencing (MES), 
for example, has become a common alternative solution. 
MES uses customized or commercially available capture 
panels that target a subset of the entire exome, covering 
genes and positions with clinical significance. The effec-
tiveness of exome sequencing in variant detection of rare 
autosomal recessive monogenic disorder [3, 4] and dis-
eases of high genetic heterogeneity [5–7] have been well 
examined. MES also requires less input DNA than WGS 
does [8].

Oxford Nanopore Technology (ONT) Sequencing 
[9–11] provides a cost-effective solution for long-read 
sequencing with minimal laboratory setup. A regular 
ONT MinION sequencing run generates approximately 
12–20 Gbp data, which covers, on average, 4X to 8X of 
the human genome in a WGS run. ONT sequencing 
involves real-time generation of molecular signatures 
while the nucleotide polymer passes through a biological 
CsgG protein pore [11], which can be used for both DNA 
and RNA sequencing, as well as nucleotide modification 
detection. The simultaneous basecalling while sequenc-
ing significantly shortens the data-processing time. The 
technology, therefore, has diverse potential applications 
in genomic medicine [12].

Owing to the high sequencing error rate of ONT, it 
remains challenging to use a single MinION WGS run 
to achieve high-quality variant detection. Target enrich-
ment resolved the issue by improving the DoC in clini-
cally important regions. A recent development of ONT 
sequencing incorporated the use of CRISPR/Cas9, which 
can effectively capture and enrich large genomic frag-
ments for single-nucleotide variants (SNV) and struc-
tural variant detection. However, CRISPR/Cas9 targeted 
ONT sequencing can be performed on only a small scale, 

tested on 10 loci [13]. The sequencing cost, therefore, is 
still high in routine clinical applications targeting over 
1000 genes. In addition to the CRISPR/Cas9 enrichment 
protocol, ONT has developed an amplicon sequence cap-
ture protocol that can be applied to exome sequencing. 
The protocol can be performed with an average DoC of 
about 30× on whole-exome sequencing [14], which is 
insufficient for high-quality variant calling, especially 
for positions with < 30× DoC. Further optimization is 
needed to increase the average DoC.

A couple of existing bioinformatics tools are available 
for preprocessing and variant detection using ONT data. 
The recommended data processing pipeline on the ONT 
proprietary analysis platform EPI2ME (https://​epi2me.​
nanop​orete​ch.​com/) provides quality control of data 
based on the alignment result. The workflow is incom-
plete without further downstream analysis. The exist-
ing third-generation sequencing (TGS) variant calling 
tools, such as Medaka (https://​nanop​orete​ch.​github.​io/​
medaka/​index.​html), LongShot [15], and Clair [16], are 
designed and trained mainly for WGS data, assuming 
a relatively even DoC in the sampled regions. However, 
owing to the variation of capturing and PCR efficiency 
in different targeted regions, the average DoC among the 
captured blocks fluctuates across the genome. Some of 
these variant callers generate consensus sequences and 
perform haplotype phasing [17, 18] for error correction 
in their workflow, which significantly increases the runt-
ime and lowers the sensitivity in high DoC regions. While 
the availability of high-depth models could improve the 
performance of callers at high DoC positions, this is not 
as sensitive as some low-depth models at positions with 
100X or below.

In this study, we developed a workflow, ECNano, for 
accurate variant calling of MES of 4,800 clinically sig-
nificant genes using a single ONT MinION flowcell. The 
workflow comprises (1) a wet-lab protocol for the target 
enrichment ONT sequencing and (2) a bioinformatics 
pipeline, Clair-ensemble, for subsequent variant calling. 
The ECNano wet-lab protocol was designed to work with 
the solution-based target enrichment Agilent SureSelect 
Focused Exome panel, which strikes a balance between 
panel size and obtaining a sufficient DoC for high-quality 
variant calling in one sequencing run. Since the average 
exon size is about 164 bp [19, 20], our workflow targets 
an average fragment size of 1000  bp, which uniformly 

