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The physical remodeling associated with cancer progression results in barriers to mass

transport in the tumor interstitial space. This hindrance ultimately affects the distribution

of macromolecules that govern cell fate and potency of cancer therapies. Therefore,

knowing how specific extracellular matrix (ECM) and cellular components regulate

transport in the tumor interstitium could lead to matrix normalizing strategies that improve

patient outcome. Studies over the past decades have provided quantitative insights

into interstitial transport in tumors by characterizing two governing parameters: (1)

molecular diffusivity and (2) hydraulic conductivity. However, many of the conventional

techniques used to measure these parameters are limited due to their inability to

experimentally manipulate the physical and cellular environments of tumors. Here, we

examine the application and future opportunities of microfluidic systems for identifying

the physiochemical mediators of mass transport in the tumor ECM. Further advancement

and adoption of microfluidic systems to quantify tumor transport parameters has

potential to bridge basic science with translational research for advancing personalized

medicine in oncology.

Keywords: tumor engineering, microfabrication, extracellular matrix, cellular microenvironment, therapeutic

testing

INTRODUCTION

Cancer has traditionally been described in terms of its molecular and genetic
underpinnings, cellular heterogeneity, and network of signaling interactions during
malignant progression (Hanahan and Weinberg, 2011). However, cancer can also be
defined by its physicochemical features that arise due to function-altering mutations to
the cellular constituents of the tumor microenvironment. For example, many solid tumor
types, such as breast, pancreas, and liver, exhibit a desmoplastic response where stromal
cells become hyperactivated leading to excessive extracellular matrix (ECM) production,
growth of dense fibrotic tissue around the tumor (Trimboli et al., 2009; Kalluri, 2016),
and subsequent tumor-promoting increases in mechanical stiffness (Leight et al., 2016;
Reid et al., 2017). In addition to mechanical alterations, the tumor ECM may impede the
distribution of macromolecules involved in regulating cell function (Netti et al., 2000). This
hindrance to transport can also affect the ability of therapeutics to efficiently reach cancer
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cells. Consequently, the tumor ECM itself has emerged as a
therapeutic target where the use of proteolytic enzymes and anti-
fibrotic agents have been shown to normalize the ECM, improve
drug penetration into the tumor, and increase patient survival
(Nakai et al., 2012; Provenzano et al., 2012; Venning et al., 2015;
Doherty et al., 2017; Papageorgis et al., 2017; Elahi-Gedwillo et al.,
2018).

These newfound clinical implications of targeting the tumor
ECM have heightened the importance of precise quantitative
analysis of the mass transport properties of the tumor interstitial
matrix. For this application, 3-D microfluidic systems, i.e.,
ones that integrate microscale technologies with 3-D tissue
scaffolds, may provide a powerful approach because they possess
the following desirable attributes : (1) bottom-up construction
that enables tuning of ECM properties and spatial patterning
of cellular constituents, (2) micron or cellular length scales
where diffusive transport is critical, (3) controlled application
of convective flow, and (4) typically favorable optical properties
for real-time observation (Huh et al., 2011; Infanger et al., 2013;
Akbari et al., 2017).

Here we highlight the application of microfluidic technologies
for studying the transport properties of the tumor interstitium.
To provide a balanced perspective, first we present a fundamental
understanding of the physiological barriers to interstitial mass
transport in tumors. We then discuss the parameters used to
quantify transport in tumors and the established techniques
used to measure these parameters. Lastly, we present prospective
directions for the use of microfluidics as a tool for drug screening
and development of targeted therapies. We note that in addition
to the interstitium, other constituents of tumors such as the
vasculature and transcellular membranes pose barriers to drug
transport before reaching the intracellular space (Jain, 1987). For
the foundational understanding of these other barriers in the
context of tumors, we wish to direct the readers to these excellent
review articles (Jain, 1988; Szakács et al., 2006; Dewhirst and
Secomb, 2017).

