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The connective tissue of the umbilical cord contains stem cells called Wharton’s jelly cells. These cells express core transcription
factors (NANOG, OCT4, and SOX2). The protein product of the SOX2 gene controls the cell cycle by interacting with cyclin D
(directly and indirectly) and cycle inhibitors—p21 and p27, as well as two E2f3 protein isoforms. The aim of the study was to
analyze the effect of SOX2 on the cell cycle of stem cells of Wharton’s jelly. The material for the study was the stem cells of
Wharton’s jelly isolated from 20 umbilical cords collected during childbirth. The stem cells collected were subjected to
cytometric analysis, cell culture, and RNA isolation. cDNA was the starting material for the analysis of gene expression: SOX2,
CCND1, CDK4, and CDKN1B. The studies indicate a high proliferative potential of the Wharton’s jelly stem cells and the
inhibitory effect of SOX2 on the expression of the CCND1 and CDK4 gene.

1. Introduction

Wharton’s jelly that forms umbilical cord plays an important
role in ensuring vascular patency [1]. Stem cells are obtained
from gelatinous connective tissue, subendothelium of umbil-
ical vein, and umbilical cord blood. In the gelatinous connec-
tive tissue, rich in mucopolysaccharides and proteoglycans,
there are umbilical cord matrix cells called the Wharton’s
jelly cells (WJCs) [2].

Phenotypically, umbilical cord cells present a number
of antigens characteristic of mesenchymal stem cells found
in adult human tissues, including CD44, CD73, CD90, and
CD105 antigens. They do not express the common leukocyte
antigen and CD14, CD31, CD56, and HLA-DR antigens
[3–5], synthesize HLA-G, and have a higher proliferative
potential and longer telomeres than the mesenchymal stem
cells present in the tissues of the adult body [6–8].

WJCs express NANOG, OCT4, and SOX2 core tran-
scription factors, a gene characteristic of embryonic cells,
SSEA4, TRA-1-60, and telomerase reverse transcriptase
activity, suggesting their original, undifferentiated charac-
ter [9, 10]. The core transcription factors, called nuclear
transcription factors, are responsible for maintaining the
state of pluripotency, self-renewal, and inhibition of stem
cell differentiation.

Discovered and described in 1994 by Stevanovic et al.,
SOX2 gene (SRY-Related HMG-Box Gene 2) is located in
the long arm of chromosome 3, in the region 3q26.3-27
[11]. It belongs to the SOX gene family composed of 20
different genes divided into 8 groups (A, B, C, D, E, F,
G, and H). The SOX2 gene encodes the SOX2 protein com-
posed of 317 amino acids [12]. The SOX2 protein, similar
to other proteins encoded by SOX genes, has the HMG (High
Mobility Group) domain built of approximately 80 amino
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acids [13]. Through the HMG domain, SOX proteins bind to
the ATTGTT motif in DNA [14, 15].

The level of SOX2 protein expression depends on the cell
type and degree of differentiation. The function of this pro-
tein in the cell is strictly dependent on its concentration,
which is regulated on many levels, including transcription,
posttranscription, and posttranslational levels [16].

The mechanism of action of SOX2 protein is based on
interaction with other proteins leading to the formation of
an active complex. Active complex controls many processes
occurring in cells [16]. The SOX2 protein interacts with the
NANOG protein, OCT4 protein, other proteins (ESRRB,
KLF4, SALL1 and SALL4) that are transcription factors
responsible for maintaining the self-resilience, and proteins
responsible for chromatin remodeling (NuRD, Swi/Snf),
DNA replication, and DNA repair [17–23]. SOX2 could also
form an inhibitory complex. During mesendoderm develop-
ment, MSX2 form an inhibitory complex with SOX2 by bind-
ing to the SOX2 promoter [24].

The protein product of the SOX2 gene controls the cell
cycle by interacting with cyclin D (directly and indirectly)
[25, 26]. In the scientific literature, there are also reports on
the regulation of SOX2 gene expression through proteins that
inhibit the cell cycle—p21 protein [27] and p27 Kip1 [28], as
well as two isoforms of E2f3 protein regulating the cell cycle
as a result of interaction with the Rb protein [29].