using a single MinION flowcell. The long-read exon captured data has potential for further development, promoting 
the application of long-read sequencing in personalized disease treatment and risk prediction.
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covers the targeted exome region, as well as the close-by 
splice sites. Alignment quality, and therefore variant-call-
ing accuracy, were significantly improved with long reads. 
Another advantage of longer reads is obtaining more 
even coverage in positions with nearby homopolymers 
and small repeats, which is often excluded in the design 
of the capture probes [21]. The bioinformatics pipeline 
Clair-ensemble adopts the fast ONT variant caller Clair 
[16] for variant calling. Clair can achieve more accurate 
and refined variant classification, including the mul-
tiple bi-allelic variants, as well as the long INDEL vari-
ants. To improve the performance of variant calling with 
amplicon data, Clair-ensemble applies a by-positional 
subsampling strategy for high DoC positions and pro-
vides the ensemble of the results of Clair using multiple 
models. To ensure stable performance and reproducibil-
ity, the ECNano workflow was tested with both stand-
ard reference DNA and patient samples. Good-quality, 
high-coverage long-read data were generated for high-
accuracy single-nucleotide polymorphism (SNP) calling. 
The precision of INDEL calling with ONT data was also 
significantly improved and was benchmarked against 

other variant callers. The whole workflow was completed 
within three days. The application is therefore suitable 
for urgent genetic testing. Further development of the 
workflow is promising, extending towards effective vari-
ant phasing and trio analysis. This work is also significant 
in promoting the application of long-read sequencing in 
personalized disease treatment and risk prediction.

Method
Overview
The ECNano workflow, comprising a wet-lab protocol 
and bioinformatics analysis, can be completed within 
three days, including target capture, target enrichment, 
ONT library preparation, MinION sequencing, data 
pre-processing, and variant calling. Our protocol is opti-
mized for the use of SureSelectXT Focused Exome (Agi-
lent, Santa Clara, CA, USA), which targets approximately 
17 Mbp positions. Other custom panels of similar target 
size are also expected to be applicable. The summary 
workflow within the three-day timeframe is illustrated in 
Fig. 1 and a step-by-step protocol is available in the Addi-
tional file 2.

Fig. 1  Overview of the ECNano workflow diagram. The workflow comprises both wet-lab and bioinformatics components and was completed 
within three days (Day 1 noon to Day 4 noon)
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Wet‑lab protocol of ECNano
The patient DNA samples used in this study were 
extracted from EDTA blood samples. The automated 
DNA extraction was performed using the Promega Max-
well® RSC Instrument (Promega, Madison, WA, USA) 
with the Promega Maxwell® RSC Blood DNA Kit. The 
pure standard DNA sample HG001 and HG002 were 
purchased from Coriell Cell repositories. In our protocol, 
several experimental procedures and parameters were 
optimized based on the ONT sequence capture protocol 
using the SQK-LSK109 ligation kit for the SureSelectXT 
Focused Exome capture panel as follows:

(1)	 DNA preparation (Additional file 2: Sect. 1–3): The 
protocol requires 3–3.5 µg of HMW DNA as input. 
DNA is sheared and size selected to retain approxi-
mately 1000 bp fragments for DNA repair and end-
prep.

	 To obtain a stable protocol that gives sufficient 
throughput using a single MinION flowcell for vari-
ant calling, we tested the workflow on a target frag-
ment length of 300 bp, 700 bp, 1000 bp, and 2000 
bp. The sequencing throughput is optimal and was 
therefore fixed at the fragment length of 1000 bp. 
Based on the target fragment size, a DNA purifica-
tion procedure after each reaction was performed 
using 0.6X Agencourt AMPure XP beads and 
washed with 80% ethanol to retain the most DNA 
fragments at about 1000 bp.

	 We tested the feasibility of using Covaris microTUBE 
AFA Fiber Snap-Cap with the M220 Focused-ultra-
sonicator as a better alternative for DNA shear-
ing compared to DNA fragmentase. The input 
DNA amount was tested with approximately 3.5 
µg, which provided spare DNA for the construc-
tion of extra libraries if needed. It is also possible 
to use less DNA as input (2–3 µg) for downstream 
processing if materials are limited. The DNA vol-
ume was adjusted to 130 µl Tris-HCl (pH 8.0) and 
was sheared into 1,000 bp fragments using Cova-
ris microTUBE (Covaris, Inc., Weburn, MA, USA) 
with the following settings: 20 °C, 50 W peak inci-
dent Power, 2% Duty Factor, 200 cycles per burst, 
and 20-second treatment time. Optional valida-
tion steps with QIAxcel Advanced System (Qiagen, 
Hilden, Germany) or a run on 1% TBE-agarose gel 
electrophoresis can be done to check the quality of 
shearing and AMPure XP beads clean-up.

