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Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive
diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP),
one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum
6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust
resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC2F2 and
BC3F2 populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with
a mixture of two races of Pst in two sites during 2015–2016 and 2016–2017, being genotyped with
genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus
conferring stripe rust resistance was located on the terminal 20% of 6P short arm’s length. Twenty-nine
6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired,
which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant
translocation lines were found to carry some favorable agronomic traits, which could facilitate their
use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be
a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat
disease breeding.

Keywords: stripe rust; A. cristatum; common wheat; translocation lines

1. Introduction

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating and
widespread diseases of wheat (Triticum aestivum L.) around the world [1–3]. Stripe rust has become
a major threat to wheat production, causing yield losses of 5–25% [4,5]. In recent years, new virulent
Pst races appeared in a short period of time so that many wheat varieties were ineffective against
prevalent races [6]. Therefore, there is a need to screen new stripe rust resistance genes for broadening
the wheat gene pool and providing new potential resistance genes for the wheat breeding of stripe
rust resistance.

Wide hybridization is an efficient way of transferring beneficial resistance genes to common
wheat. Different resistance genes from distant genera, such as Yr9 from Secale cereal [7,8], Pm21 from
Haynaldia villosa [9] and YrH9020 from Psathyrostachys huashanica [10], have been transferred to
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common wheat, and were effective in enhancing the disease resistance of wheat. The disease-resistant
wheat-alien species derivative lines will be used as new wheat resources for breeding new
resistant varieties.

The genus Agropyron (Gaertn.) belongs to the tribe Triticeae and is based on the P genome.
Agropyron cristatum (L.) Gaertner, the most common species, has diploid (2n = 2x = 14, PP),
tetraploid (2n = 4x = 28, PPPP) and hexaploid (2n = 6x = 42, PPPPPP) forms. Tetraploid A. cristatum
carries yield-related genes [11–13] and biotic and abiotic resistance genes [14–16], which is a favorable
genetic resource for the genetic improvement of wheat. With the accomplishment of the wide
hybridization of common wheat and A. cristatum [17–19], many desirable genes from A. cristatum have
been transferred into common wheat. Wu et al. [20] found that A. cristatum 6P carried multi-kernel
gene(s) [20]. Lu et al. [21] localized the higher thousand-grain weight locus on 7PS arm using
translocation lines and deletion lines. Li et al. [22] and Copete et al. [23] confirmed that 2PL arm carried
powdery mildew resistance gene(s), meanwhile Copete et al. [23] also found that 6PL arm carried
powdery mildew resistance gene(s) using the addition lines. Ochoa et al. [16] have acquired the leaf
rust-resistant wheat-A. cristatum translocation line.

To map alien desirable genes, a series of wheat-alien translocation lines and deletion lines
were produced to construct the physical map. Qi et al. [24] constructed the physical mapping
of Haynaldia villosa 6V using one spontaneous deletion line and two deletion lines induced by
irradiation. Ashida et al. [25] created chromosomal breaks in the offspring of a 5H addition line
induced by the gametocidal chromosome and constructed the physical map of barley chromosome 5H.
Wheat-A. cristatum translocation lines and deletion lines have been developed through the irradiation
of wheat-A. cristatum disomic addition lines, and high-resolution physical maps of A. cristatum 2P, 6P
and 7P have been constructed [21,22,26–29]. The physical maps and the introgression lines can provide
a solid foundation for the exploration and utilization of elite genes from the wide relatives of wheat.

In this study, wheat-A. cristatum 6P derivative lines and the populations were used to map the
stripe rust resistance locus from A. cristatum 6P to the specific chromosomal region. The resistance
locus could be a novel stripe rust-resistant source and the screened resistant materials will be valuable
for wheat disease breeding.

