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Abstract

Matrix population models are widely used to study population dynamics but have been criticized because their outputs are
sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population
growth rate (l) because this is an intrinsic characteristic of the population that should not depend on the model
specification. It has been suggested that the sensitivity of l to matrix dimension was linked to the existence of fast
pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width
increases. We showed that for matrix population models with growth transition only from class i to class iz1, l was
independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate.
We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e.
the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process
(where diffusion here is the movement in size of an individual whose size increments are random according to a normal
distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion
resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of l to matrix
dimension for a class width in the range 1–10 cm was small, much smaller than the sampling uncertainty on the value of l.
Moreover, l could either increase or decrease when class width increased depending on the species. Overall, even if the
class width should be kept small enough to limit diffusion, it had little impact on the estimate of l for tree species.

Citation: Picard N, Liang J (2014) Matrix Models for Size-Structured Populations: Unrealistic Fast Growth or Simply Diffusion? PLoS ONE 9(6): e98254. doi:10.1371/
journal.pone.0098254

Editor: Natalia L. Komarova, University of California-Irvine, United States of America

Received January 17, 2014; Accepted April 29, 2014; Published June 6, 2014

Copyright: � 2014 Picard, Liang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nicolas.picard@cirad.fr

Introduction

To model the dynamics of a population, there are two main

options depending on the level of the population: individual-based

models, where the trajectory of every individual is monitored; and

distribution-based population models, where individual attributes

are summarized by their population-level distribution [1,2].

Among the latter, four types of models can be distinguished

depending on whether the distribution and time are modeled as

continuous or discrete: matrix population models (discrete

distribution and discrete time [3]), integral projection model

(continuous distribution and discrete time [4]), continuous-time

Markov chain (discrete distribution and continuous time, e.g. [5]),

and partial differential equations (continuous distribution and

continuous time [6]). There are two diverging opinions on the

choice of a modeling approach. On one hand, some have

highlighted the advantages and limitations of each approach, thus

suggesting that some approach may intrinsically be superior to the

others. For instance, matrix population models have been

criticized for the arbitrariness of the class division [7–10] and

integral projection model put forward as a solution to this issue

[11–13]. On the other hand, others have put the emphasis on the

theoretical connections that exist between all these modeling

approaches [14–18], thus suggesting that the choice of a modeling

approach should be a pragmatic choice that marginally affects the

predictions [3,18.5].

Matrix models have been criticized for their inability ‘‘to

incorporate variation among individuals within a size category’’

[7, p.346]. Because matrix models operate on size- (or age-, or

stage-) structured populations, differences of growth among

individuals due to size are accounted by the model, but size may

indeed be an incomplete predictor of growth. Nevertheless, in this

case, additional predictors of growth can be added as structuring

variables of the population, with a subdivision of the categories of

the transition matrix [3, 18.4] [19]. To address autocorrelation in

growth, second- (or higher-) order Markov chains (and corre-

sponding transition matrices) can also be considered [20]. Finally,

residual error in growth which results from random variability in

individual growth can also be addressed in matrix modeling using

random shocks [21] or as a diffusion process (i.e. by adding

transition rates off the main diagonal of the transition matrix [3,

p.199]).

Second, matrix models have been criticized because their

outputs (population growth rate l, i.e. the temporal rate of change

of the population number of individuals on the long term;

elasticities, i.e. the relative rate of change of an output with respect

to a parameter; age estimates) are sensitive to the dimension of the

matrix (or, equivalently, to the width of the size classes for a given

range of size) [8,9,13,22]. This sensitivity to matrix dimensionality

is concerning when the outputs are intrinsic population charac-

teristics that should be defined irrespective of the mathematical
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model of population dynamics and, thus, irrespective of the

particular division of size (or age) into classes. The dependence of

elasticities on matrix dimensionality is consistent with the fact that

the relative importance of growth compared with stasis (i.e.

remaining in a size-class for more than one time step) changes with

the class width [23]. Moreover, the dependence of the population

growth rate l on matrix dimensionality has been questioned by

other studies [24,25]. In some cases, the influence of matrix

dimensionality on model outputs has been investigated using

different populations with different models fitted to them

[10,13,26]. In this case, the effect of matrix dimension on model

outputs can be confounded with the effect of population

differences.

As a possible explanation of the dependence of l on matrix

dimensionality, Zuidema et al. wrote [7, p.346]: ‘‘As the transition

probabilities in a matrix model depend only on the current

situation, there is no obstruction for unrealistically fast pathways

through the life cycle. For instance, in matrix models with 10-cm-

wide diameter categories and small progression probabilities, a

small fraction may reach 50 cm diameter in five time steps,

something that is clearly impossible biologically (and physically).