FUNDAMENTALS OF MASS TRANSPORT
IN THE TUMOR INTERSTITIUM

Physiological Barriers to Transport
The interstitial compartment (or interstitium) is comprised of
an ECM, interstitial fluid, basement membrane proteins (e.g.,
collagen IV, laminin, elastin), and stromal cells (Figure 1). The
interstitial ECM consists of a network of fibrous matrix proteins
(e.g., collagen type I, fibronectin), glycosaminoglycans (GAGs)
(e.g., hyaluronan, chondroitin sulfate), and proteoglycans (PGs)
(e.g., versican, aggrecan, perlecan) (Wiig and Swartz, 2012;
Theocharis et al., 2016; Xiong and Xu, 2016; Malandrino et al.,
2018). Interstitial fluid is composed primarily of extravasated

Abbreviations: ECs, endothelial cells; ECM, extracellular matrix; FRAP,

fluorescent recovery after photobleaching; GAGs, glycosaminoglycans; HAS3,

hyaluronan synthase 3; HA, hyaluronic acid; HAdase, hyaluronidase; IFP,

interstitial fluid pressure; PDGFR-α, platelet derived growth factor receptor

alpha; PDMS, poly(dimethylsiloxane); PGs, proteoglycans; PTEN, phosphatase

and tensin homolog; NPs, nanoparticles; SMO, smoothened; T-MOC, tumor

microenvironment on a chip; TKI, tyrosine kinase inhibitor.

blood plasma and provides a medium for the transport of
nutrients, waste products, and signaling molecules between cells
of the interstitium.

The tumor interstitium poses unique barriers to transport
which in turn can influence the delivery and uptake of therapeutic
agents (Stylianopoulos et al., 2018). For example, the dense
ECM of tumors hinders molecular diffusion (Jain, 1987; Pluen
et al., 2001; Stylianopoulos et al., 2010; Zhang et al., 2017).
In addition, tumors exhibit elevated interstitial fluid pressure
(IFP) (Heldin et al., 2004; Elahi-Gedwillo et al., 2018) which can
be attributed to excessive plasma leakage out of tumor blood
vessels and impaired lymphatic function due to compressed
vessels by growth-induced solid stress (Stylianopoulos et al.,
2012; Nia et al., 2016). Uniformly high IFP in tumors limits
interstitial convection as it abrogates the pressure difference
between blood and lymphatic vessels. Also, fluid leakage from the
tumor into surrounding tissue can result in outward radial flow
that prevents transport of molecules into the tumor interior (Jain
and Stylianopoulos, 2010). However, an important consideration
is that these characteristics of tumors are highly heterogeneous,
both within the same tumor and when comparing separate
tumors (Jain and Stylianopoulos, 2010).

Transport through the tumor interstitial space relies on a
combination of diffusion and convection (Jain, 1987; Netti et al.,
1997; Kuszyk et al., 2001; Swartz and Fleury, 2007; Fan et al.,
2014). The relative contributions of diffusive and convective
transport can be quantified through the dimensionless parameter,
the Peclet number (Pe):

Pe =
convection

diffusion
=

Lvinterstitial

D
(1)

Where L is the characteristic length associated with the transport
of the molecule, vinterstitial is the interstitial fluid velocity,
and D is the solute effective diffusion coefficient. In the
interstitium, a typical L is ∼100µm (approximate distance
between microvessels) (Dewhirst and Secomb, 2017). A typical
vinterstitial is ∼1 µm/s (Wiig and Swartz, 2012), although this
value can be much lower or higher depending on the region
of the tumor (Kingsmore et al., 2018). Finally, a representative
value for D is ∼10−7 cm2/s (Chary and Jain, 1989) (reported for
serum albumin in both normal and neoplastic tissues). Further
considerations for diffusion and convective transport in the
tumor interstitium are discussed below.

