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Programmed cell death ligand 1 (PD-L1) is a critical biomarker for predicting the response
to immunotherapy. However, traditional quantitative evaluation of PD-L1 expression using
immunohistochemistry staining remains challenging for pathologists. Here we developed
a deep learning (DL)-based artificial intelligence (AI) model to automatically analyze the
immunohistochemical expression of PD-L1 in lung cancer patients. A total of 1,288
patients with lung cancer were included in the study. The diagnostic ability of three
different AI models (M1, M2, and M3) was assessed in both PD-L1 (22C3) and PD-L1
(SP263) assays. M2 and M3 showed improved performance in the evaluation of PD-L1
expression in the PD-L1 (22C3) assay, especially at 1% cutoff. Highly accurate
performance in the PD-L1 (SP263) was also achieved, with accuracy and specificity of
96.4 and 96.8% in both M2 and M3, respectively. Moreover, the diagnostic results of
these three AI-assisted models were highly consistent with those from the pathologist.
Similar performances of M1, M2, and M3 in the 22C3 dataset were also obtained in lung
adenocarcinoma and lung squamous cell carcinoma in both sampling methods. In
conclusion, these results suggest that AI-assisted diagnostic models in PD-L1
expression are a promising tool for improving the efficiency of clinical pathologists.

Keywords: PD-L1, NSCLC, automated scoring, AI, pathological diagnosis
Abbreviations: PD-L1, programmed cell death ligand 1; IHC, immunohistochemistry; DL, deep learning; AI, artificial
intelligence; TME, tumor microenvironment; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor
receptor 2; TPS, tumor proportion score; CNNs, convolutional neural networks; WSI, whole-slide image; LCC, linear
correlation coefficient; CPS, combined positive score; IP, PD-L1-positive immune cells patch; NSCLC, non-small cell lung
cancer; CK, cytokeratin.
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INTRODUCTION

Immunotherapy is one of the important pharmacological
options for lung cancer treatment (1, 2). As a major immune
checkpoint biomarker, programmed cell death ligand 1 (PD-L1)
expression is widely considered a gold standard for predicting
the response to immunotherapy (3). In the clinical context, the
choice of immunotherapeutic strategies mainly depends on the
levels of PD-L1 expression in tumor cells. Normally, a higher
expression level of PD-L1 in tumor cells is associated with the
patient’s better response to immunotherapy (4). Thus, efficient
and accurate assessment of PD-L1 expression plays a critical role
in cancer immunotherapy. However, there are still some
challenges for the traditional methods of interpretation of PD-
L1-positive tumor cells.

Moreover, the tumor microenvironment (TME) is a dynamic
structure that is considered to play a role in tumor initiation and
progression (5, 6). The extensive interaction among the TME,
tumor cells, and immune cells provides novel opportunities for
therapeutic strategies of cancer (7). Previous studies have shown
multiple biomarkers in the TME and their predictive role in
disease outcomes (6). Moreover, biomarkers within the TME
may help us identify the beneficiaries of immunotherapy (6).
Thus, the characteristics of the TME and its components make
them ideal candidates for cancer-specific pathological diagnosis
and precision treatments.

The application space of digital pathology and scanners has
expanded greatly with the development of artificial intelligence
(AI). AI-based automatic learning and diagnosis models could
easily solve complex problems during medical image analysis (8).
Deep learning (DL) and machine learning could promote further
optimization of the AI-based image-processing models (9). DL
methods have shown great advantages in image identification
and classification (10), especially in cell classification (11), cancer
detection (12), pathological diagnosis (13), and characterization
of the spatial organization of immune cells in the TME (14).
Previous studies have shown the application of DL in the analysis
of multiple biomarkers in immunohistochemistry (IHC)
staining, including epidermal growth factor receptor, human
epidermal growth factor receptor 2, and Ki67 (15–17). AI-based
quantitative diagnosis could also reduce the disadvantages of
traditional methods, such as time consumption, lack of
reproducibility, and interobserver variability (18, 19). Thus,
AI-based automatic diagnosis models for tumor-specific
biomarkers have promising application prospects in precise
stratified medicine.