This fraction contributes strongly to population growth and

probably causes the high estimates of l for small matrix models.’’

Because the population growth rate l is an intrinsic characteristic

of the population that is often used in population viability analysis

and that should not depend on the model specifications,

understanding why l depends on matrix dimensionality in matrix

population models would indicate to which extent different

modeling approaches are reconcilable. In case of significant

dependence, it should provide guidance to the modelers about

which modeling approach to use.

In this study, we will assess the dependence of the population

growth rate l on class width, and how fast pathways (i.e. the

fraction of individuals that systematically move up a class at each

time step) possibly contribute to this dependence. We will show

that if there are indeed fast pathways, there are also in about the

same proportion slow pathways, i.e. the fraction of individuals that

remain in the same class for a long time. As a consequence, fast

pathways do not directly bias growth rates towards higher than

expected values, but rather, in combination with slow pathways,

act as a diffusion process with limited impact on the estimate of l.

Diffusion here is defined as the movement in size of an individual

whose size increments are random following a normal distribution

with mean zero. At the population level, these individual random

walks flatten the size distribution and make it uniform (in the

statistical distribution sense). This study is based on a data set from

a tropical rain forest in central Africa, including different tree

species whose dynamics are modeled by a Usher transition matrix

(i.e. a transition matrix with non null elements on its main

diagonal, on its lower subdiagonal and on its first row only).

Materials and Methods

The M’Baı̈ki Forest
The M’Baı̈ki experimental site is located in the south of the

Central African Republic (30549N, 170569E), at the northern limit

of the rain forest of the Congo basin. It is dedicated to studying the

effects of logging damage on stock recovery [27] and lies in a terra

firme rain forest. The experimental design of the site consists of two

blocks of three and one block of four 300|300-m permanent

sample plots with a 50-m inner buffer zone. In each central

200|200-m square, all trees over 10-cm diameter at breast height

(dbh) were identified and georeferenced. Since 1982, girth at

breast height, standing deaths, treefalls, and newly recruited trees

over 10-cm dbh have been monitored annually except in 1997,

1999 and 2001. Between 1984 and 1985, two silvicultural

treatments were applied: three plots (including the buffer zone)

were logged, and four plots were logged and thinned. The three

remaining plots were left as controls. For this study, we used the

data of the control plots only, between 1982 and 2006 with a time

step of 2 years. In total, 66,749 tree records in 53 species were used

in this study.

Changing the Dimension of a Transition Matrix
Given a transition matrix U for a size-structured population

with K size classes, different techniques have been proposed to

derive a transition matrix U0 for K ’vK size classes. When the

data used to fit U are available, a data-driven approach consists in

refitting the transition matrix using these data and K ’ classes. This

approach has the advantage that the possible resulting change in

the estimate of the population growth rate l readily corresponds to

what is observed when fitting the matrix model. The limitation is

that it is not possible to disentangle what is specifically due to the

data set used and what is due to the properties of matrix modeling

in general.

A second technique consists in computing the transition rates of

the U0 matrix from those of U. For instance, when K ’~K=2 and

when combining every two successive classes i and iz1 into a

single one j, it has been proposed to compute the upgrowth

transition rate p’j , the mortality rate m’j and the recruitment rate r’j
of UK ’ as [8,9]:

p’j ~fiz1piz1

.
f ’j

m’j ~ fimizfiz1miz1ð Þ
.

f ’j

r’j ~ firizfiz1riz1ð Þ
.

f ’j

ð1Þ

where pi , mi and ri are the transition rates of UK for growth,

mortality and recruitment respectively, fi is the number of

individuals in size class iƒK , and f ’j ~fizfiz1 is the number of

individuals in size class jƒK ’. This approach has the advantage

that no additional information beyond the population-level

characteristics are needed to change the size of the transition

matrix. A first limitation is that this technique can be used only

when U0 is nested into U (i.e. when the K ’ classes are obtained by

merging together some of the K classes). A second limitation, more

theoretical, is that the relationships between the transition rates of

U0 and those of U depend on the number fi of trees in the classes.

Because fi changes with time, this implies that the U0 matrix

derived from U will not be the same depending on the time step

considered (even if U is stationary), which is not consistent.

Moreover, other algebraic relationships than (1) could be used to

collapse U into U0. In particular, it is mathematically feasible to

collapse a transition matrix into a smaller matrix while maintain-

ing the same dominant eigenvalue and eigenvectors [10,25,28–

30]. If such algebraic relationships were to be used rather than (1)

to collapse matrices (and there is no theoretical reason for not

doing it) then, by construction, l would not depend on the class

width.