Diffusive Transport in the Tumor
Interstitium
Molecular diffusion through the tumor interstitium is due to
concentration gradients (Baish et al., 2011). Diffusive flux can
be related to the concentration gradient through the effective
diffusion coefficient D (cm2/s). In the case of one dimensional
transport, this relationship is given by Ficks’ Law:

Jdiff = −D
δC

δx
(2)
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FIGURE 1 | Mass transport through the tumor interstitium. Once extravasated from the vascular space, molecules must cross the tumor interstitium, and eventually

drain through the lymphatic vessels. The tumor interstitium is occupied by the interstitial matrix composed of fibrillar and non-fibrillar components such as collagen,

glycosaminoglycans (GAGs), proteoglycans (PGs), and basement membrane produced by both cancer and stromal cells. This matrix imposes barriers to transport of

molecules in tumors, contributing to a more hostile malignancy.

where δC
δx denotes the concentration gradient. The effective

diffusion coefficient in the interstitium (or interstitial diffusivity)
is determined by properties of both the molecule of interest
and the interstitial matrix (Jain and Stylianopoulos, 2010).
Properties of the molecule that affect its interstitial diffusivity
include size, charge, and configuration (Jain, 1999; Jain
and Stylianopoulos, 2010; Wiig and Swartz, 2012). The
properties of the ECM in the tumor interstitium that affect
the diffusivity of molecules include viscoelasticity, geometrical
arrangement (e.g., collagen fiber orientation), and electrostatic
properties (Swartz and Fleury, 2007; Seo et al., 2014). These
properties are a consequence of ECM composition (e.g.,
collagen, GAG, and PG content) with collagen being the
major determinant of interstitial diffusion (Netti et al.,
2000).

Convective Transport in the Tumor
Interstitium
Convective transport of molecules through the tumor
interstitium is driven by pressure gradients. The convective
flux can be written as:

Jconv = vinterstitialfC (3)

where C is the concentration of the particle/molecule, f is the
retardation coefficient (ratio of particle to fluid velocity) which
is often assumed to equal 1, and vinterstitial is the interstitial

fluid velocity. vinterstitial can be determined by the solution to
the Brinkman equation for flow through a porous medium
(Equation 4):

µ∇2vinterstitial −
1

K
′
vinterstitial − ∇p = 0 (4)

where µ is the fluid viscosity, K ′ is the hydraulic conductivity,
and ∇p is the pressure gradient across the interstitium. Due to
the largemagnitude of surface drag relative to viscous dissipation,
the viscous term in the Brinkman equation can often be neglected
resulting in themore familiar Darcy’s law. Darcy’s law can then be
used to write the convective flux in terms of the pressure gradient
and K ′:

Jconv = −CfK ′
δP

δx
(5)

where δP
δx is the pressure gradient over a distance x. Thus, for a

given δP
δx the K ′ of the interstitial ECM is the major determinant

of interstitial velocity. K ′ can also be expressed in terms of
the Darcy permeability (also denoted as specific permeability)

K =
K′

µ
where µ is the viscosity of the fluid. This parameter

is mostly dependent on the properties of the interstitial ECM
including composition, geometrical arrangement, charge, and
hydration (Levick, 1987; Ng and Swartz, 2003; Ng et al., 2005;
Wiig and Swartz, 2012). Compared to normal tissue, tumors
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typically exhibit reduced K ′ (Provenzano et al., 2012; Polydorou
et al., 2014; Mpekris et al., 2017; Papageorgis et al., 2017).

MEASURING THE INTERSTITIAL
TRANSPORT PARAMETERS IN TUMORS

Looking at the equations above for diffusive and convective
fluxes, one can see that D and K ′ primarily determine the
effectiveness of these mode of transport within tumors. A brief
overview on how these two parameters have been experimentally
measured is discussed below.

Interstitial Diffusivity (D)
Most techniques employed to measure D rely on measuring
solute flux at a known concentration gradient or measuring
relaxation of these gradients and fitting the diffusion equation to
the data (Jain, 1999). Diffusion measurements in vitro have been
performed using tissue slices or various gel or solution models of
the interstitium (Jain, 1987; Pluen et al., 1999; Ramanujan et al.,
2002). It should be noted thatD is often lower than the diffusivity
in free solution, and correlations have been developed that can
relate both types (Swartz and Fleury, 2007). For in vivo settings,
the use of intravital microscopy and fluorescence recovery after
photobleaching (FRAP) has allowed the measurement of D
(Chary and Jain, 2007). FRAP involves the use of a laser beam
to artificially introduce a concentration gradient of a fluorescent
tracer in a region of tissue and the relaxation of this gradient
is analyzed to yield the diffusion coefficient and the convective
velocity (Ramanujan et al., 2002).

