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Robust electric-field tunable opto-
electrical behavior in Pt-NiO-Pt 
planar structures
A. Rebello & A. O. Adeyeye

Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory 
applications based on electric field control of resistance, known as resistive switching (RS). Formation 
of conducting nanofilaments by the application of an electric field (electroformation) is considered 
an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting 
nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very 
little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, 
we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar 
structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, 
the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse 
at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification 
under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon 
is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of 
preparation of these planar structures make them attractive for integration with current circuit 
technologies and various novel opto-electrical applications.

Physics of light and development of new light based technologies have attracted tremendous research interest 
owing to their fundamental and technological significance. For instance, photodetectors with low dark current, 
fast response and high sensitivity have wide range of applications such as optoelectronic devices, biomedical 
imaging, optical communications, quantum information technology and remote sensing1,2. Transition of elec-
trons between different energy levels by light absorption is the fundamental operating mechanism of a photo-
detector. Among the commercially available photodetectors, photomultiplier tube and avalanche photodiode 
stand out owing to their high sensitivity and fast response3. However, the prominent demerits of these detectors 
are fragility, cost, and bulkiness. In addition, the requirement of high electric bias, additional supply voltage sta-
bilization circuitry and intricate temperature compensation hampers the integration of these detectors into the 
current circuit technologies such as complementary metal-oxide semiconductor (CMOS) electronics. As an alter-
native, extensive efforts are underway to develop photodetectors from 1D nanowires, quantum dots, metal oxide 
nanorods and heterojunctions made of nanocomposites and oxide thin films4–9. Heterojunctions made of ZnO 
nanorods and NiO thin films have been demonstrated to exhibit modest photodetector characteristics because 
of a very large response time and high dark current, however, photoresponse properties of NiO thin films in the 
planar structure are not known to date.

NiO is a well-known p-type semiconductor with a wide band gap (~3.8 eV), and has been widely investi-
gated for different technological applications including nonvolatile memory devices10, super capacitor elec-
trodes11, electrochromic devices12, gas sensors13, and photocathodes for solar cells14. In particular, capacitor-like 
metal-NiO-metal structures have attracted considerable attention in the past decade due to its potential as an 
ultra-high density and high speed nonvolatile memory based on reproducible electric field induced changes in 
the resistance of a material, known as resistive switching15,16. Typically, an initial step known as electroformation 
is employed to the as prepared devices to facilitate resistive switching17. This pre-requisite involves the application 
of a sufficiently large electric field (>106 V/cm) to the pristine devices, which creates conducting nanofilaments 
in the insulating host matrix18. Besides capacitor-like structures, electroformation on single crystalline oxide 
heterostructured nanowires has also been demonstrated to exhibit resistive switching characteristics19. Here, we 

Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University 
of Singapore, 117576 Singapore. Correspondence and requests for materials should be addressed to A.O.A. (email: 
eleaao@nus.edu.sg)

received: 03 December 2015

Accepted: 17 May 2016

Published: 13 June 2016

OPEN

mailto:eleaao@nus.edu.sg


www.nature.com/scientificreports/

2Scientific RepoRts | 6:28007 | DOI: 10.1038/srep28007

present intriguing electrical characteristics and unusual photoresponse in a Pt-NiO-Pt device in in-plane geom-
etry, which is electroformed by the application of an electric field of the order of ~104 V/cm. While the pristine 
devices showed ohmic behavior and negligible photoresponse, a very robust nonlinear rectification behavior and 
photoresponse are observed in the electroformed devices. Furthermore, the devices exhibit low dark current, low 
response time and good responsivity at low voltage biases, which are essential qualities of a good photodetector 
and they can be easily integrated in to the current CMOS circuit technologies. Under light illumination at a higher 
voltage bias, the device shows a dramatic change in the sign of rectification, and exhibits superior photoresponse 
and sensitivity, which may be exploited for novel electro-optical devices and photodetection applications.