2. Material and Methods

Stem cells were isolated from Wharton’s jelly umbilical cord
obtained during delivery from 20 patients of the Obstetrics
Clinic and Pregnancy Pathology. The tests were carried out
in accordance with the protocol and after obtaining the con-
sent of the Bioethical Commission at the Medical University
of Lublin (no. KE-0254/128/2014).

Stem cell isolation was performed using enzymatic diges-
tion. A fresh part of the umbilical cord (5 cm) was rinsed in a
phosphate-buffered saline (PBS) solution (Biomed, Lublin,
Poland) with an antibiotic—0.5% solution of penicillin with
streptomycin (PAA, Austria) and 0.5% amphotericin solu-
tion (PAA, Austria)—and then was cut into 2 mm diameter
pieces of Wharton’s jelly. Afterwards, the cord was digested
in a collagenase solution (Sigma, USA) in 10 mg/30 ml of
PBS at 37°C. The digested umbilical cord was passed through
a 100 μm diameter filter and centrifuged (10 minutes, room
temperature, 800 RPM (rotations per minute)). Supernatant
was removed, and then a 20% FBS solution (Gibco, USA)
in PBS was added to neutralize the collagenase effect. The
resulting mixture was centrifuged, the supernatant was
removed, and the remaining pellet was suspended in 20 ml
of the culture medium containing 10% FBS, 0.5% solution
of penicillin with streptomycin, 0.5% amphotericin solution,
and DMEM (Dulbecco’s Modified Eagle Medium) (Gibco,
USA) and then was placed in a TC Flask T25, Cell+ (Sarstedt,
Germany) vessel intended for adherent culture.

The stem cell cultures of Wharton’s jelly were incubated
for 10 and 14 days at 37°C, in a 5% CO2 atmosphere with lim-
ited oxygen supply (not exceeding 4%). The culture medium
was changed every 3 days.

Having cultured the adherent stem cells, the culture
medium was removed and the cells were washed twice by
heating to 37°C PBS-antibiotic solution. Medium remains
were removed. Next, 1 ml of a warm solution of PBS
was added to the washed cells, and cell scraper (Sarstedt,
Germany) was applied to detach the cells from the walls of
the vessel. Cells suspended in PBS buffer were divided into
2 aliquots of 0.5 ml, transferred to Eppendorf tubes, and
centrifuged (10 minutes, room temperature, 800 RPM).
The supernatant from the pellet was removed. The cell pellet
was subjected to further procedures.

The cytometric analysis of stem cells of Wharton’s jelly
for the CD34+/CD90+/CD105+ phenotype was performed
according to the procedure in the publication “Phenotypic
Characterization of Adherent Cells Population CD34+
CD90+ CD105+ Derived from Wharton’s Jelly” [30]. Cyto-
metric analysis was done for 10 samples. Each sample was
analyzed once. The cytometric analysis was carried out in a
MoFlo XDP cell sorter (Beckman Coulter) using the Summit
software and Kaluza software and FlowSight cytometer
(Amnis) using the Amnis software.

Cell proliferation analysis was performed using the Cell
Trace CSFE Cell Proliferation Kit (Invitrogen, USA). After
10 days of cell culture, CellTrace loading solution containing
CFSE (carboxyfluorescein diacetate succinimidyl ester) was
added to cell cultures according to the attached procedure
for adherent cells. The cytometric analysis of cell prolifera-
tion was done four days later using the FlowSight cytometer
(Amnis, USA) and Amnis software.

Total RNA was isolated using the modified method of
Chomczyński and Sacchi. Suspended in 500 μl PBS, the
stem cells were centrifuged (10 minutes, room tempera-
ture, 800 RPM); the supernatant was removed. RNA was
obtained from the obtained cell pellet using the TRI
reagent (Sigma, USA), chloroform (POCH, Poland), and
isopropanol (Sigma, USA). Next, after measuring the con-
centration of the acid obtained, the RNA reverse transcrip-
tion reaction was performed by means of a commercially
available kit (High-Capacity Reverse Transcription Kit
cDNA, Applied Biosystems, USA) and according to the
attached procedure.