Hydraulic Conductivity (K′)
Measurements of K ′ using Darcy’s Law (Equation 5) involve
estimating the flow rate under a known pressure gradient.
This measurement is performed in vitro by applying flow
across a tissue slice using an Ussing-style chamber (Hedbys and
Mishima, 1962) or by ultracentrifugal sedimentation (Laurent
and Pietruszkiewicz, 1961; Preston et al., 1965; Ethier, 1986).
While measuring K ′ in vivo is comparatively more challenging,
it has been achieved with the use of a micropore chamber (Swabb
et al., 1974) as well as tail injections in rats (Swartz et al., 1999).K ′

can also be estimated by confined compression testing of excised
tumor chunks ex vivo (Polydorou et al., 2014;Mpekris et al., 2015;
Papageorgis et al., 2017).

APPLICATION OF MICROFLUIDIC
MODELS FOR STUDYING TUMOR ECM
TRANSPORT PROPERTIES

Representing the Tumor ECM in
Microfluidic Devices
While the techniques described above have collectively
provided the framework for our understanding of transport
in tumors, they have several limitations that are worthy of
consideration. First, it is often very difficult to apply controlled
perturbations in vivo. With regards to quantifying transport
within tumors, it is immensely challenging to independently

specify concentration and pressure gradients and subsequently
decouple the contributions of diffusion and convection. Second,
intravital microscopy used for FRAP experiments requires
specialized equipment and training that may not be readily
available to most laboratories. This imaging modality is also
limited to only thin tissues or for the superficial layer of thick
tissues. Third, an overarching challenge with the analysis of
tumor tissue, whether assessed in situ or ex vivo, is the high
degree of morphological heterogeneity present in tumors that
may lead to uncertainties when interpreting experimental results.

Compared to established techniques, microfluidic devices
offer several advantageous characteristics for measuring the
transport properties of the ECM (Figure 2). For instance, custom
design and fabrication of microfluidic devices offer control over
the length scale used to study transport phenomena and the
formation of separate compartments that are representative
of distinct regions of tumors. In addition, concentration and
pressure gradients in microfluidic devices can be specified with
relative ease and independently of each other, enabling precise
control over convective and diffusive transport. Moreover,
microfluidic devices fabricated by rapid prototyping of
poly(dimethylsiloxane) (PDMS) permit visualization of the ECM
since they are compatible with labeling and imaging techniques
such as immunofluorescence, confocal reflectance microscopy,
and second harmonic generation imaging. This important
quality of PDMS microfluidic devices enables simultaneous
interrogation of ECM composition and structure with the
measurement of transport parameters. Lastly, microfluidic
devices offer control over the spatial positioning of cells and the
ECM composition. Of the reconstituted, biologically-derived
ECM gels, collagen type I is most widely used due to its
prominence as one of the main components of the tumor ECM
(Sung et al., 2009; Burkel et al., 2016). However, other ECM gels
such as fibrin and Matrigel are commonly used (Ng and Pun,
2008; Moreno-Arotzena et al., 2015). The biological function of
the reconstituted matrices can be further modified through the
incorporation of other ECM constituents such as GAGs, and PGs
that were described in section Physiological Barriers to Transport
(Stuart and Panitch, 2008; Yang et al., 2011; Manneschi et al.,
2016; Narkhede et al., 2018). The use of cell derived matrices have
also been used to provide a more representative tumor ECM in
microfluidic devices (Gioiella et al., 2016; Brancato et al., 2018).
Collectively these capabilities allow for the quantification of the
contribution of each ECM constituent to transport properties.
It is noted that the reconstituted ECM gels used for the desired
studies can be subjected to material characterization tests (e.g.,
stiffness measurements, quantification of protein content) to
ensure that they match the physiological properties of tumor
tissue in vivo.