Specifically, several studies have shown the evaluation of AI
models for PD-L1 expression in non-small cell lung carcinoma
(20, 21). Whole-slide images of PD-L1-stained slides were
automatically annotated with an AI model (22). PD-L1
expression on tumor cells and immune cells was further
labeled, detected, and calculated. Interestingly, the algorithms
of image-based scoring are highly consistent with those of
pathologists when assessing PD-L1 expression (23). However,
existing models have poor specificity and accuracy for
pathological sections with low PD-L1 expression, especially at
tumor proportion score (TPS) cutoff values of 1% (24, 25).
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In this study, we explored and optimized three different AI
model-based workflows for automatically detecting the positive
PD-L1 expression in both 22C3 and SP263 assays. A highly
accurate performance of the AI-assisted DL diagnostic models
was shown in lung adenocarcinoma and lung squamous cell
carcinoma of both sampling methods, especially for PD-L1
expression at 1% cutoff. Moreover, the M2 workflow was able to
further improve the accuracy of the results. Our results indicate
that AI-based diagnostic models are a promising approach to
assist pathologists in the accurate diagnosis of PD-L1 expression.
MATERIALS AND METHODS

Materials
A total of 1,288 formalin-fixed, paraffin-embedded lung cancer
samples from Zhejiang Cancer Hospital were obtained. All
samples were processed in the 3DMed Clinical Laboratory
(accredited by CAP and CLIA). Among these, 1,204 samples
were prepared and stained using the PD-L1 IHC 22C3 pharmDx
assay (Dako, Carpenteria, CA, USA) developed on the Dako
Autostainer Link 48 platform according to the kit’s manufacturer
recommendations. In total, 84 samples were prepared and
stained using PD-L1 IHC SP263 assays (Ventana Medical
Systems, Tucson, AZ, USA) developed on the Ventana
BenchMark platform.

Clinicopathological characteristics (e.g., age, gender, and
tumor type) of lung cancer were included in this study. The
detailed patient demographics and PD-L1 results are
summarized in Table 1. This study was approved by the
Zhejiang Cancer Hospital Ethics Committee (IRB-2020-310
and IRB-2021-439). All slides were digitized by a KFBIO FK-
Pro-120 slide scanner at ×20 magnification (0.475 mm/pixel).
Furthermore, 627 PD-L1 (22C3)-staining whole-slide images
(WSIs) were used to develop prediction models, and the
remaining WSIs were used as test sets (Table 1). The training
WSIs were manually annotated by two graduate students
majoring in pathology, and all annotations were confirmed by
pathologists. The TPSs of all slides were estimated by one trained
pathologist and confirmed by another.

TPS Algorithm
TPS was calculated as the percentage of viable tumor cells
exhibiting weak to strong partial or complete membranous
staining. In order to accurately calculate TPS, we proposed a
two-stage workflow based on DL: first, classification models were
used to detect patches containing tumor cells, and then an object
detection model was used to locate and count the tumor cells.

The Development of Classification Models
Among the samples, more than 600 slides were selected for patch
classification. To distinguish tumor cells containing patches from
the others, we proposed two different classification models using
convolutional neural networks with different input image sizes,
namely, 256 × 256 pixels and 128 × 128 pixels, respectively
(Figure 1). To train the networks with an input image size of
256 × 256 pixels, patches were randomly obtained and checked
July 2022 | Volume 13 | Article 893198
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FIGURE 1 | Annotation dataset for tumor detection. Patch datasets and cell datasets annotated in the whole-slide images of PD-L1 staining. Both 256 × 256 patch
size and 128 × 128 patch size were included in the patch datasets. In the cell datasets, PD-L1-positive tumor cells, PD-L1-positive immune cells, and PD-L1-
negative tumor cells were labeled with different colors.
TABLE 1 | Clinicopathological characteristics of lung cancer.