A third technique to change the dimension of the transition

matrix dates back to [14,15] and is based on the connection

between matrix population model and continuous partial differ-

ential equations [3,18.1.4]. In particular, it has been the basis for

optimizing the width of size classes in matrix models for size-

structured populations [31,32], considering that the matrix model

Growth and Diffusion in Matrix Population Models

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e98254



is a discrete approximation of a continuous partial differential

equation with a bias/variance trade-off to optimize. It has the

advantage that it can deal with any change of the class limits in a

theoretically consistent manner [33]. It has the limitation that size

must be continuous and that a model of continuous-size dynamics

must be assumed as a prerequisite. The matrix population model

can be seen as a discretization of a McKendrick partial differential

equation [16,34–36]:

Lf

Lt
(x,t)~{

L
Lx
½a(x) f (x,t)�{m(x) f (x,t) ð2Þ

with the boundary condition:

a(x0) f (x0,t)~

ð?
x0

r(u) f (u,t)du ð3Þ

Figure 1. Growth of a cohort of 100 Celtis zenkeri trees with a uniform initial diameter distribution. Projection time is t~50 yr. The time
step of the matrix model is t~1 yr and the class width is column-wise (A) d~0:263 cm, (B) 0.9994 cm, and (C) 2.4985 cm. The top panel shows
images of the transitions matrices between the initial and final times (i.e. the annual transition matrices raised to the power of t), where the starting
class is column-wise, the ending class is row-wise, and the transition rates between classes are shown using heat colors (from white = zero to red = the
highest values). The bottom panel shows the predicted dbh distributions: dotted line = initial dbh distribution (uniform across 10–14.997 cm); solid
line = final dbh distribution according to the McKendrick continuous model; shaded bins = final dbh distribution according to the Usher matrix model.
doi:10.1371/journal.pone.0098254.g001

Figure 2. Variations of the population growth rate l of Celtis
zenkeri with class width d. l is computed using a Usher matrix
model. It increases with d (solid line), but this increase is negligible on
the range from 1 to 10 cm as compared to the 95% confidence interval
of the estimate of l (shown by the dot and whiskers). The horizontal
dotted line corresponds to the value of l for d~1 cm.
doi:10.1371/journal.pone.0098254.g002

Figure 3. Distribution across 53 species of the amplitude of
variations of the population growth rate l. Left boxplot: variations
of l when the class width d varies from 1 to 10 cm, where
Dl~ maxd l{ mind l. Right boxplot: amplitude of the 95% confidence
interval of the estimate of l for d~1 cm.
doi:10.1371/journal.pone.0098254.g003
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where f (x,t) is the continuous size distribution at time t, such that

the number of individuals with a size between x and xzd for any

infinitesimally small d is f (x,t)d, a is the size growth rate, m is the

mortality rate, r is the recruitment rate, and x0 is the minimum

size for inventory. Let us consider a numerical scheme to solve (2)

[37, chapter 20]. Size is discretized using a size spacing of d:

xi~x0z(i{1)d where x0 is the minimum size and i~1,…, I .

Time is discretized using a time spacing of t: tn~(n{1)t where

n~1,…, T . Let f n
i ~f (xi,tn) be the discretized value of the size

distribution. A forward-time left-size differencing scheme for (2)–

(3) is:

f nz1
i {f n

i

t
~{

a(xi)f
n

i {a(xi{1)f n
i{1

d
{m(xi)f

n
i (iw1) ð4Þ

f nz1
1 {f n

1

t
~{

a(x1)f n
1

d
{m(x1)f n

1 z
X

i

r(xi)f
n

i

which can be written as:

F(nz1)~UF(n) ð5Þ

where F(n)~½f n
1 ,…, f n

I � is the vector of length I that contains the

number of individuals at discrete time n in each size class with

width d and lower bound x0z(i{1)d, and U is a Usher transition

matrix:

U~

q1zg1 g2 � � � � � � gI

p1 q2 0 � � � 0

0 P P P
..
.

..

.
P P P 0

0 . . . 0 pI{1 qI

0
BBBBBBB@

1
CCCCCCCA

ð6Þ

where the stasis rate qi (i.e. the probability for an individual to stay

alive in class i between two consecutive time steps), the upgrowth

transition rate pi (i.e. the probability for an individual to grow up

from class i to class iz1), and the recruitment rate gi are given by:

qi~1{m(xi)t{a(xi)t=d

pi~a xið Þt=d

gi~r xið Þt

ð7Þ

Equation (5) corresponds to the Usher matrix model for size-

structured populations [38,39], which has developed in forestry

independently from the McKendrick equation (e.g. [40–42]).