	 For the end-repair reaction, there were significantly 
more DNA fragments and thus more free-ends to 

be repaired in a solution of 1000 bp DNA com-
pared with those of ultra-high molecular weight 
DNA (i.e., > 10 kbp). For the DNA repair and end-
prep step, the reaction was incubated at 20 °C for 
10 mins and subsequently at 65 °C for 10 mins on 
a thermocycler, instead of 5 mins each in the ONT 
sequence capture protocol. The increase in incuba-
tion time improved the yield of end-repaired DNA, 
with larger amounts of fragments.

(2)	 Target capture and enrichment (Additional file 2: 
Sect.  4–8): The end-repaired DNA is ligated with 
the ONT PCR adapters to perform genome-wide 
amplification before overnight target capture using 
the Agilent Sureselect XT Focused Exome RNA 
probes. The captured products are amplified to 
obtain enough DNA for ONT library preparation.

	 The ECNano protocol uses the Agilent SureSelectXT 
Focused Exome (Cat no. 5190-7787) capture panel 
with SureSelect TE Reagent kit, PTN (Cat no. 
G9605A) for target capture and enrichment. The 
target enrichment kit was originally designed for 
Ion Proton sequencing, which is more suitable for 
our target fragment length than those designed for 
Illumina sequencing. Most of the steps were con-
ducted following the manufacturer’s protocol for 
probe library size over 3 Mb.

	 For the pre- and post-capture PCR reaction, we 
tested the performance of Tks Gflex™ DNA Poly-
merase (Takara Bio Inc., Japan) and LongAmp™ 
Taq 2× Master Mix (New England Biolabs, Ipswich, 
MA, USA) for 1000 bp fragment amplification. The 
use of LongAmp™ Taq with PRM primers included 
in the ONT extension kit EXP-PCA001 (ONT) 
performed better with more PCR products gen-
erated under the same number of amplification 
cycles. The quantification of the PCR product gen-
erated was evaluated using Qubit 4 Fluorometer, 
and visually inspected on 1% TBE-agarose gel. The 
PCR condition was optimized to generate enough 
PCR product for downstream library preparation, 
thus avoiding the need for further secondary PCR 
amplification. The settings of the PCR cycles were 
as follows: (1) initial denaturation 95 °C for 3 mins; 
(2) 14 cycles for pre-capture PCR and 17 cycles for 
post-capture PCR of denaturation at 98 °C for 20 s, 
followed by annealing at 62 °C for 15 s and exten-
sion at 65 °C for 3 mins; and (3) the final extension 
at 65 °C for another 3 mins.

	 Note that during hybridization and capture, a lower 
rotation speed of 1400 rpm was used during shak-
ing incubation at room temperature on a 96-well 
plate mixer for long biotinylated RNA–DNA com-
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plexes to bind better on the Streptavidin magnetic 
beads.

(3)	 ONT library preparation (Additional file 2: 
Sect.  9–11): After the hybridization and enrich-
ment steps, the product yielded approximately 
1 µg purified amplicons for a standard ONT SQK-
LSK109 library preparation. Sequencing proceeded 
for 24–48 h with a MinION flowcell. Signals were 
recorded in fast5 files by MinKNOW (ONT), ready 
for base-calling and downstream analyses.

	 After we completed our experiments, ONT released 
an upgraded ligation kit, SQK-LSK110. The new kit 
is advertised as an in-place replacement for SQK-
LSK109. Our protocol can use the new kit without 
any changes, and we expect to see a similar or bet-
ter read length distribution and on-target rate using 
the new kit.