Characteristic Training set(N = 627) Validation set (22C3)(N = 577) Validation set (SP263)(N = 84)

Age, years
Average 61 62 59
Range 25–91 21–91 30–83

Gender
Male 385 308 43
Female 242 269 41

Tissue source
Lung 538 532 79
Lymph nodes 53 22 4
Other 36 23 1

Sampling methods
Surgical operation 305 282 30
Needle biopsy 220 198 48
Other biopsies 74 63 4
Pleural effusion 12 18 1
Other 16 16 1

Tumor tissue type
Lung adenocarcinoma 425 497 67
Lung squamous cell carcinoma 102 67 16
Other 100 13 1

TPS
<1% 316 442 63
1–50% 167 88 10
≥50% 144 47 11

CPS
<1% 145 278 38
≥1% 471 280 45
NA 11 19 1
Frontiers in Immunology | www.frontiersin.org
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TPS, tumor proportion score; CPS, combined positive score; NA, not available.
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from the WSI annotation areas and then grouped into three
categories: patches containing tumor cells but no PD-L1 positive
immune cells (category 1: 124,459), patches containing both PD-
L1 negative tumor cells and PD-L1 positive immune cells
(category 2: 14,069; immune cells include macrophages and
lymphocytes), and patches excluding tumor cells [category 3:
131,672; this category was comprised of various no-tumor
tissues, including negative immune cells (macrophages and
lymphocytes), hemorrhage, necrosis tissue, and stromal cells]
(Supplementary Figure S1). Two classification models were
constructed for different tasks: model (12_3), trained with
patches among all three categories, was designed to classify the
patches into tumor cell-containing patches (category 1 + category
2) and no-tumor cell-containing patches (category 3) and model
(1_2), using category 1 and category 2 as training data sets, was
constructed to classify the tumor cell-containing patches into PD-
L1-positive immune cell-containing patches or no-PD-L1-positive
immune cell-containing patches.

As for the development of networks with an input image size
of 128 × 128, patches with a size of 128 × 128 were randomly
obtained and checked from the WSI annotation areas and then
grouped into four categories: patches containing PD-L1-positive
tumor cells (category 4: 37,583), patches containing PD-L1-
negative tumor cells (category 5: 45,107), patches containing
PD-L1-positive immune cells (category 6: 38,192; immune cells
including macrophages and lymphocytes), and other patches
[category 7: 65,786; this category was comprised of various no-
tumor tissues including negative immune cells (macrophages
and lymphocytes), hemorrhage, necrosis tissue, and stromal
cells]. The patches were fed into the network for model training.

All datasets for model training were randomly split into
training and validation sets in a ratio of 8:2. Data augmentation
was performed during the training by random flip, rotation, and
blur. We employed MobileNetV2 architecture pretrained on
ImageNet as the basic classification model. The MobileNetV2
architecture was the same as in a previous paper (26), with the
depth multiplier and width multiplier both being 1 and using
global max pooling for feature extraction. We removed the top
Frontiers in Immunology | www.frontiersin.org 4
layer (classify layer) in the original model and added a dropout
layer and a dense layer for our task.

Cell Detection
We built our own object detection model based on the YOLO
head to quantitatively classify, locate, and count the PD-L1
tumor cells. We used CSPDarknet53 as our backbone (27); our
feature network resembled BiFPN (28). Cell tags were labeled
into patches of 128 × 128 pixel size and were grouped into PD-
L1-negative tumor cells (105,508), PD-L1-positive tumor cells
(24,523), and PD-L1-positive immune cells (10,429)
(Supplementary Figure S1). In the data augmentation step,
the same strategies were applied. In the training step, we used
fivefold cross-validation and label smoothing (0.1) to avoid
overfitting. From the predicted output of the cell detection
model, only PD-L1-positive tumor cells and PD-L1-negative
cells remained to calculate the TPS.

