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Diffusion tensor imaging (DTI) is considered to be a promising tool for revealing the anatomical basis of functional networks.
In this study, we investigate the potential of DTI to provide the anatomical basis of paths that are used in studies of effective
connectivity, using structural equation modeling. We have taken regions of interest from eight previously published studies, and
examined the connectivity as defined by DTI-based fiber tractography between these regions. The resulting fiber tracts were then
compared with the paths proposed in the original studies. For a substantial number of connections, we found fiber tracts that
corresponded to the proposed paths. More importantly, we have also identified a number of cases in which tractography suggested
direct connections which were not included in the original analyses. We therefore conclude that DTI-based fiber tractography can
be a valuable tool to study the anatomical basis of functional networks.
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1. INTRODUCTION

In functional neuroimaging, and particularly in PET and
fMRI, study design and analysis have been dominated by
the concept of functional segregation, which emphasizes the
specialization of a brain structure for a specific part of a
cognitive function. This has resulted in a large number of
studies in which differences in cognitive states are linked to
the differential activation of separate brain areas [1]. The
concept of functional integration, on the other hand, has long
been recognized as an equally important principle of brain
organization. Functional integration refers to the interaction
between brain areas and has been studied with two categories
of analyses: functional connectivity analyses and effective
connectivity analyses. In functional connectivity analyses [2–
4], the covariance structure of a measure of brain activity is
studied, from which differences in cognitive states are linked
to differences in correlations between regions. These analysis
methods are thus limited in their capacity to make inferences
about the directionality of these correlations, which makes
it difficult to address, for instance, the functional hierarchy
of the brain structures under investigation. In effective

connectivity analyses, on the other hand, models are defined
a priori, comprising the brain structures of interest and
assumptions about the afferent/efferent connections between
them [5, 6]. These models are then fitted to the activity of
these brain areas to obtain the strength of these connections,
which enables inferences on changes in connection strengths
in relationship to cognitive states.

Effective connectivity has been defined as the influence
one neural system or region exerts over another [7]. There
are two ways by which this influence can be mediated:
via a direct path between two regions, or via an indirect
path in which a third region is involved. The analysis
methods that have been applied to functional neuroimaging
data, structural equation modeling (SEM) and dynamic
causal modeling (DCM), differentiate between these two
possibilities, provided that the underlying model (regions
and their paths) is completely specified. If two regions
are connected via a third region and this third region has
furthermore no other influence on the rest of the network,
one can choose to incorporate only an indirect path between
the two regions and to refrain from explicitly modeling the
third region and its direct paths. This is usually done to
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keep the model computationally tractable. We are working
here, however, on the premise that most of the specified
paths should reflect veridical direct paths, because we believe
that too many “indirect” paths, involving these “third party”
regions, which are not explicitly taken into account in the
model, will seriously decrease the biological validity of the
model.

SEM has also extensively been applied in the social
sciences, where these paths represent abstract causal con-
nections between variables. When this method is applied
to functional neuroimaging however, these paths should
ultimately correspond to the white matter connectivity of
the brain regions under investigation. This hence yields an
extra source of model validation. Furthermore, McIntosh
and Gonzalez-Lima [8] have studied the effect of erro-
neous model specification on the estimation of the path
coefficients and have found that it could seriously impinge
on the estimation of these coefficients. Therefore, it would
be highly valuable to incorporate all available knowledge
regarding anatomical connections into effective connectivity
models. It should be noted that we do not imply that each
existing anatomical connection should result in an effective
connection in each and every cognitive task. However,
it is the role of the model estimation to indicate which
anatomical connections have become effective for which task
manipulation. Therefore, leaving an anatomical connection,
which is known to exist, out of a model specification can only
be justified when one has strong beliefs about the functioning
of this path in the present context, possibly combined with a
requirement for a decrease in model complexity.

Unfortunately, our knowledge about human anatomi-
cal connectivity is relatively sparse, because a number of
techniques that are used in other species (active tracers)
are highly invasive. Therefore, only two classical anatomical
methods can be used: dissection studies, which only provide
information on a relatively coarse scale, and passive tracer
studies, which are not very well suited to investigate long-
range connectivity. Most effective connectivity studies thus
can only validate their connections with information from
nonhuman primates, which in turn raises problems with the
homology of brain structures between different species.