Bioinformatics workflow of ECNano
The bioinformatics workflow and test data are available 
at GitHub (https://​github.​com/​HKU-​BAL/​ECNano). We 
benchmarked the performance using existing ONT vari-
ant callers, including LongShot, Medaka, and Clair. We 
tested, but excluded, PEPPER (https://​github.​com/​kishw​
arsha​fin/​pepper) from our benchmark because of its 
low running speed and lack of model support for exome 
sequencing. While Clair performs the best in terms of 
sensitivity and precision, the calling time is significantly 
shorter than the others. We therefore further optimized 
a variant detection workflow, Clair-ensemble, for the 
ECNano exome capture data. The bioinformatics work-
flow could also be applied to other ONT amplicon data 
with uneven depth distribution among the targeted 
regions. The major adaptations are as follows:

(1)	 Data pre-processing: The fast5 signals generated 
were real-time base-called using ONT basecaller 
Guppy v.3.4.4 using HAC config during sequenc-
ing. In addition, homopolymer correction and a 
minimum q-score of 3 were set for base-calling. The 
adapters in reads were trimmed using Porechop 
v0.2.1 (available at https://​github.​com/​rrwick/​Porec​
hop). Reads with middle adapter identified were 
removed or split, based on a user-defined setting to 
avoid possible chimeric reads that might cause false 
positives during alignment. Reads were aligned to 
human reference genome hg38 (GRCh38) using 
minimap2 with the ONT genomic read alignment 
setting [21].

(2)	 By-position resampling: To ensure only high con-
fidence alignment was retained for variant calling, 
only primary alignments with mapping quality of 
60 or above were retained. Instead of retraining the 

model using capture data with different sequencing 
depths, we proposed a more flexible method of res-
ampling the sequencing data into multiple datasets 
for each high-depth region. The resampling func-
tion is a customized partitioning method embed-
ded in Clair. During the initial data pre-processing 
steps, the user (1) can specify the maximum depth 
per position within the target BED region, (2) can 
specify the maximum number of partitions to be 
subset for positions above the specified maximum 
depth, and (3) can apply optional base quality fil-
tering at a subsampled position before variant call-
ing when resampling is applied. The partitioning is 
mostly non-overlapping. If the last partition has a 
smaller number of alignments than the specified 
depth, extra alignments can be resampled from the 
total reads until the required depth is reached. To 
preserve the sensitivity of variant calling in low-
depth positions (e.g., below 10x), resampling and 
the base-calling filter are not applied if the depth 
is below the maximum depth cut-off value, which 
can therefore minimize the information lost, espe-
cially in low-depth regions before variant calling. 
In our benchmarks, we set the maximum depth at 
100x, with a maximum of 5 partitions in positions 
that required downsampling and set the base qual-
ity cut-off at q-score 5.

(3)	 Ensemble variant calling: Variant calling on each 
partition of candidate positions was performed 
using Clair [16], with four models trained on dif-
ferent combinations of ONT WGS reference data. 
The details of each model used are listed in Table 1. 
Clair performed individual classification tasks on 
genotype, zygosity, INDEL length per haplotype, 
and output as a probability. Variant calling was per-
formed in each of the candidate variant positions 
within the MES bed region using these models to 
obtain the probability of each classification task. To 
ensemble the classification results of the four mod-
els, the probability of each task per called position 
was averaged across partitions and models used to 
provide the most robust probability calculation. The 
averaged probabilities were used for post-process-
ing of Clair to decide on the variant calling output.

We tested the alignment downsampling performance 
using VariantBAM [22] with maximum coverage option 
(i.e., m option) and SAMtools random subsampling 
(random seed set using -s option). For variant call-
ing, we evaluated the performance on ECNano target 
enriched ONT data using LongShot, Medaka, and Clair. 
The benchmarking was done following the standard 
described in detail in Clair. The output was generated 

https://github.com/HKU-BAL/ECNano
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in standard VCF format, which can be used as input for 
other downstream processing, such as variant phasing.