The study of SOX2, CCND1, CDK4, and CDKN1B
expression was performed using the real-time PCR method.
cDNA, probes: SOX2 (Hs0153049_s1, Applied Biosystems,
USA), CCND1 (Hs00765553_m1, Applied Biosystems,
USA), CDK4 (Hs00262861_m1, Applied Biosystems, USA),
and CDKN1B (Hs00153277_m1, Applied Biosystems, USA)
and Master Mix buffer (Applied Biosystems, USA) were used
for the analysis. The real-time PCR reaction, after the initial
10-minute denaturation at 95°C, was carried out according
to the following scheme—40 cycles: 15 seconds at 95°C and
60 seconds at 60°C. Each sample was tested in duplicate.
The reaction was carried out in the StepOnePlus Real-Time
PCR System.

Gene expression analysis was performed using the
StepOne Software v.2.2.2 and Expression Suite Software
v.1.0.3.165 from Applied Biosystems.

For further calculations, the mean value ΔCt of individual
samples normalized to endogenous control—GAPDH
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(Hs99999905_m1, Applied Biosystems, USA)—was used. To
determine the relative gene expression (RQ), the following
formula was used: RQ = 2–ΔΔCT [31].

Statistical analysis was subjected to the final result which
was the logRQ value of each gene expression. The statistical
analysis was performed in the Statistica12 software using
the Kruskal-Wallis ANOVA test and the multiple compari-
son test (n = 20, where n represents the number of patients
from whomWharton’s jelly stem cells were obtained). Three
levels of significance were determined: p < 0 05, p < 0 01, and
p < 0 001.

All of the statistical details of the experiments can be
found in Results and in Figure 1.

3. Results

As a result of the in vitro cultivation, the adherent properties
of Wharton’s jelly stem cells to the walls of culture vessel
were confirmed. In the process of culturing, the cells pre-
sented proliferation capacity forming a monolayer around

day 10 of culture. They formed colonies morphologically
resembling fibroblasts. Observation results (microscopic
images) are shown in Figure 2.

To determine cell cycle progression, analysis of prolifera-
tion with the CellTrace CSFE Kit was done. Cytometric anal-
ysis showed proliferative potential of the examined cells.
Figure 3 shows histogram with 3 generations of stem cells
of Wharton’s jelly (emission peaks from CSFE dye bonded
covalently to intracellular amines).

To determine the phenotype of the isolated stem cells
of Wharton’s jelly, cytometric analysis was performed
using the MoFlo XDP cell sorter (Beckman Coulter) and
the FlowSight flow cytometer (Amnis). Figure 4 presents
exemplary histograms depicting fluorescence intensity of
surface antigens.

Expression of CD105 antigen exhibited 88.04% WJSC
and expression of CD90 antigen 78.29% WJSC, whereas
expression of CD34 antigen 52.35% WJSC (Figure 5).

The pictures in Figure 6 show the morphology and fluo-
rescence of the exemplary stem cells of Wharton’s jelly in
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Figure 1: Graph showing the mean and standard deviation for logRQ of the SOX2, CCND1, CDK4, and CDKN1B gene in Wharton’s jelly
stem cells (nonbred: day “0” and after 10 and 14 days of culture). ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001.
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Figure 2: Wharton’s jelly stem cells (1: on day 4 of culture; 2: 10 days of culture; 3: 14 days of culture). Microscopic image at 200x
magnification (10x eyepiece, 20x objective). Own photo taken using the Olympus CKX41 inverted microscope and the Olympus XC50
camera.
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individual channels. The image was obtained during the
cytometric analysis on the FlowSight apparatus (Amnis).

In our studies, the expression of the following genes was
demonstrated: SOX2, CCND1, CDK4, and CDKN1B in both
noncultured cells and cells subjected to cell culture.