Given an individual-based model of size growth a(x), an

individual-based model of death probability m(x), and an

individual-based model of recruitment r(x), equation (7) defines

the transition rates of the Usher matrix U for any partition of size

into classes of width d. Notice that piƒ1 for all i implies:

d§tfsup
x

a(x)g ð8Þ

which corresponds to the Usher [38] hypothesis that individuals

cannot grow by more than a single class in one time step.

Population Growth Rate
The asymptotic population growth rate, l, is the dominant

eigenvalue of the transition matrix U as given by (6) [3]. In the

general case, there is no explicit expression for l. However, in the

particular case of a Usher transition matrix with constant mortality

rate m and constant recruitment rate r (i.e. m(x) and r(x) do not

depend on size x), and irrespective of the variations of the growth

rate a(x) with size, there is an analytical expression for l
[24,43,44]:

l~1{mzr ð9Þ

which mathematically proves that l does not depend on the class

width in this case. This result is also valid when transition matrices

are collapsed using (1), because mi:m and ri:r for all i imply

m’j ~m and r’j ~r for all j. A corollary of this result is that

variations of l with class width can occur only if the mortality rate

or the recruitment rate varies with size. Therefore, in this study,

we will only consider matrix models with either size-dependent

mortality or size-dependent recruitment.

When dealing with forest ecosystems, due to the complexity of

sexual and asexual reproductions and variability of elapsed time

for germinated seeds to become recruited trees, it is not possible to

assign a newly recruited tree as originating from a given size class

[13]. Therefore, when dealing with forest dynamics, an average

recruitment rate (the same for all size classes) is generally estimated

as the ratio of the number of newly recruited trees over the

number of trees at the previous time step (see [22,45] for

exceptions). If such is the case, variations of l with class width can

occur only if the mortality rate varies with size.

Practically, to assess how l varied with class width for the tree

species at M’Baı̈ki, the following analyses were performed. Trees

were classified into diameter at breast height (dbh) classes with

equal width d, ranging from a minimum dbh for inventory of

10 cm to a maximum dbh of 150 cm. The number K of dbh

classes correspondingly varied proportionally to 1=d. The time

step of the matrix model was t~1 year. For each species with at

least 300 observations, a constant dbh growth rate a was estimated

from the M’Baı̈ki data base as the empirical mean of the dbh

increments (including negative increments) over 2 years divided by

this period of 2 years. The variations of the growth rate with dbh

were not considered here because they are not a condition for l to

Figure 4. Variance of the dbh growth rate versus one-year dbh
increment for 53 tree species. Notice that axes are in logarithmic
scale. The line is the regression line on log-transformed data.
doi:10.1371/journal.pone.0098254.g004
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vary with class width d. A constant recruitment rate was estimated

for each species as the ratio of the number of newly recruited at

year t over the number of living trees at year t{2, divided by this

period of 2 years.

The dependence of mortality on dbh was necessarily accounted

because it is a condition for l to vary with class width d. The tree

mortality rate was modeled for each species as a function of tree

dbh using one of the three following models [46,47]:

m(x)t~logit{1(azbx) ð10Þ

m(x)t~logit{1(azbxzcx2) ð11Þ

m(x)t~logit{1(azbx exp (cx)) ð12Þ

where logit{1(z)~(1z exp ({x)){1 is the inverse logit function

and a, b, c are parameters to estimate. Models (10) and (11) were

fitted using the generalized linear model (command glm in R

software) whereas model (12) was fitted using the generalized non-

linear model (package gnm in R software). The three models were

compared using the Akaike Information Criterion (AIC) and the

one with the lowest AIC was retained. Given the growth rate a, the

mortality rate m and the recruitment rate r for each species, the

class width d was changed from dmin~ maxf1, tag cm to

dmax~10 cm; for each value of d, the Usher transition matrix was

computed using (7), and the population growth rate l was

computed as the dominant eigenvalue of this matrix.

The variations of l with d were compared to the sampling

variability of l for the smallest class width dmin (i.e. for the matrix

model that is the closest to the McKendrick equation (2)). The

sampling variability of l represents the uncertainty on l due to the

finiteness of the data set used to estimate l. For each species, a

95% confidence interval of the estimate of l for the smallest class

width dmin was computed using 500 bootstrap replicates [48,49].

Fast and Slow Pathways
The McKendrick equation corresponds to a propagation of the

diameter distribution at a speed defined by a(x). Hence, implicitly

with the McKendrick equation, all trees with the same diameter

grow at the same rate and there is no fast pathway. If the Usher

matrix model was an exact scheme to solve the McKendrick

equation, there would be no fast pathway either. Therefore, the

fast pathways depicted by Zuidema et al. [7] correspond to the

approximation brought by the discretization of (2) into (5).