In the last decade, a technique known as diffusion tensor
imaging (DTI) [9, 10] has emerged as a good candidate to
resolve this situation. In DTI, the sensitivity of the (diffusion-
weighted) MR signal to the self-diffusion of water on a
microscopic scale is employed to characterize the anisotropic
structure of white matter in vivo. It is assumed that the
direction in which diffusion is largest is collinear to the
direction of the axonal bundle in the voxel, because diffusion
is assumed to be hindered in directions perpendicular to
this direction. With this information, fiber tracking [11, 12]
can be performed in which the main diffusion directions of
voxels are followed throughout white matter. This method
already has provided useful insights in, for instance, the
anatomy of the thalamus and the striatum [13, 14].

So far, researchers have acknowledged a number of limi-
tations to this technique. First, DTI provides no information
about the afferent or efferent character of the axons, because
the diffusion of water does not differentiate between these

two situations. Second, the tensor model can only provide
one main direction per voxel, which considerably increases
the likelihood of erroneous tracking results through a region
of crossing fibers. Finally, in cerebral gray matter there is
generally no dominant fiber direction, making it difficult to
track fibers to their cortical origin.

The aim of the current study is to investigate to what
extent DTI-based tractography can provide support for the
anatomical basis of the networks, proposed in effective con-
nectivity studies. Furthermore, we have investigated whether
DTI-based tractography is able to reveal any connections
that go beyond the ones proposed in the original analysis.
To address these questions, we have chosen eight effective
connectivity studies all using structural equation modeling.
SEM was introduced at an early stage of the development
of PET and fMRI, with the consequence that a body of
SEM studies is to be found in the literature. DCM, on the
other hand, has only relatively recently been introduced, but
is gaining a rapid popularity. It should be noted that any
conclusions we are able to draw in this study within the
context of SEM models can be readily generalized to DCM
studies as there is no difference in the role of the underlying
anatomical model in both frameworks.

We have chosen networks spanning a number of
different cognitive domains, including learning [15, 16],
cognitive control [17, 18], working memory [19], visual
and auditory perception [20], major depression [21], and
the thalamocortical network involved in general-anaesthetic-
induced unconsciousness [22]. We performed a standard
DTI experiment on 6 subjects and used the coordinates of the
network nodes as seed regions for a fiber tracking analysis.
In this analysis, we have established whether DTI-based fiber
tractography provides evidence about the direct nature of
every possible connection, whether or not it was proposed
in the original studies.

2. MATERIALS AND METHODS

2.1. Subjects

We studied 6 healthy subjects (2 females, age range 25–
32 years) after informed consent was given according to
institutional guidelines of the local ethics committee (CMO
protocol region Arnhem-Nijmegen, The Netherlands).

2.2. Imaging

DTI was performed using a twice refocused pulsed gradient
spin echo EPI sequence [23] at 1.5 T(Sonata system, Siemens,
Erlangen, Germany)with a standard head coil. Axial slices
were obtained using the following imaging parameters: repe-
tition time = 9900 milliseconds, echo time = 88 milliseconds,
flip angle = 90◦, 128 × 128 matrix, 320 mm × 320 mm
field of view, and slice thickness = 2.5 mm with no gap (2.5
× 2.5 × 2.5 mm isotropic voxels). Diffusion weighting was
obtained along sixty noncollinear directions [24] using a b-
value of 700 s/mm2. Five reference images with no diffusion
weighting were also obtained. This resulted in a scanning
time of approximately 10 minutes per subject.
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2.3. Analyses

For each subject the five reference images with no dif-
fusion weighting were averaged and normalized to the
MNI T2 template in SPM2 (Statistical Parametric Mapping,
http://www.fil.ion.ucl.ac.uk/spm). The matrix of normaliza-
tion parameters was inverted to obtain the transformation
matrix from standard space to world space. We have done
this to avoid the extensive resampling and reorientation of
the data that is involved in the normalization of DTI data
[25, 26], because we hypothesize that this would lead to
a degradation of the finer details in the fiber tracts.Only
linear terms were used in the normalization to ensure that
the transformation matrices could be inverted. No motion
correction was applied. Diffusion tensors and fractional
anisotropy (FA) maps were calculated using the diffusion
toolbox [27] in SPM2. The FA maps were used for displaying
the anatomical location of the ROI coordinates. These
anatomical locations were then used as seed regions for fiber
tracking. Fiber tracking was performed in the DTI-Studio
package [28] using the FACT algorithm [29]. Tracking was
terminated when the angle of two consecutive eigenvectors
was larger than 85◦, or when a voxel was reached with an FA
value smaller than 0.20.