Statistically significant differences (p < 0 05) were deter-
mined by the Kruskal-Wallis ANOVA test for the logRQ
values of all the tested genes between the nongrown stem
cells of Wharton’s jelly and stem cells of the Wharton’s jelly
after 10 and 14 days of culture (Figure 1).

In order to accurately identify statistically significant dif-
ferences, the analysis was extended by a multiple comparison
test. The multiple comparison test showed statistically signif-
icant differences (p < 0 05) for the logRQ values of the SOX2,
CCND1, CDK4, and CDKN1B genes between the Wharton’s
jelly stem cells, nonbred and after 10 days of culture, as well
as noncultured and after 14 days of culture. There were no
statistically significant differences for the logRQ values of
particular genes between the Wharton’s jelly stem cells after
10 and 14 days of culture (Figure 1).

In our studies, a significant decrease in the level of SOX2
gene expression in stem cells of jelly substance was observed
as a result of cell culture compared to the level of expression
prior to cultivation (p < 0 05) (Figure 1).

The highest level of SOX2 gene expression was observed
in nongrown stem cells (the mean for logRQ of the SOX2
gene is 0.23), while the lowest level of SOX2 gene expression
was recorded in stem cells after 14 days of culture (the mean
for logRQ of the SOX2 gene is -0.97) (Figure 1).

During cell culture, there was a significant increase in the
expression of the CCND1 gene and CDK4. Stem cells of
Wharton’s jelly after the first day of cultivation exhibited
the highest expression level of the CCND1 gene (the mean
for logRQ of the CCND1 gene is 1.99), while the lowest level
of CCND1 gene expression was observed in noncultured
stem cells (the mean for logRQ of the CCND1 gene is 1.47)
(Figure 1).

The highest level of CDK4 gene expression was observed
inWharton’s jelly stem cells after day 10 of culture (the mean

for logRQ of the CDK4 gene is 0.07). The lowest expression
level of the CDK4 gene was displayed byWharton’s jelly stem
cells prior to culture (the mean for logRQ of the CDK4 gene is
-0.27) (Figure 1).

In addition, the effect of changes in SOX2 gene expression
on the expression of CCND1 and CDK4 kinase was analyzed.
The Wharton’s jelly stem cells did not show a gene expres-
sion. Moreover, the expression of the CCND1 gene and
CDK4 kinase significantly increased with SOX2 gene decrease
(p > 0 05) indicating the inhibitory effect of SOX2 on the
expression of cyclin D1 and CDK4 kinase (Figure 1).

In addition, there was a decrease in CDKN1B gene
expression during cell culture. The decrease in CDKN1B
gene expression was accompanied by a decrease in SOX2
gene expression.

In stem cells of Wharton’s jelly, the highest level of
CDKN1B gene expression was observed prior to culture
(the mean for logRQ of the CDKN1B gene is -1.11). A similar
level of expression of the CDKN1B gene was demonstrated
by stem cells after day 10 of culture (the mean for logRQ
of the CDKN1B gene is -1.42) and stem cells after day 14 of
culture (the mean for logRQ of the CDKN1B gene is -1.50)
(Figure 1).

4. Discussion

In the light of recent studies, the SOX2 gene can also regulate
the cell cycle, migration, and cell adhesion [32–34] in addi-
tion to its ability to self-renew and differentiate. Depending
on the type of stem cell and concentration, the SOX2 protein
can activate [32–34] or inhibit the expression of the CCND1
gene [26].

In our own studies, a significant increase in the expres-
sion of the CCND1 gene and CDK4 kinase, as well as the
decrease in SOX2 gene expression in theWharton’s jelly stem
cells, was observed during cell culture.