Results
Figure 1a shows the current vs. voltage characteristics of the electroformed Pt-NiO-Pt device (device A) in 
dark (OFF) and under light illumination (P =  3.9 mW). A large enhancement in the magnitude of the current 
is observed from very low voltage magnitudes under light illumination. In Fig. 1b, we show the current-voltage 
characteristics of the electroformed device at lower voltage magnitudes in dark and under a low power light illu-
mination (P =  190 μ W). Another remarkable feature of the electroformed device is the presence of nonlinearity 
and rectification in the current-voltage characteristics. The typical current-voltage curve of an as prepared device 
is plotted in Fig. 1c. In contrast to the electroformed films, the current-voltage curve of the as prepared film did 
not show any nonlinearity and rectification. In Fig. 1d, we demonstrate the systematic variation of current vs. 
voltage curves with increasing power of light illumination, when voltage is swept from 0 →  5 →  − 5 →  0 V. The 
photoresponse under negative voltage bias is larger compared to the forward bias at all powers of illumination. 
Interestingly, the curves do not exhibit any hysteresis behavior, which favors its practical implementation for 
device applications. The variation of the magnitude of current (I) at ± 5 V is plotted as a function of illumination 
power (P) in the inset of Fig. 1d. The solid lines are power law (I ~ Pθ) fit to experimental data (symbols). The fit-
ting gives a non-linear behavior with θ  =  0.85. The non-unity (0.5 <  θ < 1) exponent suggests the presence of traps 
that have a distribution in energy to favor a complex process of electron–hole generation, recombination, and 
trapping within the semiconductor20. Under electronic doping from light excitation, many trapping states will 

Figure 1. Electrical characteristics and photoresponse of in-plane Pt-NiO-Pt device. (a) Current vs. voltage 
characteristics of the electroformed NiO film when voltage is swept from 0 →  5 →  − 5 →  0 V in dark (OFF) and 
under visible light illumination of power, P =  3.9 mW. The inset shows the schematic of the measurement setup. 
(b) Current vs. voltage characteristics when voltage is swept from 0 →  + 1 →  − 1 →  0 V in dark (OFF) and under 
low power light illumination. (c) Ohmic current vs. voltage characteristics of the pristine film. (d) Current vs. 
voltage characteristics with increasing power of illumination from 0 to 3.9 mW. The inset shows the variation of 
photocurrent (I) at ±5 V with increasing power (P) of illumination. Experimental data are denoted by symbols 
and the lines are power law fit (I ~ Pθ).
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be converted to recombination states. This increases the number of recombination states for electrons, which, in 
turn, reduces the electron lifetime and therefore, the value of θ  deviates from unity.

Motivated by the large photoresponse at low bias voltages, we further investigated the current-voltage charac-
teristics of the device A at higher voltage magnitudes. Figure 2a shows the current-voltage curve when the voltage 
is swept from 0 →  10 →  − 10 →  0 V under dark ambience and Fig. 2b, under a very low power of light illumination 
P =  75 μ W. Surprisingly, the magnitude of current under light illumination exhibited a large enhancement under 
positive voltage bias compared to the negative bias, resulting in a dramatic change in the sign of rectification. Note 
that this is in sharp contrast to the electrical behavior at low voltage magnitudes (Fig. 1d), where the photoresponse 
was larger under negative bias. In addition, the current-voltage curves showed a systematic variation under varying 
power of light illumination, as illustrated in Fig. 2c and the curves under light illumination were highly reproduci-
ble and robust. The variation of current as a function of illumination power at ± 10 V is plotted in Fig. 2d.

The photoresponse of the device at low (± 1 V) and high (± 10 V) voltage biases are shown in Fig. 3. In all the 
cases, the photocurrent can be reproducibly generated by periodically turning the light illumination on and off. 
The device has a very low dark current (a few nanoamperes) at all voltage biases. Upon illumination, the pho-
tocurrent rapidly increased to a stable value, and then drastically decreased to its initial level when the light was 
turned off, indicating the excellent stability and reproducible characteristics of the device. In close agreement 
with the photoresponse of the current-voltage characteristics (Fig. 2d), a large photocurrent of approximately 
1100 nA is observed at + 10 V with a very low dark current (a few nanoamperes) for VBIAS =  10 V (Fig. 3c). Under 
all the voltage biases, the response time of the device was less than the 200 ms, the actual response time could 
not be measured in this study due to experimental limitations. The above mentioned features render the devices 
under present study much superior photodetection attributes compared to NiO-ZnO heterojunctions, where the 
response time is a few tens of seconds with high dark currents8,21. The responsivities of the photodiode obtained 
using a red laser beam with intensity of illumination I =  15 mW/cm2 are 0.24 AW−1 (+10 V) and 0.16 AW−1  
(− 1 V). Interestingly, a high responsivity of 0.25 AW−1 has been demonstrated in an infrared photodetector based on 
hot electron carrier generation22; however the device was cooled down to low temperatures to reduce the presence 
of high dark current arising from a low potential barrier. At 10 V bias, the present devices showed a large respon-
sivity in the sensitive region (Fig. 3d), i.e., at low powers of light illumination. The responsivity of the present device 
is 21.7 AW−1 at 10 V and 46 μ W/cm2 illumination power, which is comparable to the responsivity (3–16 AW−1) 
recently reported in germanium/silicon avalanche photodiodes above 22 V23. Furthermore, those diodes exhibited 
a higher dark current arising from the tunneling current at the silicon/germanium interface at higher voltage biases.