In most of the original studies [15–19, 22], the ROIs that
were used for effective connectivity analysis were all spheres
of 8 mm radius. However, in two studies [20, 21] only the
peak voxels of a partial least-squares analysis [30] were used.
Because these voxels represented larger clusters of voxels,
we have used ROIs with roughly the same size (spheres of
8 mm radius) as a starting point for all networks. We have
chosen not to transform the whole original ROI into subject
space, as this might lead to extensive seeding of the white
matter adjacent to the seed coordinate, and thus to many
false positives. Instead, we have drawn ROIs on the individual
subject’s FA maps, taking care that the borders of the ROI
were at the border of gray and white matters (as visible on
the FA map) and that the ROI would approximately be of
the same size as the original ROI. All possible combinations
of regions were tracked, including the connections that were
not proposed in the original effective connectivity studies.

3. RESULTS

The results for all networks under investigation are visualized
in Figures 1–8, in which the thickness of the connecting
lines indicates the number of subjects in which a particular
connection was found. In the appendix, we have also listed
these results in Table 1. Our results support the proposed
paths to a large extent. The most striking class of paths
which are not supported by our findings contains frontal
interhemispheric paths. This can however convincingly be
explained by methodological shortcomings in regions with
crossing fibers in the frontal parts of the brain. We will
discuss these issues further in Section 4. In half of the studies,
we have also found connections indicating paths that were
not included in the original studies. In the following, we will
describe these findings for each study separately.

The nomenclature of the original studies is maintained
throughout this whole article. This not only leads to the
situation that this nomenclature is inconsistent between
studies, but may also give the incorrect impression that
similar connections are under investigation in different
networks. It is therefore important to note that the regions
of interest normally are spheres of approximately 8 mm in
diameter, and thus two regions with the label “prefrontal
cortex” can be quite widely separated.

Büchel et al.

The network of this study can be separated into a dorsal
stream (V1, DE, PP, and LP) and a ventral stream (V1, ITp,
and ITa) of visual areas. The paths within these streams are
supported in the majority of subjects by our DTI results.
However, the crucial path under investigation is the path
between the two streams (PP-ITp), which is hypothesized to
mediate the learning effect under investigation. Interestingly,
we have found no evidence for this path, but we have found
support for a path (DE-ITa), which was not included in the
proposed network and which could be a potential candidate
to mediate this effect. Whereas we do not wish to suggest
that the original path (PP-ITp) should be dismissed, it would
be interesting to investigate whether a part of the learning
related effects, reported in the original study, is mediated by
the new path we have reported.

Fletcher et al.

In this network, a series of regions (OCC, PAR, and PFC)
is proposed in both hemispheres with symmetrical paths
within the hemispheres and extensive interhemispheric con-
nections. The paths between occipital and parietal cortices
are supported by our findings as are the interhemispheric
connections between these regions. Furthermore, we have
found evidence for paths that were not included in the orig-
inal model, namely, interhemispheric connections between
occipital and parietal cortices. This is quite remarkable,
because interhemispheric connections between nonhomol-
ogous regions are rarely found in this kind of analyses.