Flow Chart of the Study
The flow chart of the DL model is shown in Figure 2. In brief,
627 pathological sections of lung cancer tissue staining samples
with PD-L1 (22C3) were used for the DL model building. During
the training, a subset of the WSIs was first selected, annotated,
and fed into the network for training. Then, the remaining WSIs
were used for the evaluation and refinement of the DL model
performance. Both the established classification model and the
cell detection model were then combined for the next test. Then,
577 slides stained by PD-L1 (22C3) and 84 slides stained by PD-
L1 (SP263) were used for the independent testing of the DL
model. Based on the cell detection of the combined DL models,
the TPS of WSIs was obtained.

WSI Inference Workflow
The WSI inference workflow is shown in Figure 3. Three
different workflows (top, M1; middle, M2; and bottom, M3)
were used for the calculation of the TPS. For M1, the patches
were divided into tumor and other regions by model (12_3); the
YOLO model was further used for the detection of PD-L1-
FIGURE 2 | Flow chart of the study. Flow chart of tumor proportion score assessed with artificial intelligence-based diagnostic models in the pathological sections
of lung cancer tissue samples stained with PD-L1 (22C3).
July 2022 | Volume 13 | Article 893198
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positive and PD-L1-negative tumor cells. M2 included further
algorithm optimization based on M1. The tumor patches in M2
workflow were further divided into patches with or without PD-
L1-positive immune cells by model (1_2), and then the YOLO
model was used for the detection of PD-L1-positive or PD-L1-
negative tumor cells inside the patches. Compared with M1, M2
could filter out PD-L1-positive immune cells, which would
otherwise be misdiagnosed as PD-L1-positive tumor cells.
After optimization, the performance of the M2 model was
greatly improved. As for the M3 workflow, the patches were
first classified into four groups—tumor-positive patch, tumor-
negative patch, immune positive patch, and other patch—
followed by the detection of PD-L1-positive and PD-L1-
negative cells using the YOLO model and then TPS
calculation, as shown in Figure 3.

Evaluation Metrics and
Statistical Analyses
The linear correlation coefficient (LCC) was used for comparison
with the TPS of AI models and the TPS given by the pathologists.
Cohen’s kappa was also calculated for the agreement between
pathologists and AI models. The Kappa values were interpreted
as poor (<0.40), moderate (0.40–0.75), or excellent (≥0.75).
Statistical significance was set at p <0.05. The accuracy
evaluation was represented by several metrics, including
specificity, sensitivity, precision, accuracy, and F1 score. All
statistical analyses were performed using Python (version 3.6).
RESULTS

Clinicopathological Characteristics of
Patients With Lung Cancer
More than half of the sections (57.1%) were from male patients,
and 42.9% were from female patients (Table 1). The sampling
Frontiers in Immunology | www.frontiersin.org 5
methods mainly included surgical operation, needle biopsy,
other biopsy, and pleural effusion, and the total number of the
corresponding samples was 617, 466, 141, and 31, respectively
(Table 1). As for the tumor tissue types, there were 989 with lung
adenocarcinoma and 185 with lung squamous cell carcinoma.
The PD-L1 TPS (<1, 1–49, and ≥50%) and combined positive
score (CPS) (<1 and ≥1%) assessments are also recorded
in Table 1.