2. Result

2.1. Evaluation of Stripe Rust Resistance of Wheat-A. cristatum 6P Disomic Addition Line 4844-12

During 2015–2016 and 2016–2017, a mixture of prevalent physiological races (CYR32 and
CYR33) was utilized to infect wheat-A. cristatum 6P disomic addition line 4844-12, common wheat
“Fukuhokomugi” and common wheat “Huixianhong” in Yangling (Shaanxi province, China) and
Xinxiang (Henan province, China). Among these materials, the line 4844-12 was highly resistant to
stripe rust, while the controls Fukuhokomugi and Huixianhong were highly susceptible (Figure 1).
Therefore, the locus conferring stripe rust resistance was derived from A. cristatum chromosome 6P.
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Figure 1. (a) GISH detection for the control Fukuhokomugi and the lines 4844-12, WAT638a and 
WAT638b containing intact 6P, 6PS and 6PL, respectively. A. cristatum chromosomal segments were 
in red, while wheat chromosomes were in blue strained by DAPI. (b) Evaluation of stripe rust of 
Huixianhong, Fukuhokomugi, 4844-12, WAT638a and WAT638b. 

Figure 1. (a) GISH detection for the control Fukuhokomugi and the lines 4844-12, WAT638a and
WAT638b containing intact 6P, 6PS and 6PL, respectively. A. cristatum chromosomal segments were
in red, while wheat chromosomes were in blue strained by DAPI. (b) Evaluation of stripe rust of
Huixianhong, Fukuhokomugi, 4844-12, WAT638a and WAT638b.

2.2. Molecular Cytogenetic Analysis and Chromosomal Arm Localization of the Locus Conferring Resistance to
Stripe Rust

A series of wheat-A. cristatum 6P translocation lines and deletion lines have been developed
through irradiation of the addition line 4844-12 [26,29]. Ten translocation lines and five deletion lines
were used to map the stripe rust resistance locus. All of these lines contained a pair of segments of
A. cristatum 6P detected by GISH (Figure 2). A. cristatum 6P-specific STS molecular markers were used
to trace different chromosomal segments of A. cristatum 6P to confirm the constitutions of P chromatin
in each line (Figure 3).
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To identify the arm carrying the resistance locus, four wheat-A. cristatum 6P whole-arm 
translocation lines (WAT639b, WAT638a, WAT639a and WAT638b) and two 6P ditelosomic addition 
lines (del21 and del20) were tested using a mixture of the Pst races in two sites. Among them, all lines 
carrying chromosome arm 6PS were resistant; all lines carrying chromosome arm 6PL were 
susceptible (Table 1, Figure 1). This identifies the short arm of 6P as the carrier of the resistance locus. 
  

Figure 2. GISH patterns of wheat-A. cristatum 6P homozygous strains. A. cristatum chromosomes
were in red, while wheat chromosomes were in blue strained by DAPI. (a) del21; (b) del19a;
(c) WAT641a; (d) WAT657; (e) WAT648; and (f) WAT646. The homozygous materials carried a pair of
chromosomal segments.
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Figure 3. Amplification patterns of wheat-A. cristatum homozygous materials using 6P-specific STS
markers: (a) Agc4527; (b) Agc37790; (c) Agc21670; (d) Agc2970. Lanes: M, DNA marker I; 1, A. cristatum
accession Z559; 2, 4844-12; 3, Fukuhokomugi; 4, WAT639b; 5, WAT638a; 6, WAT639a; 7, WAT638b;
8, WAT644; 9, WAT655; 10, WAT648; 11, WAT641a; 12, WAT657; 13, del21; 14, del20; 15, del29; 16, del23;
17, del19a. Arrows indicated the diagnostic bands.

To identify the arm carrying the resistance locus, four wheat-A. cristatum 6P whole-arm
translocation lines (WAT639b, WAT638a, WAT639a and WAT638b) and two 6P ditelosomic addition
lines (del21 and del20) were tested using a mixture of the Pst races in two sites. Among them, all lines
carrying chromosome arm 6PS were resistant; all lines carrying chromosome arm 6PL were susceptible
(Table 1, Figure 1). This identifies the short arm of 6P as the carrier of the resistance locus.