Also of interest are the cases in which the proposed
paths are not supported by our results. The interhemispheric
connections we did not find (LPFC-RPFC, LPFC-RPAR,
and RPFC-LPAR) fall into the aforementioned problematic
class of frontal interhemispheric connections. The most
interesting negative result is the lack of connections between
right parietal and right prefrontal cortices, in contrast to the
presence of these connections in the left hemisphere. In this
case, methodological shortcomings are not likely to affect
the results, as this would indicate that these shortcomings
would exist for the right hemisphere but not for the left
hemisphere. The same argument makes the consideration of
connections via an extra region, which has not been included
in the network, also unattractive. Therefore, we tentatively
interpret these findings as a support for an asymmetry in
connectivity between these areas in parietal and prefrontal
cortices.

http://www.fil.ion.ucl.ac.uk/spm
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Figure 1: The proposed network of Büchel et al. is shown on
the left. The connections found in our analysis are shown on the
right. The legend indicates the meaning of the color scale and the
thickness of the lines. This legend is valid for all the following
figures.
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Figure 2: The network and results for Fletcher et al.

Koechlin et al.

This network contains a set of motor and prefrontal regions
in both hemispheres which are symmetrically connected
within the hemispheres. Furthermore, homologous areas
are connected with each other. This last set of paths falls
again in the class of frontal interhemispheric connections
and thus it is not surprising that we have found no support
for these paths. We have found connections supporting
all intrahemispheric paths in most subjects. Interestingly,
Koechlin et al. have proposed an alternative network in their
study, which contained also paths directly from premotor
cortex to rostral prefrontal cortex. This extra network did not
result in significant changes in the original paths, which is
in agreement with the lack of support for these paths in our
results.

Kondo et al.

Kondo et al. have proposed four network nodes (PFC, ACC,
SPL, and IFC). However, two of these nodes (SPL and IFC)
can be further split up in four anatomically distinct regions
(SPL1, SPL2, IFC1, and IFC2). We have thus decided to treat
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Figure 3: The network and results for Koechlin et al.
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Figure 4: The network and results for Kondo et al.

each of these regions as a separate node and have studied
the connections between these nodes. Our results show that
the regions which constitute each original node (e.g., IFC1
and IFC2) are connected with each other, but they show
differential connectivity patterns with the rest of the network,
which suggest that they also have a different role within this
network. The lack of support for paths from and to the
ACC was surprising, especially given the fact that the ACC
is known to connect extensively with the prefrontal cortex in
the macaque [31].

McIntosh et al.

In this network, a set of regions is proposed ranging
from occipital, temporal, premotor, and prefrontal regions.
Moreover, these regions were proposed to be highly inter-
connected. Given our results in the other studies, it was
not surprising that there was hardly any support for the
(nonhomologous) interhemispheric connections originating
in frontal and prefrontal cortices. Support was found for
paths between occipital cortex and frontal and superior tem-
poral cortices. However, there are also two intrahemispheric
paths for which no support was given (A6-A18R, A10-A6).
Furthermore, there was no evidence found for paths which
were not included in the original analysis. Therefore, within
the context of this network, DTI did not deliver any extra
information.
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A10: Right Brodmann area 10 (prefrontal cortex)

Figure 5: The network and results for McIntosh et al.
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Figure 6: The network and results for Rowe et al.

Rowe et al.

Rowe et al. have proposed a network with bilateral parietal,
prefrontal, and prestriate areas and a motor area in the left
hemisphere only. We have found only scarce support for
the paths to and from prestriate area, even after lowering
the FA threshold. In the left hemisphere, we have found
consistent evidence for all other proposed paths. However,
as in the network of Fletcher et al., we have found support
for parietal-frontal connections in the left but not in the
right hemisphere. Based on the same arguments as in the
network of Rowe et al., we again interpret this as an evidence
for an asymmetry in these connections. This is even more
remarkable, because the locations of parietal and especially
prefrontal areas in both studies are quite widely separated.

Seminowicz et al.

The network of Seminowicz et al. consists predominantly
of prefrontal subcortical areas in the right hemisphere, with
the lateral prefrontal cortex as the only region in the left
hemisphere. This might directly explain why we have found
only scarce evidence for paths from this region to the rest of
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Cg25
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Hpc

LatPFG9 MF10

aTh Cg24

Cg25
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Hpc: Hippocampus
Cg25: Subgenual cingulated BA 25
aTh: Anterior thalamus
LatPFG9: Lateral prefrontal cortex BA 9
OF11: Orbital frontal cortex BA 11
Cg24: Rostral anterior cingulated BA 24a
MF10: Medial frontal cortex BA 10

Figure 7: The network and results for Seminowicz et al. BA =
Brodmann area.

the network, because of the aforementioned methodological
problems with frontal interhemispheric connections.