DL Model Performance Evaluation in the
PD-L1 (22C3) and PD-L1 (SP263) Assays
To evaluate the performance of the experimental DL models, the
test dataset was used for further analysis. TPS cutoff values of 1%
(Figures 4A, D) and 50% (Figures 4B, E) were selected for the
PD-L1 (22C3) (Figures 4A–C) and PD-L1 (SP263)
(Figures 4D–F) assays in M1, M2, and M3. In the PD-L1
(22C3) assay, M2 and M3 showed improved performance in
TPS calculation (Figures 4A–C), especially at 1% cutoff (M2:
specificity, 0.9502; sensitivity, 0.9407; precision, 0.8523; accuracy,
0.9480; F1-score, 0.8944; kappa score, 0.8600; M3: specificity,
0.9457; sensitivity, 0.9407; precision, 0.8411; accuracy, 0.9445;
F1-score, 0.8881; kappa score, 0.8510). Highly accurate
performance in the PD-L1 (SP263) assay was also achieved for
both M2 and M3 (M2: specificity, 0.9677; sensitivity, 0.9524;
precision, 0.9091; accuracy, 0.9639; F1-score, 0.9302; kappa
score, 0.9060 at 1% TPS cutoff values; M3: specificity, 0.9677;
sensitivity, 0.9523; precision, 0.9091; accuracy, 0.9639; F1-score,
0.9302; kappa score, 0.9060 at 1% TPS cutoff values)
(Figures 4D–F). Above all, the experimental DL models shown
here obtained a high-precision score of PD-L1 expression.

LCC in the 22C3 and SP263 Assays
To evaluate the consistency between the results of the DL model
and the judgment of the pathologist, LCC was used for the
analysis of M1, M2, and M3 in the PD-L1 (22C3) and PD-L1
FIGURE 3 | Whole-slide image inference workflow. A whole-slide image was analyzed with different artificial intelligence model-based workflows (M1, M2, and M3).
The detailed information of these three workflows is shown here.
July 2022 | Volume 13 | Article 893198
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(SP263) assays (Table 2). In the PD-L1 (22C3) dataset, M2 and
M3 obtained a higher LCC score compared with M1 (M1: 95%
CI, 0.791–0.844; M2: 95% CI, 0.858–0.892; M3: 95% CI, 0.854–
0.892). A similar trend of the LCC score was also shown in the
PD-L1 (SP263) set. The LCC values in M1, M2, and M3 of the
PD-L1 (SP263) dataset were 0.825 (95% CI, 0.749–0.879), 0.867
(95% CI, 0.812–0.907) and 0.832 (95% CI, 0.766–
0.882) respectively.

Examples of Tumor Detection and
PD-L1 Calculation
An illustrative example of the process of tumor recognition with
the 256 patch size is shown in Figure 5A. After obtaining PD-L1
IHC WSIs, tumor sections were detected and calculated by the
DL model (Figure 5A). Moreover, based on pathological
characteristics and PD-L1 staining, cells in the patches were
further detected by object detection model and labeled with
different colors for visualization (Figure 5B). Blue, green, and
red represented PD-L1-negative tumor cells, PD-L1-positive
immune cells, and PD-L1-positive tumor cells, respectively.

PD-L1-Positive Immune Cell Patch
Filter Module
The effectiveness of the PD-L1-positive immune cell patch filter
module in the M2 workflow is shown in Figure 6. The predicted
Frontiers in Immunology | www.frontiersin.org 6
tumor patch and immune patch are indicated with blue and
green squares, respectively, and the predicted PD-L1-negative
tumor cells and PD-L1-positive tumor cells are indicated with
blue and red dots, respectively (Figure 6A). In the M1 workflow,
most of the false positive samples of TPS have CPS ≥1%
(Figure 6B). Compared with the M2 workflow, the M1
workflow does not have an immune filter module, so it usually
leads to an increase in TPS because the M1 model easily
misjudges PD-L1-positive immune cells as PD-L1-positive
tumor cells (Figure 6A), which leads to a higher positive
tumor ratio than normal (Figure 6B). The M2 workflow can
greatly reduce the misjudging of PD-L1-positive immune cells as
PD-L1-positive tumor cells through the filter module. Among
the false positive samples in the M2 workflow, 42% of the
samples have CPS ≥1 compared to that in the M1 workflow
at 67%.