Table 1. Evaluation of stripe rust resistance of homozygous materials in two seasons.

Materials 6P Segment Size Stripe Rust Response
No. Detected of Each Replicate

Xinxiang Yangling

WAT639b 6PS arm R 40 40
WAT638a 6PS arm R 40 40

del21 6PS arm R 40 30
WAT639a 6PL arm S 40 40
WAT638b 6PL arm S 40 40

del20 6PL arm S 40 30
WAT657 6PS (0.00–0.15) S 40 40
WAT644 6PS (0.00–0.20) + 6PL S 40 40
del19a 6PS (0.00–0.15) + 6PL S 40 30
del23 6PS (0.00–0.45) + 6PL S 40 30
del29 6PS (0.00–0.81) + 6PL S 40 30

WAT641a 6PS (0.53–1.00) R 40 40
WAT648 6PS (0.59–1.00) R 40 40
WAT655 6PS (0.81–1.00) R 40 40
WAT646 6PS (0.86–1.00) R 40 40

6P segment size: The comparison of the length of 6P segments and intact 6P arm. The position of the centromere
was considered as 0, while the terminal end of the 6PS/6PL arm was considered as 1. The letters R and S in “Stripe
rust response” column indicated plants were resistant and susceptible, respectively.

The BC2F2 and BC3F2 populations of WAT639a and WAT639b were constructed to confirm the
resistance locus on chromosome 6PS. P genome-specific molecular markers [30] were used to detect
the populations (Figure 4). In the BC2F2 population (2015–2016 season) of the line WAT639b, 22 plants
carried 6PS arm, which were resistant; while 32 did not carried 6PS, which were susceptible. In the
BC3F2 population (2016–2017 season) of the line WAT639b, 97 plants carried 6PS arm, which were
resistant; while 52 did not carry 6PS, which were susceptible (Table 2). Chi squared (χ2) tests for
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independence showed that stripe rust resistance was significantly affected by the 6PS arm. In the
populations of the line WAT639a, no matter whether the plants contained the 6PL arm or not, all were
susceptible, suggesting that there was no correlation between stripe rust resistance and the 6PL arm.
Therefore, the 6PS arm surely carried the resistance locus.
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Figure 4. Amplification patterns of the BC3F2 population of wheat-A. cristatum 6P short-arm
translocation lines WAT639b using P genome-specific molecular markers, including (a) AcPR6;
(b) AcPR7; (c) AcPR3a; and (d) AcPR2a. Lanes: M, DL2000 DNA Marker; 1, Z559; 2, 4844-12;
3, Fukuhokomugi; 4–24, the partial plants of the WAT639b population. Arrows indicated the
diagnostic bands.

Table 2. Response to stripe rust in populations of 6P whole-arm translocation lines.

Materials Type 2015–2016 (BC2F2) Total 2016–2017 (BC3F2) Total

6P+ 6P− 6P− 6P−
Huixianhong S (30) 30 S (40) 40

Fukuhokomugi S (30) 30 S (40) 40
4844-12 R (30) S (0) 30 R (40) S (0) 40

WAT639b * 6PS·7AL R (22) S (32) 54 R (97) S (52) 149
WAT639a 7AS·6PL S (41) S (29) 70 S (135) S (54) 189

“6P+” indicated the plants contained A. cristatum 6P chromatin, while “6P−” indicated the plants did not contain 6P
chromatin. The letters R and S indicated plants were resistant and susceptible, respectively. * Chi-square statistics:
p value < 0.01.