Research on the effect of SOX2 gene expression on the
progression of the cell cycle and the ability to differentiate
was conducted by Han et al. [32] and Yoon et al. [34]. Yoon
et al. observed that in cultures with low cell density, the
increase in the expression of pluripotency markers is accom-
panied by an increase in cell proliferation, the percentage of
cells in the S and G2/M phases of the cell cycle, the expression
of cyclins A, B, and D, as well as kinases, CDK2 and CDK4,
and the ability to chondrogenesis and adipogenesis. To con-
firm their theory of linking the expression of pluripotency
genes to cell proliferation and differentiation, scientists intro-
duced intervening siRNAs to silence the expression of the
SOX2 gene. As a result of the experiment, there was a
decrease in SOX2 expression at the protein level, which was
accompanied by a decrease in proliferation and ability to dif-
ferentiate. The obtained results indicated that the SOX2 pro-
tein plays a role in maintaining the proliferation and
multiplication of MSC cells [34].

Transfection with the OCT4-IRES-SOX2 plasmid vector
of mesenchymal stem cells by Han et al. reduced the per-
centage of cells in the G1 cycle phase and the increase in
the number of cells in the S phase indicating proliferation.
In addition, analysis at the protein level using Western
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Figure 3: Histogram with 3 generations of Wharton’s jelly stem
cells. P0: population 0; P1: population 1; P2: population 2.
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blot produced an increase in the content of cyclin D1 in cells,
which may indicate the transition from the G1 phase to the S
phase. Infected cells were also characterized by an increase in
differentiation potential to adipocytes and osteoblasts as

evidenced by the higher accumulation of adipocyte dyes
(oil red O) and osteocytes (azarin S) as well as an increase
in the expression of genes characteristic of fat cells—PPAR-
gamma, lipoprotein lipase, and bone tissue—collagen I, and
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Figure 4: Histograms. Expression of CD34, CD90, and CD105 surface antigens in stem cells of Wharton’s jelly. Own photos obtained from
cytometric analysis carried out on a MoFlo XDP cell sorter (Beckman Coulter), generated using the Kaluza software.
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Figure 5: Mean percentage of stem cells of Wharton’s jelly expressing the surface antigens tested during cytometric analysis.
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Figure 6: Wharton’s jelly stem cells expressing CD34, CD90, and CD105 antigens. Cell morphology and fluorescence in individual channels
of the FlowSight cytometer (Amnis). From the left: gray: cell morphology; yellow: CD105-PE antigen; red: CD90-PC5 antigen; pink: SSC (side
scatter); green: CD34-APC antigen.
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osteocalcin. The overexpression of the SOX2 gene led to the
growth of markers characteristic for mesoderms, neuro-
derms, and trophopodectomies [32].

Liu et al. using retroviral transfection introduced the
SOX2 gene to isolate from the dental pulp of the stem cells
and then studied the effect of overexpression on the ability
to proliferate, migration, and adhesion of infected cells. Cyto-
metric analysis of the cell cycle showed that a greater percent-
age of cells overexpressing the SOX2 gene were in the S phase
of the cycle and a smaller one in the G1/G0 phase as com-
pared to the control cells. In addition, increased expression
of the SOX2 gene resulted in an increase in the proliferation
index, FBS-induced migration, and the ability to adhere to
cells induced with fibronectin. By using RNA microarray
technology, researchers have proven that SOX2 can regulate
cell adhesion and cell division. As a result of the reaction,
the qPCR showed an increase in the expression of the cell
cycle genes (cyclins A1, D1, and E and CDK2 kinase), which
are responsible for migration (PI3K and EDN1) and cell
adhesion (CLDN1, CLDN2, JAM3, HRAS, and F11L) in cells
from the gene SOX2. Furthermore, the researchers noted an
increase in the amount of SOX2 protein in infected cells [33].

Greco et al., using siRNA, silenced the expression of the
OCT4 gene, whose protein product forms a heterodimeric
complex with the SOX2 protein. As a result of the experi-
ment, there was not only a decrease in the expression of
SOX9, HDACI, and PH-4 genes, responsible for differentia-
tion towards mesoderm, but also a decrease in genes related
to the cell cycle (cyclins A1, B1, and D1, CDK2 kinase, and
CDK4) as well as increased expression of the p21 inhibitor
resulting in cell output from the cycle [35].