DL Model Performance in Different Tumor
Types and Surgical Methods
To check the performance of the model more comprehensively, we
stratified the testing results of the three workflows by different
tumor types (Figures 7A–D) and surgical methods (Figures 7E–H).
Compared with the M1 workflow, M2 and M3 showed better
performance with TPS cutoff values of 1% in both lung
adenocarcinoma (Figure 7A) (M2: specificity, 0.9569; sensitivity,
A B

D

E F

C

FIGURE 4 | Deep learning (DL) model performance evaluation in the PD-L1 (22C3) and PD-L1 (SP263) assays. (A–C) Histograms of DL model performance with
PD-L1 (22C3) assay test. (D–F) Histograms of DL model performance with PD-L1 (SP263) assay test. Tumor proportion score cutoff values of 1% (A, D) and 50%
(B, E). Kappa score analysis (C, F).
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0.9320; precision, 0.8496; accuracy, 0.9517; F1-score, 0.8889; M3:
specificity, 0.9543; sensitivity, 0.9320; precision, 0.8421; accuracy,
0.9497; F1-score, 0.8848) and lung squamous cell carcinoma
(Figure 7B) (M2: specificity, 0.9024; sensitivity, 0.9615; precision,
0.8621; accuracy, 0.9254; F1-score, 0.9091; M3: specificity, 0.9024;
sensitivity, 0.9615; precision, 0.8621; accuracy, 0.9254; F1-score,
0.9091). In terms of TPS cutoff values of 50%, M2 showed higher
sensitivity but lower specificity when compared with M1 and M3 in
both lung adenocarcinoma (Figure 7C) and lung squamous cell
carcinoma (Figure 7D). A similar performance of M1, M2, and M3
in the 22C3 dataset was also shown in the samples from surgery
(Figures 7E, G) and needle biopsy (Figures 7F, H). Thus, our DL
models achieved a high-precision score of PD-L1 (22C3) in lung
adenocarcinoma and lung squamous cell carcinoma in both
sampling methods (surgery and needle biopsy).
DISCUSSION

An increasing number of studies have confirmed that PD-L1 is a
critical predictive biomarker of non-small cell lung cancer
(NSCLC) response to immunotherapy (29, 30). A higher
percentage of positive PD-L1 expression is associated with a
Frontiers in Immunology | www.frontiersin.org 7
higher probability of responding to immunotherapy (31, 32).
Thus, efficient and accurate assessment of PD-L1 expression is a
critical step for clinical intervention. However, there are some
problems with the traditional methods of evaluating PD-L1
expression levels. In this study, we developed three AI-based
workflows that can be used for the quantitative scoring of PD-L1
expression in digital whole slides of lung cancer. These three fully
automated AI-based workflows showed high specificity and
accuracy in the PD-L1 expression of tumor cells, especially at
1% cutoff. Moreover, the high performance of our AI diagnostic
models was further confirmed in lung adenocarcinoma and lung
squamous cell carcinoma of both sampling methods (surgical
sampling and needle biopsy).

In clinical practice, the experience of clinical pathologists has
a certain impact on the identification of PD-L1 expression results
(22). The assessment results of trained pathologists’ evaluation of
PD-L1 expression are usually more accurate than those of
untrained pathologists (33). It takes extensive professional
learning and training for an untrained pathologist to become
experienced (34). Previous studies have indicated that the
assessment of PD-L1 expression by untrained pathologists has
lower intraclass consistency compared with that by highly
trained pathologists (35). Moreover, manually counting tumor
TABLE 2 | Linear correlation coefficient in 22C3 and SP263 assay.