2.3. Chromosomal Segmental Localization of the Stripe Rust Resistance Locus

Six translocation lines (WAT657, WAT644, WAT641a, WAT648, WAT655 and WAT646) and three
terminal deletion lines (del19a, del23 and del29) were applied to further map the resistance locus
to the smaller segment of 6PS arm. The lines WAT657, WAT644, del19a, del23 and del29 were
highly susceptible to stripe rust (Figure 5, Table 1). They contained the segments 6PS (0.00–0.15),
6PS (0.00–0.20) + 6PL, 6PS (0.00–0.15) + 6PL, 6PS (0.00–0.45) + 6PL and 6PS (0.00–0.81) + 6PL,
respectively, suggesting that the stripe rust resistance locus was not on 6PS (0.00–0.81). The terminal
translocation lines WAT641a, WAT648, WAT655 and WAT646 carried the segments 6PS (0.53–1.00),
6PS (0.59–1.00), 6PS (0.81–1.00) and 6PS (0.86–1.00), respectively, which were highly resistant to stripe
rust (Figure 5). Among the resistant lines, the leaves of WAT646 carried few spores of Pst. Therefore,
we localized the resistance locus on the bin 6PS (0.81–1.00) of WAT655 (Figure 6).
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2.4. Evaluation of Agronomic Traits of the Stripe Rust-Resistant Translocation Lines

The spike agronomic traits of six wheat-A. cristatum 6P translocation lines (WAT638a, WAT639b,
WAT641a, WAT648, WAT655 and WAT646) conferring stripe rust resistance were evaluated at BC2F3

progeny, including spike length, spikelet number per spike, kernel number per spikelet, grain number
per spike and thousand-grain weight in this study (Table 3). The seeds of the lines WAT638a, WAT639b,
WAT648, WAT655 and WAT646 displayed longer and wider size than that of Fukuhokomugi (Figure 7),
so that these translocation lines exhibited higher thousand-grain weights. Compared to Fukuhokomugi,
the lines WAT655 and WAT646 showed higher grain number per spike, contributed by the higher
spikelet number per spike based on Duncan’s multiple-range test.Int. J. Mol. Sci. 2017, 18, 2403 6 of 13 
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Table 3. Agronomic traits for stripe rust-resistant translocation lines and their parents in 2017.

Materials Type Spike Length (cm) Spikelet Number per
Spike

Kernel Number per
Spikelet

Grain Number per
Spike

Thousand-Grain
Weight (g)

4844-12 10.35 ± 0.69 23.36 ± 2.27 4.48 ± 0.51 72.96 ± 5.79 37.74 ± 0.46
Fukuhokomugi 10.24 ± 0.84 18.76 ± 1.42 4.20 ± 0.41 55.08 ± 5.85 32.98 ± 1.40

WAT638a 6PS·6AL 10.60 ± 1.16 20.79 ± 2.08 * 3.76 ± 0.57 55.71 ± 4.48 40.84 ± 3.82 **
WAT639b 6PS·7AL 10.08 ± 0.98 19.48 ± 1.58 4.22 ± 0.68 57.00 ± 3.62 35.16 ± 3.47 *
WAT641a 7A-6PS 9.50 ± 1.15 17.50 ± 1.91 4.25 ± 0.50 48.50 ± 7.93 33.08 ± 3.52
WAT648 5DS·5DL-6PS 10.05 ± 0.99 20.44 ± 1.65 * 3.77 ± 0.94 56.22 ± 5.40 46.92 ± 4.14 **
WAT655 6DS·6DL-6PS 11.26 ± 0.86 * 21.28 ± 1.50 * 4.07 ± 0.45 64.38 ± 6.65 ** 38.38 ± 4.84 **
WAT646 1BL·1BS-6PS 11.52 ± 0.94 * 21.07 ± 1.59 * 4.07 ± 0.47 58.42 ± 6.15 * 44.25 ± 4.65 **

Note: * and ** denoted significant differences from Fukuhokomugi by Duncan’s multiple-range test at the probability levels of p = 0.05 and p = 0.01, respectively (analysis of variance by
SAS 9.2).
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3. Discussion