Results
Reference DNA and clinical samples for performance 
evaluation
The wet-lab protocol of ECNano was tested using the 
standard HG001 and HG002 DNA samples, which are 
commercially available, ensuring that the performance 
assessment of the wet-lab protocol was unrelated to the 
quality of input DNA. In addition, these two datasets 
are among the best-annotated human references, which 
allows precise variant calling evaluation of Clair-ensem-
ble using ECNano data. To assess the reproducibility of 
ECNano workflow in actual clinical practice, ECNano 
was tested on three in-house clinical samples that require 
detection of different variant types and genotypes. The 
patients were diagnosed, and disease-causing patho-
genic variants of the samples were previously identified 
using the next-generation sequencing approach. In all 
these six sequencing runs using the same ECNano pro-
tocol, we observed similar performance in terms of read 
length distribution, coverage profile at target positions, 
total throughput, and the precision and recall of small 
variant calls, which are the primary measurements of the 
protocol. Thus, we confirmed that our workflow, which 
is sensitive to pathogenic variant detection using clinical 
specimens, is robust and reproducible.

Stable, high‑quality performance in long‑read target 
capturing for MinION sequencing
Among the various target enrichment methods, using 
RNA or DNA biotinylated probes for hybridization-
based target capture is stably applied with short-read 
sequencing for genetic screening in clinical genetics lab-
oratories. The method is standardized and robust, and 
therefore highly reliable. ECNano therefore integrates 
hybridization-based medical exome capture with Min-
ION sequencing, which can be easily incorporated into 
existing clinical practice as a stable enhancement of the 

genetic screening workflow. To ensure the workflow was 
very steady, we tested the balance between the capture 
efficiency of Agilent SureSelect Focused Exome probes 
and fragment length. The workflow was optimized to 
capture input DNA fragments of approximately 1000 bp. 
After MinION sequencing, the N50 of the captured reads 
was 1378 bp, and the average read length was 968 bp after 
minimum quality filtering and adapter trimming (Fig. 2).

Per-base accuracy is often constrained by sequencing 
technology. Low-quality reads with a mean Phred score 
below 3 were removed during base-calling. The aver-
age read Phred score in the tested sequencing library 
was Q11, and the best was Q24. Over 70.2% of the reads 
achieved Q10. Although the highly accurate base-calling 
model of base-caller Guppy was used, the error rate of 
ONT reads was still high, so conducting accurate variant 
calling is still challenging if the DoC is not high enough. 
The DoC per position deviated from the sequencing 
throughput. Depending on the quality and number of 
active pores available in the flowcell used, each sequenc-
ing run is expected to yield minimum 10Gbp throughput. 
Even with a sequencing run of only 10 Gbp throughput, 
ECNano achieved DoC at target positions of 133x, on 
average. About 98% of the target positions listed in the 
panel were covered by at least 30 reads, about 87% of 
the positions had 60× DoC, and about 55% of the posi-
tions had 100× DoC (Fig. 3). With long ONT reads, over 
96% of reads could be uniquely mapped to the refer-
ence genome for variant calling. Out of the 72,417 target 
regions within the MES bed, on average, only 17 regions 
did not have any read covered. Most of these regions 
had over 80% GC content, so they might be difficult to 
capture.

The margins of the target exon were uniformly cov-
ered by long reads of ECNano. The uniformity of the 
sequencing data was over 98% in the target regions. 
For adjacent exons with a short intron between them, 
our data showed a broader covered region, and the 
intron positions were also covered (Fig. 4). This allows 
ECNano data to have high discovery potential for 

Table 1  Information on the four variant calling models of Clair used in Clair-ensemble (CE) for variant detection of ECNano data

The models were trained with combinations of different ONT WGS datasets (Additional files in Ref. [16]). * Normal depth models were trained with datasets of 
maximum 168 × DoC, and the model with mixed high depth data included a dataset of maximum 578 × DoC

Model Training set Specifications*

CE1-3-4 hg001 + hg003 + hg004 ONT data Normal depth WGS model

CE1-2-2HD-3-4 hg001 + hg002 + hg002 very high depth (up to 500x) + hg003 + hg004 
ONT data

Very high depth and 
normal depth WGS mixed 
model

CE1-2 hg001 + hg002 ONT data Normal depth WGS model

CE1-2-3-4 hg001 + hg002 + hg003 + hg004 ONT data Normal depth WGS model
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novel pathogenic variant detection in a broader range 
around these medically relevant positions. Although 
there were still considerable deviations in the DoC 
in the captured regions owing to variation in capture 

efficiency and PCR bias, in-depth normalization was 
well performed by Clair-ensemble to achieve precise 
variant calling.