In contrast to the study of Kondo et al., we have
found connections supporting the proposed paths from the
anterior cingulate cortex. Furthermore, we have found many
connections from the thalamus to the rest of the network
which do not conform to proposed paths. This is however
not surprising, as it is well known that the different nuclei
in the thalamus extensively connect to different parts of
the cortex [13]. The “extra” connections are thus most
probably the result of the fact that the seed region in this
case was too large to specifically select the nucleus of the
thalamus involved in this network. Further evidence for
paths that were not proposed in the original network was
found for connections from medial prefrontal cortex to the
hippocampus and the subgenual cingulated cortex.

The hippocampus is a region of low FA and thus in an
initial analysis showed only very limited connectivity with
the rest of the network. We have therefore repeated the
analysis with a lowered FA threshold (0.15) which yielded
support for the proposed paths from the hippocampus.

White et al.

White et al. have proposed a model with the left motor
cortex and supplementary motor area, the thalamus, and two
areas from the right cerebellum. We have found support for
the intrahemispheric paths but not for the interhemispheric
ones. This last finding contradicts findings from the macaque
literature in which there are connections found between
the primary motor cortex and the contralateral cerebellum
deep nucleus [32]. Moreover, there is evidence that the
pons, which is a region through which these fibers have to
pass, contains crossing fibers [33]. We, therefore, conclude
that it is valid to include these connections in an effective
connectivity analysis.
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Figure 8: The network and results for White et al.

4. DISCUSSION

In this study, we have for the first time used DTI-based fiber
tractography to investigate the anatomical basis of effective
connectivity models. The aim of this study was twofold.
First, we wanted to establish that DTI-based tractography
is able to resolve the connectivity between ROIs of the
size typically used in effective connectivity studies. We
hypothesized that the majority of the proposed paths were
indeed valid, and compared the results of our DTI-based
analysis with these paths. We have found positive evidence
for a substantial number of paths. The negative findings will
be discussed below. However, we believe that the greatest
potential advantage of using DTI-based tractography in the
context of effective connectivity models lies in establishing
paths that are not suggested by the available knowledge
(e.g., macaque tracer literature). Our second aim was
therefore to investigate the evidence for connections which
were not proposed in the original studies. We have found
evidence for such connections in half of the models. In the
following, we will discuss these findings in the context of
current methodological limitations and we will evaluate their
implications for the proposed models.

When there was no evidence found for a proposed path,
there are two explanations possible:

(i) there is no direct anatomical connection; in this case,
the proposed path can only be supported by an
indirect connection with a third region;

(ii) there is a direct connection, but it has not been found
due to methodological limitations (false negative).

The second explanation is especially relevant to a class
of frontal interhemispheric connections. As mentioned in
the introduction, DTI-based tractography has profound
difficulties when tracking through voxels with multiple fiber
populations. The frontal interhemispheric connections pass
through the corona radiata, which is well known to contain
such voxels [34]. Therefore, any negative findings about
this class of connections have to be interpreted as being
inconclusive.

There is another set of negative findings which merits
further discussion: in both networks of Fletcher et al. and of
Rowe et al., we have found evidence for a connection between
parietal and prefrontal cortices in the left hemisphere but
not in the right hemisphere Here, an explanation in terms
of methodological limitations seems unattractive, because
this would suggest that these limitations occur in the right
hemisphere but not in the left hemisphere. Therefore, we
tentatively conclude that these connections are indeed absent
in the right hemisphere and that this is an evidence for an
asymmetry in parietal-frontal connectivity. We should point
out, however, that this asymmetry seems counterintuitive
at first, since the right hemisphere is hypothesized to be
dominant for visuospatial processing and one would expect
that these connections would be especially strong for this
hemisphere. However, as we are dealing with relatively small
ROIs within the frontal and parietal lobes, this does not rule
out the possibility of there being any connections between
these lobes in the right hemisphere.