Broadening the genetic base of common wheat by transferring resistance genes from wide relatives
may enhance the chance of achieving adequate resistance against stripe rust. Wheat-A. cristatum 6P
disomic addition line 4844-12 was immune to the infection with stripe rust (CYR32 and CYR33).
Six translocation lines WAT638a, WAT639b, WAT641a, WAT648, WAT655 and WAT646 were highly
resistant to stripe rust. Among these lines, WAT646 was slightly different from others in the response
to stripe rust (Figure 5). The leaves of WAT646 carried few spores of Pst. There may be two
reasons for this difference. Firstly, WAT655 was a homoeologous translocation line, because the
6P segment was translocated to 6D, while the 6P segment of WAT646 was translocated to 1B [29].
Compensating translocations between homoeologous wheat and alien segments are favorable and
beneficial for wheat improvement [31], so that WAT655 may display better complementary than
WAT646. Secondly, the 6PS (0.81–1.00) of WAT655 was larger than the 6PS (0.86–1.00) of WAT646,
so the 6P segment of WAT655 may contain more resistance genes than that of WAT646. Therefore,
we localized the resistance locus on the 6P segment of WAT655. Collectively, the six translocation
lines exhibit high resistance to stripe rust and can be the new stripe rust-resistant resources for
resistance breeding.

A. cristatum, as a favorable genetic resource, carried various disease resistance genes [16,22,23].
The leaf rust resistance locus from A. cristatum has been transferred to common wheat [16].
Copete et al. [23] utilized the addition lines to confirm A. cristatum 2PL and 6PL carried powdery
mildew resistance gene(s). Song et al. [26] mapped a leaf rust resistance locus of A. cristatum on 6PS
(0.81–1.00) using A. cristatum 6P deletion lines. In this study, the stripe rust resistance locus was found
to be located on 6PS (0.81–1.00). The leaf rust resistance locus and the stripe rust resistance locus from
A. cristatum 6P were coincidently located on the same chromosomal segment. The translocation lines
(WAT639b, WAT638a, WAT648 and WAT655) were resistant to stripe rust in this research, and they
also were resistant to leaf rust. Therefore, the resistance locus mapped on 6PS (0.81–1.00) may be
a broad-spectrum resistance locus, and we speculate that there may be one favorable disease resistance
gene cluster on 6PS (0.81–1.00).

Molecular marker technique has been a considerably efficient and convenient method to detect
the alien genomic component. A series of P genome-specific STS markers were designed through EST
sequences of A. cristatum transcriptome sequences [32]. Song et al. [20] mapped 255 STS markers on
the physical map of A. cristatum 6P. These markers were used to trace the 6P segments of translocation
lines and deletion lines in this research. Twenty-nine STS markers were mapped on the region of the
resistance locus. These 6P-specific STS markers will be useful for screening disease-resistant materials
in wheat breeding, which will provide a basis for fine mapping of the wheat rust resistance locus in
future work.

In recent years, many wheat varieties have lost resistance against stripe rust due to the deficiency of
resistance genes and variation of Pst races. The emergence of two prevalent physiological races (CYR32
and CYR33) have resulted in the loss of stripe rust resistance of more varieties. However, only a few
resistance genes conferred still resistance to stripe rust in common wheat, such as Yr5, Yr10, Yr15,
Yr24/Yr26 and Yr50 [33–36]. Therefore, continuous exploration of new stripe rust resistance genes,
particularly wide-spectrum genes, will be imperative, which will enhance the diversity of stripe rust
resistance gene. Transferring stripe rust resistance genes from the wild relatives to common wheat has
been an effective approach to enhance the agronomic performance of wheat [37]. Wheat-rye 1BL·1RS
translocation line possesses the stripe rust resistance gene Yr9 [7,8]. The stripe rust resistance genes
from emmer wheat, such as Yr15 [38], Yr35/Lr52 [39] and Yr30/Sr2 [40], have been transferred to
common wheat. In this research, the stripe rust resistance locus of A. cristatum 6P has been transferred
into common wheat in translocation line form. The stripe rust resistance locus is a broad-spectrum
resistance locus, which can be used for genetic improvement of wheat as a new resistance source.
The stripe rust-resistant lines with favorable agronomic traits can be utilized in wheat breeding as
new disease-resistant wheat germplasms. The small segmental lines (WAT648, WAT655 and WAT646)
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will be as the basis for further exploring the stripe rust resistance locus through RNA-Sequence in
future research.