Figure 2. Effect of light on electrical asymmetry at high voltage bias. Current vs. voltage characteristics of the 
NiO film when voltage is swept from 0 →  +10 →  −10 →  0 V in (a) dark (OFF) and (b) under 75 μ W power of 
light illumination (ON). (c) Current vs. voltage characteristics under different powers of light illumination, the 
numbers denote the magnitude of power in milliwatts. (d) Photo current vs. power of illumination at ±10 V.
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Discussion
Formation of an unintentional interface layer between metal-oxide interfaces during sample preparation or trap-
ping of charges at the metal-semiconductor interface can lead to non-ohmic behavior24. The ohmic behavior 
observed in the present pristine devices suggests that the semiconductor-metal junctions are free of any interfa-
cial capacitance. Interestingly, the electroformed device exhibits a strong nonlinearity and rectification even at 
lower voltage magnitudes. Ohmic contacts between metal-semiconductor junctions are achieved by high doping 
concentration or low barrier height25. The theoretical barrier height for a p-type semiconductor- metal junction 
is defined as ϕ B =  Eg/q +  χ− ϕ m, where Eg is the band-gap, χ the electron affinity of the semiconductor and ϕ m the 
work function of metal. For NiO-Pt junction, Eg ~3.8 eV26, χ = 1.46 eV27, ϕ Pt =  5.4 eV, which yields a low theoret-
ical barrier height ~0.1 eV. Therefore, the non-ohmic nature of the electroformed Pt-NiO-Pt devices implies the 
formation of Schottky barriers at the metal-oxide interfaces during electroformation. To investigate the Schottky 
characteristics, we further performed photoresponse measurements in a similar device (named as device B) at dif-
ferent temperatures, T =  295, 280, 250 and 10 K. The current-voltage characteristics under dark ambience (OFF) 
and light illumination (ON) are shown in Fig. 4a,b, respectively. In contrast to the current-voltage curves in the 
ON state, the curves in the OFF state showed prominent variation. Notably, the prominent kink-like behavior 
observed around 5 V at 295 K in the OFF state is absent at 250 K (Fig. 4a). In addition, the device showed consid-
erable photoresponse even at 10 K (Fig. 4b), whereas, the I-V characteristics under dark ambience was too low 
to be measured at 10 K. In general, current-voltage characteristics of Schottky junctions can be described by the 
thermionic emission theory:
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where S is the junction area, A* is the Richardson constant, q is the electron charge, k is the Boltzmann constant, 
T is the temperature, n is the ideality factor and ϕB is the Schottky barrier height. While the value of n in ideal 
thermionic emission is equal to unity28, theoretical fits to the experimental data at 250 K in the OFF state yielded 
high values of n (>300) (inset of Fig. 4a), which indicates the absence of an ideal Schottky barrier scenario. 
However, the experimental data in the ON state could not be reproduced by the TE theory. To further study the 
dependence of optoelectrical response on the Schottky characteristics and stochastic nature of electroformation, 
electroformation was re-performed on device B. The photoresponse of current-voltage characteristics at 290 K in 
the re-electroformed device B is shown in Fig. 4c. Interestingly, the re-electroformed device B in the OFF state 