Fig. 2  Read length distribution of an ECNano target captured HG001 library, sequenced using an ONT MinION sequencer with a single flowcell 
with 10 Gbp throughput

Fig. 3  Depth distribution of the ECNano target positions in a sequencing run using standard reference HG001 samples. Positions with 30X 
coverage or above are considered to be highly confident for variant calling
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Sufficient DoC is guaranteed at known pathogenic variant 
positions and nearby splice sites for accurate variant 
calling
Known pathogenic variant positions and nearby splice 
sites are most relevant to medical diagnosis. Since most 
of the recorded pathogenic missense variants were 
found in protein-coding sequences [23, 24], screening 
variants in exome regions is sufficient for predicting a 
large proportion of genetic diseases. It is essential to 
maintain sufficient DoC at these positions to guarantee 
that the variant detection is highly sensitive. To evalu-
ate the performance of target enrichment at the known 
pathogenic variant positions, we examined 23,866 posi-
tions in the targeted region of ECNano, which are listed 
in the ClinVar database as pathogenic using one of the 
HG001 sequencing runs. Over 98.9% of these positions 

achieved above 30× DoC, which allows highly confi-
dent variant calling at these critical positions.

Since the average size of an exon is 164 bp [19, 20], a 
library with a read length of over 1000 bp can cover the 
entire exome region, as well as potential variants close 
to the splice sites. In total, 2,114,539 positions of poten-
tial splicing donors and receptors adjacent to the tar-
get region were extracted from the intropolis database 
[25]. The referenced study annotated potential donor 
and acceptor splice sites on the reference genome using 
21,000 NGS transcriptome data. Over 90% of these 
positions (± 10 bp included) had at least 60 × DoC, and 
98.5% had at least 30 × DoC. This coverage allows accu-
rate identification of canonical pathogenic splice sites 
and their nearby variants, which are known to cause 
some monogenic disease and developmental disorders 
[26, 27].

Fig. 4  Sample depth distribution comparison of target regions in three genes: (upper: NF1; middle: AGRN; bottom: BRCA1) in HG001 with ECNano 
target enrichment protocol
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Accurate variant calling and performance enhancement 
with Clair‑ensemble in target enrichment datasets
To ensure consistent and fair evaluation of variant-call-
ing performance, Clair-ensemble was evaluated using 
the two sets of standard HG001 and one set of HG002 
ECNano target-enrichment data against the known vari-
ants in the GIAB truth set (Table in Additional file  1). 
Following the best practice in Luo et  al. [16], positions 
in high confidence regions defined by GIAB were used 
for benchmarking. In total, 14,976,390 positions were 
included in the benchmarking, which was approximately 
84% of the Agilent BED positions. We benchmarked the 
performance of Clair-ensemble against the original Clair, 
LongShot, and Medaka. They are listed by precision and 
efficiency in Table 1. In addition to different variant call-
ers, another downsampling method using VariantBam 
before variant calling was tested.

All the evaluated tools, including the original Clair, 
LongShot and Medaka, are capable of SNP detection. 
With our high DoC ECNano data, the SNP calling accu-
racy of these tools does not significantly deviate from 
each other. However, the sensitivity is inferior with 
Medaka, in addition to its lengthy calling time, possibly 
because of the use of consensus calling. The performance 
of Indel prediction with Medaka was also dissatisfac-
tory. The performance of LongShot and the original Clair 
with low-DoC WGS models was similar in SNP calling. 
However, LongShot does not provide a function for Indel 
detection. Although we still included LongShot in our 
benchmarking, it is not recommended in the ECNano 
workflow for clinical context since it is functionally 
incomplete. Among all the benchmarked tools, Clair-
ensemble achieved the best precision and sensitivity, 
achieving an F1-score in the overall calling results of over 
98%. Both the built-in downsample option and Variant-
Bam were tested in Clair-ensemble. The calling results 
were similar with both resampling methods, with the 
built-in resampling method having slightly higher preci-
sion and overall performance. However, the use of the 
built-in method is preferred since no extra time or disk 
storage is required. It is expected that with runs of even 
higher throughput, the built-in resampling method will 
be much more effective than using VariantBam because 
of the increase in DoC variation with regions. The per-
formance of the ECNano bioinformatics workflow was 
significantly better than the original Clair, especially for 
INDEL calling (Fig. 5; Additional file 1: Table S1). Accu-
rate INDEL prediction with ONT data is difficult owing 

to random base shifts during base-calling. Although 
the sensitivity remained at a similar level, the ensemble 
method improved the precision in INDEL calling, which 
is preferred in clinical applications.