In summary, the novel stripe rust resistance locus from A. cristatum 6P was located on the region
6PS (0.81–1.00) using homozygous strains and the populations. The stripe rust-resistant translocation
lines will be used for wheat disease-resistant breeding as new germplasms and for fine mapping of the
novel stripe rust resistance locus as the basic materials.

4. Materials and Methods

4.1. Plant Materials

The plant materials, Triticum aestivum cv. Fukuhokomugi (2n = 6x = 42, AABBDD), A. cristatum
accession Z559 (2n = 4x = 28, PPPP, from Xinjiang, China), wheat-A. cristatum 6P disomic addition line
4844-12 (2n = 44), five M5 A. cristatum 6P homozygous deletion lines (del21, del20, del19a, del23 and
del29) [26], ten BC2F3 wheat-A. cristatum 6P homozygous translocation lines (WAT639b, WAT638a,
WAT639a, WAT638b, WAT657, WAT641a, WAT648, WAT655, WAT646 and WAT644) and the BC2F2 and
BC3F2 populations of WAT639a and WAT639b, were utilized in this study. The detailed information of
translocation lines and deletion lines was shown in Table 4. Wheat-A. cristatum 6P disomic addition line
4844-12 was acquired by distant hybridization between the A. cristatum accession “Z559” and common
wheat variety “Fukuhokomugi”. All of the plant materials were preserved at the Center of Crop
Germplasm Resources Research in the Institute of Crop Science, Chinese Academy of Agricultural
Sciences (Beijing, China).

Table 4. The detailed information of plant materials.

Materials Zygosity Progeny Type 6P Segment Size

del21 Homozygous M5 6PS telosomic 6PS arm
del20 Homozygous M5 6PL telosomic 6PL arm
del19a Homozygous M5 6PS terminal deletion 6PS (0.00–0.15) + 6PL
del23 Homozygous M5 6PS terminal deletion 6PS (0.00–0.45) + 6PL
del29 Homozygous M5 6PS terminal deletion 6PS (0.00–0.81) + 6PL

WAT639b Homozygous BC2F3 6PS·7AL 6PS arm
Heterozygous BC2F2, BC3F2

WAT638a Homozygous BC2F3 6PS·6AL 6PS arm
WAT639a Homozygous BC2F3 7AS·6PL 6PL arm

Heterozygous BC2F2, BC3F2
WAT638b Homozygous BC2F3 6AS·6PL 6PL arm
WAT657 Homozygous BC2F3 6AS·6PS 6PS (0.00–0.15)

WAT641a Homozygous BC2F3 7A-6PS 6PS (0.53–1.00)
WAT648 Homozygous BC2F3 5DS·5DL-6PS 6PS (0.59–1.00)
WAT655 Homozygous BC2F3 6DS·6DL-6PS 6PS (0.81–1.00)
WAT646 Homozygous BC2F3 1BL·1BS-6PS 6PS (0.86–1.00)
WAT644 Homozygous BC2F3 6PL·6PS-A 6PS (0.00–0.20) + 6PL

6P segment size: The comparison of the length of 6P segments and intact 6P arm. The position of the centromere
was considered as 0, while the terminal end of the 6PS/6PL arm was considered as 1 (Figure 6). The arm length was
measured using the software image J [41] and the fraction length value was calculated as described by Endo and
Gill [42].