Figure 3. Reproducible photodetection of the device. The variation of photocurrent when light is switched 
ON and OFF at regular interval of 25 s at various bias voltages (a) +1 V, (b) −1 V, (c) +10 V and (d) −10 V.
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showed poor rectification (inset of Fig. 4c) and did not exhibit any prominent kink, unlike the previous data 
(Fig. 4a). However, at T =  200 K, the device showed a prominent rectification in the OFF state (inset of Fig. 4d). 
Though the device showed a poor rectification ratio at 290 K compared to that at 200 K under dark ambience, it 
showed a large and comparable photoresponse in the ON state at 290 K (Fig. 4c) and 200 K (Fig. 4d). This further 
corroborates that the degree of rectification is not a significant aspect determining the optoelectrical response. 
Therefore, we consider another scenario based on electroformation, to explain the intriguing optoelectrical and 
nonlinear response in the electroformed device, wherein the electroformed oxide layer comprises of nanofila-
ments formed by the application of high electric field16,29–31. A schematic of the electroformed device is shown in 
the inset of Fig. 4b. During electroformation, it is highly likely that Ni-O bonds can break and oxygen atoms 
escape from the oxide layer. The formation of oxygen vacancies and metallic Ni states leads to a change in the 
resistance of the device. These conducting nanofilaments act as defects modifying the electrical properties and 
band structure of the pristine device. This is corroborated by the low resistance of the electroformed devices com-
pared to the pristine devices (lower by one order of magnitude in the present study) and the nonlinear nature. 
Note that a large nonlinear asymmetric current-voltage behavior has been demonstrated in capacitor-like struc-
tures based on NiO nanoparticle assembly32. The presence of random dopants and local variation in chemical 
composition can cause potential fluctuations, leading to local variation of the semiconductor band edges and 
bandgap energy fluctuations33.While the pristine device is unresponsive to the light radiation, the electroformed 
device shows strong response to visible light and red laser beam (λ  =  650 nm). Since the cut-off wavelength cal-
culated using NiO bandgap (3.6 eV) is λ c =  hc/Eg≈  343 nm, it is interesting that the electroformed device shows 
photoresponse even at higher wavelength. This strongly suggests that the band structure of the oxide layer in the 
pristine device is completely different from that of the electroformed device. It is well known that defects in NiO 
play a significant role in determining the band structure and the conductivity. Recently, Peng et al. has demon-
strated that measurement protocols such as current compliance and method of sample preparation can control 
the stoichiometry and the associated defect characteristics, which in turn modifies the band structure and leads 
to different electrical characteristics in a NiO based device34. Based on the observation of decrease in the resistiv-
ity of the electroformed device in the present study, we infer that electroformation has modified the defect char-
acteristics of the pristine oxide layer, which is supposed to be a charge transfer insulator in its purest form.

In the following, we demonstrate that electroformation is a key factor in determining the electrical behavior of 
the devices in the present study. Figure 5a shows the nonlinear and asymmetrical electrical behavior in the OFF 
state of a device when re-electroformed by changing the bias direction of the forming voltage (VEF) to negative 
polarity. Interestingly, the direction of rectification is reversed; please see the typical rectification behavior when 

Figure 4. Photoresponse at different temperatures. Current vs. voltage characteristics of the device B at 
different temperatures, T =  295, 280 and 250 K in the (a) OFF and (b) ON state. Photoresponse of the re-
electroformed device B at (c) T =  290 K and (d) T =  200 K.
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electroformed with positive bias direction (Fig. 2a) for comparison. Figure 5b,c shows the rectification behavior 
in the OFF state when the device was subsequently electroformed with positive and negative voltage polarities, 
respectively. The toggling of direction of rectification behavior in the OFF state with the bias direction of forming 
electric field confirms the impact of electroformation on the rectification behavior. On the contrary, the change 
of bias direction of electroformation showed negligible impact on the current-voltage behavior in the ON state, 
as can be seen in Fig. 5d–f.