There are a number of paths for which no evidence was
found and which cannot be interpreted directly in terms
of methodological limitations. As in many neuroimaging
studies, these negative findings are difficult to classify and it
would certainly be imprudent to conclude that these paths do
not exist. Moreover, it is also possible that a path is mediated
by connections from and to a third region, which was not
included in the network. This situation can be relatively
harmless if the function of the missing region is known to
be restricted to “message passing”. However, we hypothesize
that, if there is a substantial number of such “indirect”
connections present in a network, the inclusion of these
other regions, which mediate these connections, becomes
necessary to ensure the biological validity of the network.

Given the methodological issues discussed above, it is
clear that the potential contribution of DTI to connectivity
studies lies not in disproving the existence of postulated
connections, but in the unique potential for detecting
hitherto unconsidered direct anatomical connections. This
is because DTI may be prone to type II errors, but it is
far less likely to consistently produce type I errors when
connections are averaged across subjects. It is hence highly
significant that we have also found evidence for a number
of paths which have not been taken into account in the
original studies. Incorporating these paths in a new analysis
of these models can potentially have a significant impact
on the interpretation of these models, since they point to
improvements in the anatomical validity of the models,
which in turn leads to more veridical path coefficients.

At the current state of technology in effective con-
nectivity, one has considerable freedom to choose the
connections in a model and to evaluate different models with
different connectivity profiles against each other [35]. This
model selection procedure can be augmented significantly
with DTI-based tractography, because models in which the
connections to a large extent overlap with the connections
found in a DTI analysis should in turn be more likely. One
could potentially formalize this in a Bayesian framework by
designing priors on the connections and by subsequently
making the priors on the “known” connections high and
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Table 1: Tractography results for all the proposed networks. The number indicates the number of subjects in which this path was found.
Results in black indicate proposed paths, while results in red indicate paths that were not proposed in the original networks.

Büchel et al. Fletcher et al.

V1-DE 6 LOCC-ROCC 6

V1-ITp 4 LOCC-LPAR 4

DE-ITp 5 ROCC-RPAR 4

DE-PP 3 LPAR-RPAR 5

PP-ITp 1 LPAR-LPFC 4

PP-LP 5 LPAR-RPFC 0

ITp-ITa 5 RPAR-RPFC 0

V1-PP 0 RPAR-LPFC 0

V1-LP 0 LPFC-RPFC 0

V1-ITa 0 LOCC-RPAR 3

DE-LP 2 ROCC-LPAR 4

DE-ITa 5 LOCC-LPFC 1

ITp-LP 0 LOCC-RPFC 0

ITa-PP 1 ROCC-RPFC 0

ITa-LP 0 ROCC-LPFC 0

Koechlin et al. Kondo et al.

RLPFC1-CLPFC1 5 ACC-PFC 0

CLPFC1-Premotor1 4 PFC-IFC1 2

RLPFC2-CLPFC2 5 IFC1-SPL1 2

CLPFC2-Premotor2 5 SPL1-ACC 0

Premotor1-RLPFC1 2 SPL2-IFC1 6

Premotor1-RLPFC2 0 SPL2-ACC 1

Premotor1-CLPFC2 0 PFC-IFC2 5

Premotor2-RLPFC1 0 IFC2-SPL1 1

Premotor2-RLPFC2 2 IFC2-SPL2 5

Premotor2-CLPFC1 0 PFC-SPL1 3

CLPFC1-RLPFC2 0 PFC-SPL2 2

CLPFC2-RLPFC1 0 ACC-IFC1 0

ACC-IFC2 0

SPL1-SPL2 5

IFC1-IFC2 6

McIntosh et al. Rowe et al.

A18L-A18R 6 IPC1-MFG1 4

A10-A18L 0 IPC1-lMC 5

A10-A18R 4 MFG1-lMC 4

A6-A41/42 3 MFG1-PS1 1

A41/42-A18L 0 IPC1-PS1 2

A41/42-A18R 6 MFG2-PS2 0

A6-A18L 0 IPC2-PS2 0

A6-A18R 0 MFG2-IPC2 1

A10-A6 1 PS1-lMC 0

A41/42-A10 1 all other possible connections 0

Seminowicz et al.