Given the importance of both D and K ′ as measures of
transport through ECM, below we provide examples specific to
the application of microfluidic platforms in quantifying these two
governing parameters.

Interstitial Diffusivity (D)
Microfluidic devices used to measure values of D typically
feature a compartmentalized 3-D ECM chamber that is flanked
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FIGURE 2 | Characteristics of 3-D microfluidic platforms for studying transport in the tumor ECM. Microfluidic platforms possess the capacity to readily integrate

these attributes to efficiently quantify transport parameters of the tumor ECM in vitro and study how they are affected by different cellular and matrix constituents.

by channels or ports that enable controlled application of
concentration gradients across the ECM (Zervantonakis et al.,
2010; Evans et al., 2014; Wang et al., 2017). Measurement
of D then involves applying a known concentration of a
fluorescent tracer, measuring the concentration profile across
the ECM compartment over time, and analyzing the data to
obtain a value for D (Ghajar et al., 2008; Timp et al., 2008;
Zervantonakis et al., 2010). Ghajar et al. demonstrated that
increasing fibrin density significantly restricted D, which was
attributed to increased matrix viscoelasticity (Ghajar et al.,
2008). This study also demonstrated that the value for D is
inversely proportional to the mass of the molecule of interest and
presumably the hydrodynamic or Stokes radius (Seo et al., 2014).
In a separate study, Albanese et al. incorporated tumor spheroids
in a microfluidic device and monitored the accumulation of
polystyrene nanoparticles (NPs) in the interstitial spaces as a
property of NP size. This study also successfully bridged the gap
between in vitro and in vivo studies by validating the results
obtained in the microfluidic device with ones obtained in a
murine model (Albanese et al., 2013). Kwak et al. implemented
a tumor microenvironment on a chip (T-MOC) model that
included capillary, interstitial, and lymphatic compartments with
independent control of fluid pressure. This system demonstrated
that NP transport is drastically hindered when IFP is higher
than the capillary pressure (Kwak et al., 2014). Interestingly,
addition of MCF7 breast cancer cells into the interstitial
compartment reduced D by a factor of 3, presumably due to
cell-mediated physical alterations to the ECM structure. Using a
microfluidic model that incorporated cell-derived ECM, Gioiella
et al. demonstrated that co-culture of MCF7 with normal breast
fibroblasts generated an activated stromal tissue that reduced
the D through the ECM (Gioiella et al., 2016). Taken together,

microfluidic platforms have facilitated the quantification of D
and how it is affected by both properties of the molecule and the
ECM setting, with results agreeing with what has been observed
in vivo (Tomasetti and Breunig, 2018).

Hydraulic Conductivity (K′)
Several studies have leveraged the ability of microfluidic systems
in specifying pressure gradients and ECM composition to
quantify the hydraulic permeability (K) through application of
Darcy’s Law (Polacheck et al., 2011; Hammer et al., 2017).
Typically, K ′ or K measurements in microfluidic devices involve
the compartmentalization of ECM material in a microchannel
and the application of a known pressure gradient to induce flow.
The fluid velocity through the ECM can be approximated with
the use of fluorescent tracers. Ng et al. looked at K as a measure
of matrix integrity, demonstrating that Matrigel can support flow
driven cultures for up to 6 h, with collagen matrices (2 mg/mL)
also supporting such conditions (Ng and Pun, 2008). However,
the reported value for K in Matrigel was below physiologically-
relevant values. Tran et al. measured K through tumor cell
aggregates in microfluidic devices at low and high pressures
(Tran and Marcos, 2018). This study demonstrated that high
intratumoral pressures can result in hydraulic fracturing of
tumor aggregates, manifested by increased local K values.