When focusing on the upgrowth part of the McKendrick

equation (i.e. setting the mortality and the recruitment rates to

zero), a von Neumann stability analysis [37,120.1.1] shows that

the Usher matrix model is a stable numerical scheme to solve the

McKendrick equation provided that condition (8) is met.

Therefore, the Usher condition that no individual can grow by

more than one class in a single time step identifies with the

Courant-Friedrichs-Lewy condition in numerical analysis. The

von Neumann stability analysis also shows that the Usher matrix

model is numerically dissipative unless a(xi)t=d~1 for all i. This

means that in the Fourier transform of the distribution f , all terms

with a wave number k such that kd&1 will be inaccurately

calculated. This dissipative effect of the Usher scheme can be

intuitively understood by considering that the numerical scheme

(4) can be rewritten as:

f nz1
i {f n

i

t
~

1

2

b2
iz1f n

iz1{2b2
i f n

i zb2
i{1f n

i{1

d2
{

a(xiz1)f n
iz1{a(xi{1)f n

i{1

2d
{m(xi)f

n
i

ð13Þ

where b2
i ~a(xi)d for all i. The numeric scheme (13) corresponds

to the forward-time centered-size differencing scheme for the

Fokker-Planck equation:

Lf

Lt
(x,t)~

1

2

L2

Lx2
½b(x)2 f (x,t)�{ L

Lx
½a(x)f (x,t)�{m(x) f (x,t) ð14Þ

with b(x)2~a(x)|d. When compared to the McKendrick

equation (2), the Fokker-Planck equation has an additional term

(the second-order partial derivative in (14)) that corresponds to

diffusion.

As a first result, the fast pathways pointed out by [7] can be

interpreted as a diffusion process and go along with slow pathways,

i.e. individuals that remain in the same size class longer than

expected. The diffusion process has a simple biological interpre-

tation and may be a desirable feature [40,42]. It relates to the

individual variability in growth. More precisely, b(x)2t can be

interpreted as the variance of the individual size increments during

an infinitesimally small time interval t for trees with size x. Hence,

the diffusion process will be realistic provided that b(x) is a realistic

model for the standard deviation of annual tree size increments.

The Usher scheme implies that b(x)2~a(x)|d. Hence, the

diffusion generated by the Usher scheme will remain biologically

realistic as long as

d v* inf
x

s(x)2

a(x)t
ð15Þ

where s(x) is the standard deviation of tree size increments during

the time interval of trees t years.

To visualize fast and slow pathways, we considered the transient

dynamics of a single even-aged cohort of trees uniformly

distributed between x0 and x0zD where D is the dbh amplitude

of the cohort, i.e.: f (x,0)~(N=D) 1(x0ƒxvx0zD), where N is

the initial number of trees and 1(p) is the indicator function of

proposition p (~1 is p is true and 0 if p is false). To focus on the

transient dynamics of this cohort, recruitment was set to zero

(r:0). In the particular case where the growth rate a is constant,

the analytical solution of the McKendrick equation (2) is known

[16, p.45] [36] and corresponds at time t to a displacement of the

cohort by a dbh at with an attenuation of the number of trees with

dbh x by exp ({
Ð t

0
m(xzas)ds), i.e.:

f (x,t)~

N

D
expf{

ðt

0

m½xza(s{t)�dsg 1(x0zatƒxvx0zatzD)
ð16Þ

In the particular case where m is given by model (10),

expf{
ðt

0

m½xza(s{t)�dsg~ 1z exp½azb(x{at)�
1z exp (azbx)

� �1=(bat)
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By comparing the exact solution (16) of the McKendrick

equation to the prediction of the Usher matrix model, fast and

slow pathways due to discretization can be identified. We

calculated the proportion of fast pathways as the proportion of

F(t=t) that was above x0zatzD, and the proportion of slow

pathways as the proportion of F(t=t) that was below x0zat.

Results

Variations for Celtis zenkeri
To illustrate the dependence of the population growth rate l on

the class width, we first describe the variations of l for just one

species taken from the Mbaki data set. We chose Celtis zenkeri Engl.

(Ulmaceae) because it was the most abundant species of the data

set (with 7295 observations between 1982 and 2006) and

representative of the most commonly observed pattern of variation

of l. Its average growth rate was 0.263 cm yr{1 (standard

deviation: 0.30 cm yr{1). Its recruitment rate was 1.028% yr{1.