LatPFG9-MF10 1

OF11-MF10 3

OF11-Hpc 2

OF11-Cg25 5

aTh-Cg24 0

Cg24-LatPFG9 0

Cg24-MF10 5

Cg24-Cg25 6

OF11-Cg24 4

Cg25-LatPFG9 0

Hpc-LatPFG9 0

Hpc-Cg25 1

aTh-LatPFG9 4

aTh-MF10 4

aTh-Cg25 5

aTh-Hpc 4

aTh-OF11 0

LatPFG9-OF11 0

MF10-Cg25 5

MF10-Hpc 6

Cg24a-Hpc 0

White et al.

Cerebellum Cortex-Cerebellum Deep Nucleus 6

Cerebellum Deep Nucleus-Thalamus 2

Cerebellum Deep Nucleus-M1 1

Thalamus-M1 5

Thalamus-SMA 6

SMA-M1 6

Cerebellum Cortex-Thalamus 0

Cerebellum Cortex-M1 0

Cerebellum Cortex-SMA 1

Cerebellum Deep Nucleus-SMA 2
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sharp and the priors on the “unknown” connections rela-
tively noninformative.

We have observed a large intersubject variability in our
findings. If this would be a veridical variability, it would be a
surprising and new finding, since the intersubject variability
of anatomical connections is generally considered to be
low and is furthermore difficult to assess with either DTI
or tracer methods. In DTI, the normalization of findings
still makes it difficult to compare findings across subjects,
whereas tracer studies are normally performed in very few
animals because of ethical considerations, which makes
any discussion about differences between animals extremely
difficult. Although we have not normalized the fiber tracks
to a template, we do believe that normalization problems
still play an important role in our studies because they
might cause the erroneous placement of seed regions in
some subjects, which in turn would lead to misleading
tractography results and the above-mentioned intersubject
variability. The smoothing strategy, employed in functional
studies to reduce the effect of anatomical differences between
subjects, cannot be applied in our framework because the
directional information, used in the tracking procedure,
would be smeared out over other voxels and potentially other
tracks, with unpredictable implications for the veridicality of
the tracks found. Currently, there is no convincing way of
solving this problem, as the basic anatomical landmarks vary
substantially over subjects.

Recently, advances have been made towards the estima-
tion of multiple fiber directions within one voxel and also in
probabilistic tractography. We will now discuss each of these
developments and their potential use for our framework.

The estimation of multiple fiber compartments per voxel,
in general, brings this technique closer to producing veridical
anatomical connections, and a number of techniques have
been proposed to achieve this [33, 36–39]. There is, however,
one problem which cannot be solved by this technique alone,
and that is the kissing/crossing fiber problem: when a fiber
has to track through a voxel with multiple compartments, it
is uncertain which compartment has to be used to determine
the direction in which the track is to be continued. In a
number of studies, the direction that is most collinear with
the incoming fiber was chosen, but this does not necessarily
have to be the true direction. Whereas the single tensor
model is probably too conservative in the connections it
yields, multiple compartment models might thus yield a
number of false positives.

In probabilistic fiber tracking, a measure of uncertainty
of the local fiber direction is estimated per voxel [40–
44]. Fiber tracking is now done in a Monte Carlo type
experiment: the tracking is performed multiple times, each
time with a different orientation drawn from the local fiber
direction distributions. Subsequently, the number of times
a target voxel was hit by this procedure is calculated, which
then is converted to an informal measure of “probability of
connection”. While this procedure by itself seems valid, in
practice this leads to widespread patterns of connectivity and
it is uncertain at which level of “probability” the map should
be thresholded. Moreover, the probability of connection
tends to decrease with increasing distance. In a SEM

network, both relatively local and long connections can be
included, which makes the comparison of these connections
difficult. Thus while both techniques (multiple direction
estimation and probabilistic fiber tracking) can potentially
alleviate some of the problems, we have encountered (e.g.,
interhemispheric connections), unresolved issues remain.

In conclusion, we have shown that DTI-based tractog-
raphy can be used to explore the anatomical connections
between regions, used in effective connectivity studies,
notwithstanding the current limitations of this method. We
have observed evidence for the proposed paths in a large
number of cases and, more importantly, we have shown in
several cases direct connections that were not included in
the original models. We therefore conclude that DTI-based
tractography is a valuable tool for exploring the anatomical
basis of functional networks.

APPENDIX

See Table 1.
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