4.2. Molecular Cytogenetic Analysis

Chromosome spreads of wheat-A. cristatum 6P translocation lines and A. cristatum 6P deletion
lines from root tip cells were prepared as described by Han et al. [43]. GISH was carried out as
described by Cuadrado et al. [44], except that the rinsing steps were modified with 0.5× saline sodium
citrate instead of 0.1× saline sodium citrate. The A. cristatum “Z559” P-genomic DNA and common
wheat “Fukuhokomugi” genomic DNA were respectively utilized as probe and block, at a 1:40 ratio.
A. cristatum genomic DNA was labeled by DIG-Nick Translation Mix. DIG-Nick Translation Mix and
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anti-digoxigenin-rhodamine (red) were purchased from Roche, Mannheim, Germany. Signals were
observed using an OLYMPUS AX80 (Olympus Corporation, Tokyo, Japan) fluorescence microscope.
Images were captured with a CCD camera (Diagnostic Institute, Inc., Sterling Height, MI, USA) and
processed with Photoshop CS 3.0.

P genome-specific markers and 6P-specific STS markers [30,32] were used to detect translocation
lines and deletion lines. P genome-specific markers can trace the P genomic component in
wheat background, which were designed through specific DNA sequences distributing the entire
P genome [30]. Zhang et al. [32] designed the 6P-specific STS markers according to the EST sequences
from A. cristatum transcriptome. Song et al. [30] mapped 255 6P-specific STS markers on the physical
map using the deletion lines and translocation lines. We used 6P-specific STS markers to trace the
different 6P segments of translocation lines and deletion lines.

4.3. Evaluation of Stripe Rust Resistance at Adult Stage

Homozygous materials and the BC2F2 and BC3F2 populations of WAT639a and WAT639b were
planted in a random complete block design with three replicates in the fields of Yangling (34◦16′56.24′′ N,
108◦4′27.95′′ E, Shaanxi province, China) and Xinxiang (35◦18′13.71′′ N, 113◦55′15.05′′ E, Henan province,
China) during 2015–2016 and 2016–2017. 4844-12, Fukuhokomugi and Huixianhong were used as
controls, meanwhile Huixianhong was also used as the spreader rows. Twenty grains of each line
were evenly planted in 2.0 m rows, spaced 0.3 m apart. A mixture of prevalent physiological races
composed of CYR32 and CYR33 was used to infect plants at wheat elongation stage.

Host responses to infection were recorded when leaves of Huixianhong were fully rusted [45].
The infection type (IT) of each plant was recorded based on 0–9 rating scale, with 0 as immune
(no visible signs), 1–2 as high resistance (no or few sporulation), 3–4 as intermediate resistance
(trace sporulation), 5–6 as intermediate susceptibility (intermediate sporulation), 7–8 as susceptibility
(abundant sporulation) and 9 as high susceptibility (no necrosis or chlorosis; abundant sporulation).
Plants with IT 0–4 were considered resistant, while plants with IT 5–9 were considered susceptible.

4.4. Statistical Analysis of Field Experiment

Statistical Analysis System (Version 9.2, SAS Institute, Cary, NC, USA) was used for statistical
analysis in this study. Plants in each population were classified to two types according to molecular
marker analysis: plants with P genome-specific markers and plants without P genome-specific markers.
Chi-squared (χ2) tests for independence were used to determine the association between 6P segments
and response to stripe rust.

The translocation lines were manually harvested at the maturity stage. We measured and
counted the spike agronomic traits including spike length, spikelet number per spike, kernel number
per spikelet, grain number per spike and thousand-grain weight. The analysis of variance was
performed to test the difference between the translocation lines and the parent Fukuhokomugi in the
agronomic traits.
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Abbreviations

GISH Genomic in situ hybridization
STS Sequence tagged sites
EST Expressed sequence tag
DAPI 4,6-diamino-2-phenyl indole
IT Infection type
SAS Statistical Analysis System
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