The performance of neural networks is biased towards 
the properties of its training dataset. These variances 
among callers or models are reduced with the ensem-
ble method, achieving a more stable performance across 
datasets. Including multiple outputs for an ensemble, 
however, is time-consuming if the caller runtime is long. 
In a comparison of the calling speed, a single Medaka 
run on ECNano data took days, while the original Clair 
required only hours. The short processing time of Clair 
allows an ensemble of multiple calling results without 
requiring too much time.

Another important feature of Clair-ensemble is the 
per-positional resampling as the pre-processing func-
tion alongside the ensemble. The resampling function 
is implemented in a Clair pre-processing step, which 
ensures the calling DoC does not exceed the maximal 
allowed depth in the ultra-high DoC region, while no 
resampling is performed in regions with optimal or low 
DoC. Compared with the use of other global downsam-
pling methods, such as VariantBam and Samtools, this is 
particularly effective in avoiding over-downsampling in 
low DoC regions. A huge variation in DoC is commonly 
observed in other target enrichment data and is also 
highly applicable for processing with Clair-ensemble. The 
resampling process in Clair-ensemble also preferentially 
retains higher quality bases for variant calling, and there-
fore further improves the precision of variant calling.

Practical application of ECNano on real patient samples
Since the whole wet-lab protocol optimization and var-
iant-calling performance evaluation was completed with 
standard DNA samples, we also applied the complete 
workflow using three patient DNA samples to ensure that 
ECNano is practical in actual clinical settings. All samples 
were first sequenced using Illumina NGS whole-exome 
sequencing, and the pathogenic variant was known. The 
three patient samples involved different types of vari-
ants (shown in Fig.  6), including (1) a 10-base insertion 
in BCAP31; (2) a homozygous C > T SNP in SLURP1; and 
(3) two heterozygous C > T and T > C SNPs in UROC1. 
Using the standardized ECNano workflow, we obtained 
over 10 Gbp of base-called throughput with a single Min-
ION flowcell and identified the target variants unambig-
uously. One of the three tested samples had a 10-based 

Fig. 5  Performance of Clair-ensemble against other existing ONT variant callers at target positions using an ECNano HG001 dataset. The 
performance was evaluated in terms of overall (top), SNP (middle), INDEL (bottom). Clair-ensemble was performed with both the built-in 
resampling method and down-sampling with VariantBam. Other tools evaluated included the original Clair with different ONT models (model 
details described in Table 1); and LongShot for SNP calling

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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duplication prediction. Since the precision and sensitivity 
of INDEL-calling with ONT data is less promising than 
SNP-calling, the variant could still be called with high 
confidence. These test set results confirmed the robust 
discovery power of ECNano in actual clinical use.

Comparison to medical exome sequencing using the NGS 
approach
To evaluate the robustness of ECNano relative to other 
existing sequencing, we compared the reads coverage 

of ECNano with a published illumina NGS dataset gen-
erated using the same target capture panel [28]. While 
both ECNano and NGS generated less than 1% of unde-
tected target regions (i.e. 0.35% of the target genes or 
regions in NGS and 0.56% in ECNano dataset with 
less than 20 reads covered), the DoC distribution of 
ECNano is of much higher evenness compared to that 
in NGS (Additional file  3a). We therefore concluded 
ECNano is able to achieve the same if not even better 
depth distribution for variant calling as in NGS with 
the same target enrichment method.