Its mortality rate was best modeled by model (10) with a~{5:348
(std. dev.: 0.272) and b~0:026 (std. dev.: 0.009). Therefore, the

mortality rate for C. zenkeri was an increasing function of tree dbh,

ranging from 0.6% yr{1 for a dbh of 10 cm to 2.3% yr{1 for a

dbh of 62 cm (that is the 99.5% percentile of dbh for C. zenkeri at

M’Bı̈aki).

To illustrate fast and slow pathways, we considered the

dynamics of an even-aged cohort of 100 trees uniformly

distributed between 10 and 15.0 cm at t~0. When d~0:263
cm and t~1 yr, the condition at=d~1 was met and the Usher

scheme for growth was not dissipative (Figure 0A): there were

neither fast pathways nor slow ones in this case. With the

exception of the last class, non-null transition rates defined one-to-

one connections between classes. The only difference between the

exact solution of the McKendrick equation and the Usher model

followed from the difference between
Ð t

0
exp ({m(xzas))ds (for

the exact solution) and Pt=t

i~1 (1{m(xi)t) (for the Usher model) for

the attenuation of the number of trees. For C. zenkeri, this

difference was actually so small that it is not visually perceptible in

Figure 1A.

When d~1:0 cm and t~1 yr, at=dv1 and the Usher scheme

became dissipative (Figure 1B): there were some fast and slow

pathways in this case. Several classes at initial time contributed to

the number of trees in any class at final time. For C. zenkeri, the

proportion of slow pathways (22.8%) was greater than the

proportion of fast pathways (15.9%). If the mortality rate m was

constant, then the proportion of slow pathways would have been

exactly equal to that of fast pathways. The class width d~1:0 cm

brought the same diffusion as a random growth with standard

deviation (ad=t)0:5~0:51 cm yr{1, which is greater than the

observed standard deviation of the growth rate (0.30 cm yr{1).

The dissipative effect of the Usher scheme increased as the class

width increased from 1.0 to 2.5 cm (Figure 1C). For this latter class

width, the proportions of slow and fast pathways were 30.9% and

20.1%, respectively, and the dissipation was equivalent with that

produced by a random growth with standard deviation 0.81 cm

yr{1.

The population growth rate of C. zenkeri increased from

l~1:00451 for a class width of 1 cm to 1.00457 for a class width

of 10 cm. In comparison, the 95% confidence interval of the

estimate of l for d~1 cm was 1.00212–1.00709. Therefore, the

amplitude of the 95% confidence interval of the estimate of l for

d~1 cm was 96 times greater than that of the variations of l for d
varying from 1 to 10 cm (Figure 2), even though C. zenkeri was the

species with the largest number of observations and the narrowest

95% confidence interval.

Variations Across Species
After excluding those species for which the mortality rate did

not significantly vary with dbh (and thus with a population growth

rate l that did vary with d), there were 53 species left. Models (10),

(11) and (12) for mortality were selected for 85%, 9% and 6% of

the species, respectively (Table S1). For 74% of the species, the

population growth rate l increased with class width d; for 24% of

the species, l decreased with d; and for 2% of the species, the

change of l when d varied from 1 to 10 cm was less than 10{6.

There was no one-to-one relationship between the direction of

change of l and the shape of the mortality model, with all

combinations of mortality model and direction of change of l
being observed. Nevertheless, when the mortality rate m(x) was an

increasing function of dbh x, l most often (but not always)

increased with d.

On average across species, the amplitude of the 95% confidence

interval of the estimate of l for d~1 cm was 31 times greater than

that of the variations of l for d varying from 1 to 10 cm (Figure 3).

No species had a population growth rate l for 1ƒdƒ10 cm that

went outside the 95% confidence interval of the estimate of l for

d~1 cm.

The relationship across species between the variance s2 of the

growth rate and the one-year dbh increment at could be modeled

by a power relationship: s2~0:775(at)1:434 (Figure 4). Combining

the Usher/Courant-Friedrichs-Lewy condition (8), condition (15)

and this power relationship gives the following approximate

interval for the class width:

atƒd *v 0:775(at)0:434

Only very fast growing species, with a dbh growth rate greater

than 0.64 cm yr{1, cannot meet this condition. At M’Baı̈ki, only

four species (Musanga cecropioides R. Br., Trilepisium madagascariense

DC., Macaranga paxii, and Ricinodendron heudelotii) had a mean

growth rate greater than 0.64 cm yr{1. For all other species (92%

of the species), it would be possible to set a class width that is

consistent with the variability in growth of the species. However,

the resulting class width (less than 0.64 cm for a time step of 1

year) would be much less than the class widths commonly used in

matrix modeling for forest dynamics.