Similar observations were made by Riekstina et al. The
decrease in OCT4 gene expression in bone marrow stem cells
led to the inhibition of divisions, exit from the cycle, and pas-
sage of cells to the resting phase [36].

Regulation of CCND1 gene expression by SOX2 protein
takes place both directly and indirectly [25, 26]. Direct regu-
lation is based on the attachment of SOX2 protein to binding
sites of the CCND1 gene promoter [26].

Hagey and Muhr, as a result of research conducted on
neural stem cells, identified in the region of the gene pro-
moter CCND1 9 sites binding protein SOX2 characterized
by a greater or lesser affinity to this protein. In addition, they
found that the interaction of the SOX2 protein with the pro-
moter of the CCND1 gene inhibits its expression. Further
research into the effect of attaching SOX2 protein to specific
sites in the CCND1 gene promoter region has yielded a sur-
prising result. The mutation of sites showing greater affinity
for the SOX2 protein only contributed to a slight increase
in the expression of CCND1 as opposed to the mutation of
low affinity sites, which resulted in a significant increase in
the expression of this gene. In addition, the researchers ana-
lyzed the effect of interaction of SOX2 protein with betacate-
nin, Lef/Tcf proteins, and their Gro/Tle protein cofactors on
the expression of cyclin D1. The interaction of SOX2 protein
with betacatenin at binding sites with higher affinity abol-
ished the activating nature of betakatein for CCND1 expres-
sion. Attachment of Lef1 protein enhances SOX2 inhibitory
properties, and Tcf7L1 inhibits CCND1 expression only in

the presence of SOX2 protein. The Tle protein induces a syn-
ergistic effect on the expression of CCND1. The increase in
SOX2 gene expression enhances the interaction between Lef1
and Tle1 as a result of the interaction of SOX2 protein with
the Tle by the C-terminal, non-DNA-binding domain [26].

Card et al. in their studies on the effect of OCT4, SOX2,
and NANOG gene expression on the cell cycle in embryonic
stem cells observed that the expression ofmiR-302a is depen-
dent on SOX2 andOCT4. In addition, the protein products of
these genes attach to the binding sites of the miR-302 cluster
promoter, one of those whose target is cyclin D. As a result of
miR-302 activation, the concentration of cyclin D increases,
accompanied by an increase in the number of cells in the S
phase and decrease in the G1 phase, which indicates the indi-
rect participation of SOX2 and OCT4 in the regulation of the
cell cycle [25].

The expression of the SOX2 gene can be regulated by cell
cycle inhibitors, e.g., p27 kip. Li et al. during the differentia-
tion of pluripotent stem cells, using retinoic acid, noted a
decrease in SOX2 gene expression with the increase of p27
Kip1 protein expression [28].

In contrast to the experiment conducted by Li et al., in
our own studies, due to stem cell culture of Wharton’s jelly,
the decrease in SOX2 gene expression was accompanied by
a decrease in CDKN1B gene expression, which may indicate
a different regulation of SOX2 gene expression by CDKN1B
in the examined cells.

5. Conclusion

In conclusion, it was noted that in the process of cell culture,
a significant decrease in CDKN1B gene expression and an
increase in the expression of the CCND1 gene and CDK4
kinase were observed, which may indicate a high proliferative
potential of cells derived from the Wharton’s jelly of the
umbilical cord.

In addition, in the examined umbilical cord parent cells,
an increase in the expression of the CCND1 gene and
CDK4 gene and a decrease in CDKN1B gene expression
(p < 0 05) were accompanied by a decrease in SOX2 gene
expression indicating potential inhibitory effects of SOX2
on the expression of cyclin D1 and CDK4 kinase.

The research conducted on the stem cells of the Whar-
ton’s jelly umbilical cord sheds new light on the current
reports. In addition, they confirm the potential inhibitory
effect of SOX2 protein on the expression of cyclin D1. This
may indicate a similar mechanism of mutual regulation of
SOX2 gene expression and expression of cell cycle genes in
stem cells of Wharton’s jelly and parental nerve cells.
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