Fig. 6  Middle position showing the target variant(s) in 3 patient samples and the alignment of the adjacent positions: patient sample 1 (top) with 
homozygous C > T SNP in SLURP1; patient sample 2 (middle) with 10-base insertion in BCAP31; and patient sample 3 (bottom) with heterozygous 
C > T SNP in UROC1 
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Discussion
ONT MinION sequencing facilitates long-read sequenc-
ing at lower cost and with short turnaround time by real-
time base-calling. Initial checking for the variant was 
often observed within the first three hours of sequencing. 
Users can therefore flexibly decide their sequencing runt-
ime based on current sequencing depth with reference to 
real-time read distribution. Medical applications of large 
panel target enrichment have high discovery power, pro-
viding comprehensive screening of all medically impor-
tant genes. Compared with other multiple loci variant 
detection methods, such as DNA Array CGH (aCGH), 
MES has higher resolution and can potentially identify 
novel pathogenic positions via a population-wide asso-
ciation test and trio analysis. The sequencing cost, disk 
storage, and computational requirement of MES are also 
greatly reduced compared with whole genome sequenc-
ing (WGS), as the size of most-targeted sequencing pan-
els shrinks below 5% of the whole genome [29]. In this 
study, we successfully integrated these two promising 
technologies together in a complete workflow, ECNano, 
for clinical use, with high-quality performance. We care-
fully selected the Agilent capture panel, which is a large 
panel, approximately 17 Mbp in size, with medically 
important regions listed in three variant databases. Com-
pared with other existing ONT target enrichment meth-
ods [30], ECNano uses hybrid-capture target enrichment 
for many genes, is more stable and conventional, and is 
easier to incorporate into routine screening practices in 
clinical genetics labs. ECNano also provides a comple-
mentary bioinformatics workflow, Clair-ensemble, which 
is designed to process amplicon data. By adopting the 
original Clair, which performs rapid variant calling, Clair-
ensemble improves the calling accuracy without a signifi-
cant trade-off in the processing time. The whole ECNano 
workflow can be completed within 72  h. This allows 
genetic diagnosis with ECNano to be rapid and precise.

Compared with the ONT long-read sequencing, regu-
lar NGS Illumina sequencing generates much shorter 
fragments of around 75–300  bp after target capture, 
depending on the platform applied for sequencing. The 
short reads generated suffer from misalignment, espe-
cially for those aligned to pseudogenes, genes with mul-
tiple paralogs, segmental duplication and repeat regions 
[31]. Since the ONT reads are longer than the NGS reads, 
more reads could be uniquely mapped on the reference 
genome for effective variant calling compared with using 
NGS data. Compared with the NGS data, ONT reads are 
covered better in the margins of the target regions. For 
target exons that are close to each other, the ONT reads 
showed more uniform coverage over a broader region 
and covered positions in intron regions (Additional 
file  3b). Due to the increased read length and coverage 

adjacent to target regions, this could potentially facilitate 
phasing of variants within a gene. Although there was still 
considerable deviation in depth within the target regions 
due to variation in capture efficiency and PCR bias, nor-
malization in depth was done in bioinformatics analysis 
of ECNano to achieve more precise variant calling.

There are areas yet to be explored in the application 
of the ECNano workflow, in addition to accurate variant 
calling. With such a high sequencing depth, intermedi-
ate size structural variance (SV of > 50 bp up to 2000 bp) 
with a precise breakpoint within these exon regions or 
close by can be detected in principle [32]. The perfor-
mance has been found to be poor using short reads [33]. 
Another potential application for ECNano sequencing is 
for variant phasing by region. Haplotype phasing allows 
more precise classification of the genetic configuration to 
better predict disease severity [34]. With ECNano long 
reads, more of these variants within individual target 
gene regions can be unambiguously phased.

Conclusion
We presented a complete workflow, ECNano, for Min-
ION sequencing of 4800 clinically important genes and 
regions, including an optimized wet-lab protocol and a 
complementary bioinformatics pipeline, Clair-ensemble, 
for data processing and variant calling. In addition to the 
advantages of both hybridization-based target enrich-
ment and long-read MinION sequencing, ECNano stably 
delivered high-quality results with a short turnaround 
time. Clair-ensemble allows accurate SNP calling by 
overcoming the ONT sequencing error and the uneven 
DoC among different captured regions. The long-read 
data has potential for further downstream analysis, such 
as variant phasing and intermediate size SV detection.
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medical exome sequencing using ECNano ONT protocol and NGS Illumina 
NextSeq 500. The NGS data was obtained from a published sequencing 
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