Discussion

Is l Sensitive to Class Width?
The Usher matrix model can be seen as a discrete approxima-

tion of a continuous-size distribution model. This discretization

induces a diffusion, with fast pathways (i.e. fractions of trees that

grow up classes faster than expected), but also slow pathways (i.e.

fractions of trees that remain in the same class longer than

expected). Diffusion in itself is appropriate since it corresponds to

the individual variability in growth. Hence, slow pathways

represent the fraction of individuals with the lowest growth

(possibly including those with negative growth). There are also

instances when fast pathways are appropriate, in particular for

stage-structured populations when individuals are able to skip

intermediate stages in their ontogenic development [50]. Howev-

er, in size-structured populations, the strength of diffusion is

directly related to the class width, and the class widths often used

in matrix modeling in forestry (often in the range 3–10 cm for dbh;
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[51]) induces a diffusion that is much stronger than that solely due

to the individual variability in growth.

Although the diffusion due to the discretization in classes was

much greater than what would be realistic, the matrix model

predictions of l at M’Baı̈ki were particularly robust to changes of

the class width d, for variations of d as large as from 1 to 10 cm.

The median of the difference Dl between the maximum value of

the population growth rate and its minimum for a class width

ranging from 1 to 10 cm was 1:6|10{4 at M’Baı̈ki. In

comparison, Enright et al. [8] found a difference Dl of zero for

three tree and a grass species (including an imaginary tree species),

and a difference of 10{3 for the tropical conifer Araucaria

cunninghamii. Ramula and Lehtilä [9] found differences Dlƒ0:01
for 19 tree species and significantly larger differences for 18

herbaceous species. Zuidema [22] found a maximum difference of

0.009 for four tree species and 2:5ƒdƒ10 cm.

Higher variations of l with class width may be obtained when

the recruitment rates are not constant with size [8,9]. Ramula and

Lehtilä [9] reported that changes in l were significantly larger for

herbaceous than for woody species, maybe because the former

have much less classes that are based on development stage rather

than on size. Transition matrices do not have the same structure

for herbs and trees, with higher recruitment for herbs and more

frequent retrogression [52]. Therefore, the robustness of l to class

width that was observed at M’Baı̈ki for tree species is also linked to

the specific structure of the transition matrix and may not be

extrapolated to other types of transition matrices.

The direction of variation of l with the class width depended in

a complex and non-systematic way on the demographic rates

(growth rate, mortality rate, recruitment rate). The population

growth rate at M’Baı̈ki could increase or decrease as the class

width increased, whether or not the mortality was an increasing

function of size. Ramula and Lehtilä [9] also observed that l could

increase or decrease when matrix dimensionality was reduced,

with the former situation being more frequent than the latter [22].

At M’Baı̈ki, the variations of l due to the choice of the class

width were negligible with respect to the sampling variability of the

estimate of l (i.e. the uncertainty on the estimate of l due to the

finiteness of the data available). Therefore, at M’Baı̈ki, it can be

concluded that the choice of the class width (in the range 1–10 cm)

had little importance to estimate the species-specific population

growth rates l. The sampling uncertainty on the estimate of l may

have been overlooked in matrix modeling (but see [49,53–56]). For

instance, Ramula and Lehtilä [9] gave the example of a change of

l with matrix dimension by 0.006 for a Primula veris population and

insisted on the difference in population size that this change

induces in 50 years, while the standard error on the estimate of l
was 0.026, which induces an uncertainty on the population size

after 50 years that is much larger. When comparing the Dl values

between tree and herbaceous species, these authors also consid-

ered only the between-species variability in Dl and disregarded all

the within-species uncertainty on the estimates of Dl. Zuidema

[22] also presumably considered only the between-species

variability and disregarded the within-species uncertainty on l
when comparing the values of l for different class widths (but the

exact test was not specified). Enright et al. [8] did not consider the

sampling uncertainty on l, as if transition rates were known

exactly.

Are Matrix Models Reconcilable with other Models?
The way transition matrices are collapsed seems to influence the

dependence of the population growth rate l on matrix dimen-

sionality. The greatest dependence of l on matrix dimensions was

observed when matrices were collapsed using (1) [8,9]. Equation

(1) implicitly means that transition rates are estimated as

proportions using data from the class of interest only, i.e. using

the maximum likelihood estimator of the underlying Markov chain

[57]. However, this proportion estimator of transition rates is

known to have a large variance [58]. When compared to other

modeling approaches like integral projection models, matrix

models may then be expected to under-perform in terms of the

precision of predictions [9,13]. Moreover, equation (1) to collapse

transition matrices has the limitation that it depends on the

distribution of individuals among classes. This may lead to

undesirable results, e.g. the magnitude of changes in l with

reduced matrix dimensionality is affected by the distance from the

stable class distribution [9]. Theoretically, l depends on the

transition matrix alone and not on the current distribution of

individuals among classes [3].