The devices exhibited a robust photoconductivity with low dark current levels and did not suffer from any 
persistent photocurrent problems and degradation of the photoconduction quality by over exposure to light. Note 
that in GaN-based photoconductors, the photocurrent persists for a long time (hours) after the light is shut off 
and the response speed for the photoconductor is very slow, hampering its implementation in real device appli-
cations35,36. In contrast to the photoresponse at low voltage magnitudes (inset of Fig. 1d), photocurrent vs. power 
for both positive and negative 10 V biases (Fig. 2d) could not be fitted to any power law. The origin of the dramatic 
enhancement in the photocurrent and sensitivity at higher voltages may be different from the usual electron–hole 
generation, recombination, and trapping within the semiconductor. We note that the planar structure of the pres-
ent device is similar to the geometrical configuration of a metal-semiconductor-metal (MSM) photodiode and the 
increasing photocurrent with increasing voltage above ~5 V under positive voltage bias closely resembles the gain 
phenomena in a MSM photodiode37. MSM photodetectors generally consist of two Schottky contacts, in the form 
of interdigitated fingers deposited on a low-doped semiconductor, that act like two back to back Schottky diodes 
and exhibiting a nonlinear but symmetric behavior in the OFF state38. However, the present device exhibits an 
asymmetric nonlinear behavior which varies depending on the stochastic nature of electroformation and forma-
tion of conducting nanofilaments. While MSM based photodetectors requires a high voltage bias for a reasonable 
photoresponse, the present device shows remarkable photoresponse at very low magnitude of voltage bias, which 
further indicates that the fundamental mechanism of MSM photodiode is different from that of the present device. 
Theoretical fits based on various interface and bulk limited conduction mechanism did not yield good match 
with the experimental data under light illumination. The exact microscopic mechanism for the increase in the 
photocurrent under high positive voltage bias is unclear and therefore calls for further theoretical and experimen-
tal investigations. The increasing photocurrent with increasing voltage in the present device can be qualitatively 
explained by considering holes or electrons trapped at the surface near electrodes, which creates an asymmetric 
electric field at the metal-semiconductor contact. Under sufficiently high voltage bias, an additional carrier injec-
tion is induced from the electrodes by tunneling, leading to an enhanced photocurrent. Another plausible sce-
nario is the impact ionization generated at high voltages similar to an avalanche photodetector39,40. We note that 
the robust and reproducible opto-electric response in our devices deteriorated when they were operated above 
15 V, possibly due to a soft-breakdown occurring in the oxide layer. Furthermore, surface sensitive spectroscopic 
studies such as x-ray absorption spectroscopy or electron energy loss spectroscopy, which is beyond the scope of 
present work, can shed more light on the chemical nature of the electroformed oxide layer in the pristine device.

Figure 5. Influence of bias direction of electroformation on electrical behavior. Current vs. voltage 
characteristics in the OFF and ON state of an electroformed device, when subsequently re-electroformed 
with negative forming voltage −VEF [(a,d)], positive forming voltage +VEF [(b,e)], and −VEF [(c,f)]. Note the 
toggling of direction of rectification in the OFF state with the forming bias direction, whereas the electrical 
behavior in the ON state shows negligible change.
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In summary, we have studied opto-electrical properties of planar Pt-NiO-Pt device. While the pristine device 
shows ohmic behavior and negligible photoresponse, this study demonstrates that an electroformed device exhib-
its a remarkable photoresponse and asymmetric nonlinear electrical characteristics. At lower voltage magnitudes, 
the device shows a larger photoresponse under negative voltage bias compared to that under positive voltage 
bias. In sharp contrast, at higher voltage bias, the device shows an excellent sensitivity to light illumination under 
positive voltage bias, manifested as a dramatic reversal of asymmetry in the electrical characteristics. The ease 
of fabrication, robustness and the simple design of the current devices facilitate the exploitation of the observed 
photoresponse behavior and the monolithic integration of these structures with current circuit technologies for 
a variety of light-based applications.

Methods
Pt -NiO-Pt devices (schematic is shown in Fig. 1) were prepared on a SiO2/Si substrate using standard photoli-
thography, rf-sputtering and lift-off method. The NiO film (50 nm thickness) was deposited on 150 μ m ×  500 μ m 
patterned area on the substrate at room temperature using a NiO (99.99%) target at an rf power of 100 W, 3 ×  10−3 
Torr working pressure and in deposition chamber with a base pressure of less than 3 ×  10−8 Torr. Two 200 nm 
thickness Pt electrodes, separated by 200 μ m were deposited on the top surface of NiO films. A single irreversible 
forming by the application of an electric field of the order of 104 V/cm (400–500 V) for five to eight minutes was 
essential for the devices to show robust photoresponse and nonlinear rectification behavior. The current-voltage 
characteristics were measured with two dc probes (on xyz stages) using a picoammeter (Keithley, 6487) in the 
in-plane geometry. The device characteristics at cryogenic temperatures were performed in a Lakeshore cryogenic 
probe station. A Bruker X-ray diffractometer in grazing incidence mode was used to confirm the phase of the 
deposited NiO films. The photoresponse measurements were performed using a quartz halogen fiber optic illu-
minator under dark ambience, as in a black body experiment.
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