Model LCC 95% CI

22C3 M1 0.819 0.791–0.844
M2 0.878 0.858–0.892
M3 0.874 0.854–0.892

SP263 M1 0.825 0.749–0.879
M2 0.867 0.812–0.907
M3 0.832 0.766–0.882
July 2022 | Volume 13 | A
Linear correlation coefficient among different artificial intelligence diagnostic models (M1, M2, and M3) in both PD-L1 (22C3) and PD-L1 (SP263) assays.
A

B

FIGURE 5 | Examples of tumor detection and PD-L1 calculation. (A) Example of whole-slide image analysis for tumor recognition with the 256 patch. (B) Examples
of cells detected by the YOLO model: PD-L1-negative tumor cell (blue), PD-L1-positive immune cell (green), and PD-L1-positive tumor cell (red).
rticle 893198
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cells for the interpretation of PD-L1 expression levels is of low
efficiency and poor repeatability (24). Because of the
intratumoral heterogeneity and variability of the whole slides
of tumor tissues, it is a difficult task for a pathologist to get a
precise assessment of all PD-L1-expressing tumor cells (36).
Frontiers in Immunology | www.frontiersin.org 8
Thus, the exploration of accurate and efficient automated
diagnosis technology is urgently needed for the precise
evaluation of PD-L1 expression in clinical practice.

The abovementioned challenges have been solved to a certain
extent with the development of DL models (37). Previous studies
A B

D E F

G H

C

FIGURE 7 | Deep learning (DL) model performance in different tumor types and surgical methods. (A–D) Histograms of DL model performance of lung
adenocarcinoma (A, C) and lung squamous cell carcinoma (B, D) at the cutoff of 1% (A, B) and 50% (C, D). (D–F) Histograms of DL model performance of
samples from surgery (E, G) and needle biopsy (F, H) at the cutoff 1% (E, F) and 50% (G, H).
A

B

FIGURE 6 | PD-L1-positive immune cells patch filter module. (A) Predicted tumor and immune patch annotated with blue and green squares, respectively. The predicted
PD-L1-negative tumor cells and PD-L1-positive tumor cells are indicated with blue and red dots, respectively. (B) Performance of the immune filter module in M1 (left) and M2
(right). These pie charts show the percentage of false positive slides with CPS <1 and ≥1.
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have indicated that the diagnosis result of an AI model is highly
consistent with that of highly trained pathologists and even
better than that of untrained pathologists (22, 37). With fully
automated labeling and calculation ability, a DL-based AI
diagnostic model could assess the expression of PD-L1 (20)
similar to a pathologist’s cognition of different cells. The
exploration of the random forest assessment-based PD-L1
scoring algorithm indicated that the results of AI-based
diagnostic models showed a high concordance with those of
pathologists (38). Moreover, a previous study showed that
different PD-L1-positive cells and other regions could be
detected at a pixel level with a DL model (25). These results
have indicated the promising application of the DL-based AI
diagnostic model in PD-L1 scoring assessment for tumor
immunotherapy in NSCLC.

However, the interpretation of slides with low PD-L1
expression is still a challenge for AI models (24, 25, 39). In this
study, we focused on distinguishing PD-L1-positive tumor cells
from PD-L1-positive immune cells. Our DL-based AI diagnostic
workflows showed a high performance in PD-L1 scoring,
especially at 1% cutoff. The M2 and M3 workflows showed
high precision detection, and all five indicators performed well,
especially for PD-L1 expression below 1%. We noticed that, in
some cases, stromal cells in the tumor cell-containing patches
were predicted as PD-L1-negative tumor cells in the YOLO
model, leading to a lower TPS value and false negatives,
especially at 50% cutoff value. In our proposed workflows, we
compared two different patch sizes used in the classification
models, namely, the 256 patch and the 128 patch. We speculated
that the 128 patch would be superior to the 256 patch because
cells in the 128 patch were more likely to be of the same type
compared to the cells in the 256 patch, and this would reduce the
counts of misdiagnosed stromal cells in the tumor cell-
containing patches. However, the results shown in the
classification models with these two different patch sizes
almost have the same performance.