Using (7) to collapse transition matrices implicitly means that

transition rates are estimated on the basis of individual-based

regressions for growth, mortality and recruitment over the entire

size range [7]. In particular, with this approach, the number of

parameters to estimate does not depend on the number of classes,

which means that the variability of predictions does not depend on

matrix dimension (contrary to [13]). As pointed out by Zuidema et

al. [7], the use of regressions over the entire size range to estimate

transition rates is also the basis of integral projection modeling,

thus establishing a close connection between matrix models and

integral projection models (IPM). In the same way as the Usher

matrix model (5) is a discrete scheme to solve the continuous

McKendrick equation (2), the numerical calculation of continuous-

size IPM requires some discretization whose expression is a big

transition matrix model [7,12]. In the same way as the

discretization of the McKendrick equation into the Usher matrix

model brings an error, the discretization of the IPM into a

transition matrix model brings an error [7]. In fact, matrix models,

IPM and the Fokker-Planck equation (depending on whether size

and time are discrete or continuous) are equivalent in some limit

[14,15], with the implication that all estimates that are dependent

on class width (like age, see [22]) should tend to the same value

when class width is small enough.

Another lesson to learn from this approach is that, although

much attention has been devoted to the influence of the class width

on predictions (i.e. the discretization of size), the time step (i.e. the

discretization of time) may also influence the predictions. At

M’Baı̈ki, we collapsed bisannual transition data into annual

transition rates so that the matrix model with the smallest class

width be close to the McKendrick equation. Although the choice

of the time step may bias predictions in the same way as the choice

of the class width, and although changing the time step of a matrix

model raises issues that are similar to collapsing its dimension [59],

the influence of the time step in IPM and matrix models does not

seem to have been studied.

Conclusion
We concur to conclude that matrix models should be used with

narrow size classes, to be nearly equivalent with a continuous-size

McKendrick equation [7]. The use of regressions over the entire

size class and of equations (7) to estimate transition rates allows the

modeler to decrease the class width d, with the only constraint on

the lower bound of d that condition (8) must be met. At M’Baı̈ki

like in other studies [8,9,22], the choice of the matrix dimension-

ality had little influence on the population growth rate l. We

showed that this influence was similar to that of a diffusion process,

and did not act as a systematic bias towards fast pathways.

Moreover, the change of l due to the class width was much less

than the sampling uncertainty on the estimate of l. Therefore, the
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bias of l due to matrix dimensionality is not the only statistic to

consider; the variance of the estimator of l should be considered as

well. Making a parallel with the histogram that is more often used

than continuous kernel estimators to estimate the density of

distribution from a sample of data, searching for a trade-off

between bias and sampling variance might lead to matrix models

with size classes that are not so narrow.

Supporting Information

Table S1 Characteristics of population dynamics for 53 tree

species at M’Baı̈ki, Central African Republic.

(PDF)
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24. López Torres I, Fullana Belda C, Ortuño Pérez SF, Martı́n Fernández AJ (2008)

Choosing Fagus sylvatica L. matrix model dimension by sensitivity analysis of the

population growth rate with respect to the width of the diameter classes. Ecol

Model 218: 307–314.

25. Marescot L, Gimenez O, Duchamp C, Marboutin E, Chapron G (2012)

Reducing matrix population models with application to social animal species.

Ecol Model 232: 91–96.

26. Stott I, Franco M, Carslake D, Townley S, Hodgson D (2010) Boom or bust? a

comparative analysis of transient population dynamics in plants. J Ecol 98: 302–

311.

27. Gourlet-Fleury S, Mortier F, Fayolle A, Baya F, Oudraogo D, et al. (2013)

Tropical forest recovery from logging: a 24 year silvicultural experiment from

Central Africa. Philos Trans R Soc Lond B 368: 20120302.

28. Vandermeer JH (1975) On the construction of the population projection matrix

for a population grouped in unequal stages. Biometrics 31: 239–242.

29. Hooley DE (1990) Collapsed matrices with (almost) the same eigenstuff. Coll

Math J 31: 297–299.

30. Yearsley JM, Fletcher D (2002) Equivalence relationships between stage-

structured population models. Math Biosci 179: 131–143.

31. Moloney KA (1986) A generalized algorithm for determining category size.

Oecologia 69: 176–180.

32. Vandermeer J (1978) Choosing category size in a stage projection matrix.

Oecologia 32: 79–84.
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