K has also been estimated in microfluidic devices with the
purpose of estimating interstitial flow and shear stress levels
local to cells embedded in a 3-D matrix. This approach has
shown that K can influence interstitial flow and consequently
shear stresses on cells, thus altering cell behavior (Polacheck
et al., 2011; Li R. et al., 2018). Lastly, K has also been used as
a parameter for stromal cell-mediated ECM remodeling. Using
this approach, Hammer et al. demonstrated that hyperactivation
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of platelet derived growth factor receptor alpha (PDGFRα) in the
stroma reduced K and enhanced in vivo breast tumor growth
(Hammer et al., 2017). Furthermore, it was shown that K was
rescued to control levels by targeting PDGFR-α with the tyrosine
kinase inhibitor (TKI) crenolanib, and extracellular hyaluronic
acid (HA) deposited by stromal fibroblasts with hyaluronidase
(HAdase). Recently, it was shown that pharmacologic inhibition
of smoothened (SMO) in human pancreatic cancer fibroblasts
with the compound GDC-0449 (or vismodegib) destabilized
phosphatase and tensin homolog (PTEN) (Pitarresi et al., 2018).
Moreover, gene expression analysis revealed that treatment
of these fibroblasts with GDC-0449 increased hyaluronan
synthase 3 (HAS3) expression levels while microfluidic analysis
demonstrated that GDC-0449 treatment reduced K, which was
rescued to control levels with application of HAdase. In this
study, loss of PTEN in the stroma was also correlated with
enhanced pancreatic tumor growth in vivo and reduced overall
patient survival. Importantly, the functionality of microfluidics
enabled precise control and manipulation of a biological target,
and analysis of the functional outcomes of target modulation,
which led to the discovery of previously unexplained adverse
effects of PDGFR-α hyperactivation and loss of PTEN in stromal
fibroblasts.

CONCLUSION AND FUTURE
PERSPECTIVES

Microfluidic systems have successfully validated ECM transport
properties obtained with other in vitro or in vivo models.
However, we believe that there are numerous opportunities to
utilize these systems for future novel discoveries. For instance,
matrix normalizing strategies in oncology have so far focused
on depleting collagen and HA in tumors, alleviating barriers to
drug transport (Chauhan et al., 2011; Li X. et al., 2018). However,
other ECM components may also have important and previously
unknown roles in mediating drug transport, either directly as
a physical barrier or indirectly by activating cells of tumors
to deposit increased amounts of collagen and HA. Therefore,
successfully elucidating these roles by ECM components besides
collagen and HA may lead to new therapies for targeting the
matrix that can improve drug transport and patient outcomes.
We note that the application of microfluidic models has so far
focused on describing the transport properties of desmoplastic
tumors such as breast and pancreatic carcinomas that are rich
in collagen and HA (Gioiella et al., 2016; Hammer et al.,
2017; Brancato et al., 2018; Pitarresi et al., 2018). However,
with increasing information on the different ECM compositions
across various tumor types (Naba et al., 2016), measurements of
the interstitial ECM transport properties can also be applied to

non-desmoplastic tumors such as brain cancer to provide novel
insights. Given the ability to systematically manipulate both ECM
and cellular constituents, microfluidic systems are intrinsically
modular, highly versatile, and therefore especially conducive for
these types of studies.

Another prospective application for measuring D and K ′

within microfluidic devices can involve rapid screening to
predict functional outcomes based on different genetic profiles
of tumor or tumor-associated cells. For example, we previously
demonstrated that hyperactivation of PDGFR-α in mammary
fibroblasts and loss of PTEN in pancreatic fibroblasts resulted
in increased deposition of HA with subsequent decreased K ′

in the ECM (Hammer et al., 2017; Pitarresi et al., 2018).
Moreover, the therapeutic implications of this type of approach
can be further extended through the incorporation of cancer
patient-derived cells or ECM into the appropriate microfluidic
system to predict drug response. While no current assays
are ready for routine clinical practice (Shamir and Ewald,
2014), microfluidic systems can potentially provide personalized
information on the determinants to drug transport. Thus,
looking forward, microfluidic systems can serve as a nexus to
bring together engineers, cancer researchers, and oncologists to
foment advancements in cancer therapy.
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