The tumor segmentation model reported in the literature
requires a large amount of labeling work because it needs to be
done at the pixel level (40). The patch classification model used
in our study was easier to obtain. Moreover, it seems that the
patch classification model has a strong ability to classify tissues
with different structural patterns (41). In our study, compared
to the M1 workflow, the M2 workflow ensured a higher
accuracy of the results owing to its ability to distinguish PD-
L1-positive tumor cells from PD-L1-positive immune cells. It is
important to test the performance of AI models in samples with
different histological subtypes or from different sampling
methods encountered by pathologists in clinical practice. The
AI diagnostic models shown here were tested in lung squamous
cell carcinoma and lung adenocarcinoma, and the results show
that there were no differences between histological subtypes.
We also found that the proposed AI diagnostic models
performed well both in samples from surgery and needle
biopsy. Of the 18 pleural effusions samples, four negative
samples were predicted as false positive, and one positive
sample was predicted as false negative. Compared to the
Frontiers in Immunology | www.frontiersin.org 9
histological samples, the cytological samples have less
structure information. It would pose a challenge for the AI
model to distinguish tumor cells from other tissue cells in
pleural effusions. In the future, more pleural effusion samples
are needed to train our model and test its interpretation power
of PD-L1 expression.

In current clinical practice, several assays for detecting PD-L1
expression using IHC analysis have been developed for different
platforms, and some studies have evaluated various IHC assays
for their reproducibility and sensitivity based on the respective
scoring criteria (33). The results showed highly comparable
staining by the 22C3, 28–8, and SP263 assays and lower
sensitivity of the SP142 assay for determining TPS on TCs (33,
42). In this study, although the AI models were only trained with
22C3 immunostaining samples, our AI diagnostic models could
effectively identify PD-L1-positive cells in both 22C3 and SP263
staining samples. In the future, it is valuable for us to evaluate the
ability of the proposed AI diagnostic models in samples stained
by other PD-L1 IHC assays.

There were some limitations in the current study. First, the
sample size of this study was small, especially for pleural
effusions. More slides need to be considered in a future study.
Second, this study lacked multicenter external verification.
Multicenter research could make our research results more
convincing and could test the generalization ability of our AI
models on slides from different sources. Third, the detection
results of PD-L1 high-expression samples need to be further
optimized. Fourth, factors such as the morphology and structural
similarity between some PD-L1-positive immune cells and PD-
L1-positive tumor cells as well as the presence of other
confounding factors (e.g., poor quality of staining or the
destruction of the structure of a tissue during sample
preparation) may have affected the identification. It is still a
challenge for the AI model to classify them. Immunostaining
with more specific biomarkers (like CK for tumor cell or CD68
for macrophages) is a potential solution.

What is more, many studies have shown that PD-L1
expression alone is insufficient for patient selection in most
malignancies, and a lot of new potential biomarkers are being
studied for precision cancer immunotherapy (43). Increasing
studies have indicated that the TME plays an important role in
immunopathology and predicting clinical outcomes (44). Some
predictive biomarkers in the components of TME have been
widely used in immune checkpoint inhibitor therapies (45).
The interactions between tumor and immune cells in the TME
and their impact on the efficacy of tumor immunotherapy
need more exploration. With the development of spatial
TME profiling technologies (44), more comprehensive
immunotherapy biomarker expression information will be
further enhanced. DL is another emerging potential method
that could assist in exploring the complexity of the TME,
especially the spatial organization of tumor-infiltrating
immune cells in the TME (14).

In summary, we explored and optimized three different AI
model-based workflows for automatically detecting the positive
PD-L1 expression in both 22C3 and SP263 assays. A highly
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accurate performance of the AI-assisted DL diagnostic models was
shown in lung adenocarcinoma and lung squamous cell
carcinoma of both sampling methods, especially for PD-L1
expression at 1% cutoff. Moreover, M2 could further improve
the accuracy of the results. Our results indicate that AI-based
diagnostic models are a promising approach to assist pathologists
in making an accurate assessment of PD-L1 expression.
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