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We developed a novel artificial neural network (ANN) system able to detect and classify pesticide residues. The novel ANN
is coupled, in a customized way, to a cellular biosensor operation based on the bioelectric recognition assay (BERA) and able
to simultaneously assay eight samples in three minutes. The novel system was developed using the data (time series) of the
electrophysiological responses of three different cultured cell lines against three different pesticide groups (carbamates, pyrethroids,
and organophosphates). Using the novel system, we were able to classify correctly the presence of the investigated pesticide groups
with an overall success rate of 83.6%. Considering that only 70,000-80,000 samples are annually tested in Europe with current
conventional technologies (an extremely minor fraction of the actual screening needs), the system reported in the present study

could contribute to a screening system milestone for the future landscape in food safety control.

1. Introduction

The contribution of quality tests of exported food and other
agricultural commodities to the total food quality sector
has a market value of 1.7 billion €. A major part of the
initiative for reduced use of pesticides belongs to the food
industry and retail trade. In particular, various business-
to-business systems have been developed to certify the
quality of Integrated Crop Management (ICM) products on
a worldwide scale, some of them with considerable success
(e.g., EUREPGAP in Europe) [1, 2]. Therefore, there is
a vivid demand by the international food producers and
industry for pesticide residue screening tools as proximal as
possible to the production and processing sites. The issue of
screening capacity, realized through rapid, cost-efficient, and
high throughput pesticide residue testing, is an indispensable
goal, especially considering the astonishingly low number
of samples tested annually with conventional methods at
certified laboratories all over Europe. The availability of

a system providing growers, food companies, and distributors
with the flexibility to routinely screen for a range of residues
regularly in a cost effective way would allow the identification
of remedial solutions quicker than is currently possible.

As one of currently major cellular biosensor technologies,
the bioelectric recognition assay (BERA) utilizes live, func-
tional cells in a gel matrix coupled with a sensor system able to
measure changes in the cellular electric properties. Cells that
are able to specifically interact with a target analyte produce
a unique pattern of electrical potential as a result of their
interaction with this analyte.

The BERA working principle has been already utilized for
screening pesticide residues as target analytes (more specif-
ically, carbamate and organophosphate pesticide residues
in different food matrices [3, 4]). Although this system
is sufficient for application by an expert user on a small,
laboratory scale, it suffers from a drawback: the inevitable use
of an empirical way (examining the biosensor’s response data)
to identify a pesticide in a sample. It would be highly desirable
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TaBLE 1: Composition of the different pesticide groups used for training the novel ANN (all pesticides were added at a concentration of

0.01 ppm).
Group Target compounds Concentratign of active. Commercial name Manufacturer
compound (%) in formulation
Acephate 75 Forten VETERIN
Azinphos methyl 25 Azin AGROCHIMIKI
Chlorpyrifos 48 Echo MAKHTESHIM
Chlorpyrifos methyl 22.5 Reldan DOW
Organophosphates Dimethoate 40 Perfekthion BASF
Malathion 50 Malathion AVENTIS
Methamidophos 50 Tabamor AGROELLINIKI
Pirimiphos methyl 50 Actellic SYGENTA
Profenofos 50 Selecron SYGENTA
Triazophos 42 Hostathion AVENTIS
Carbendazim 25 Carbendazim BAYER
Carbofuran 10 Carbofuran NITROFARM
Phenmedipham + desmedipham Z Record ALFA
Carbamates Methiocarb 50 Mesurol BAYER
Methomyl 90 Dimethilin K&N
Oxamyl 10 Judo FARMA-CHEM
Iprodione 50 Rovral Aquaflo BASF
Propamocarb 53 Previcur Energy BAYER
Thiophanate methyl 70 Neotopsin K&N
Abamectin 1.8 Rotam ACARAMIC
Cyfluthrin 5 Baythroid DU PONT
Cyhalothrin-lambda 10 Cyhalothrin SYGENTA
Pyrethroids Cypermethrin 10 Assist CERDE
Deltamethrin 2.5 K-Othine BAYER
Fenpropathrin 10 Danitol SUMITOMO
Fenvalerate 30 Sumicidin SUMITOMO
Tau-fluvalinate 24 Mavrik MAKHTESHIM

to avail over a pesticide classification software as a component
of the biosensors, at the same time learning during use and
therefore obtaining a better classification accuracy.

One option in this direction is the employment of com-
putational models that try to approximate a function from
sample data, such as artificial neural networks (ANNs) [5].
Having become popular with the development of the back-
propagation training algorithm [6], their training includes a
sufficient number of data to “learn” the process behind the
production of these data. In the particular case of chemical
and biological applications, characterized by highly nonlinear
processes, the use of a variety of ANN methodologies has
been proven to be very successful [7-10].

In the present study, we developed and trained a cus-
tomized feedforward ANN [11] for the classification of
three different pesticide groups (pyrethroids, carbamates,
and organophosphates) detected by a cell-based biosensor
operating on the BERA principle and combined with a
high throughput measurement device. The novel system
classified correctly the presence of the pesticide groups under

detection with an overall success rate of 83.6%. The results
of the application of the proposed ANN systems support the
adoption of the novel classification methodology which can
become a key component of an integrated high throughput,
rapid, high capacity screening system for pesticide residues.

2. Experimental Setup

2.1. Materials. Mouse neuroblastoma (N2a), human neu-
roblastoma (SK-N-SH), and African green monkey kidney
(Vero) cell cultures were originally provided from LGC
promochem (UK). Standard pesticide solutions were pre-
pared from commercial formulations purchased from various
manufacturers (Table 1). Pesticide mixtures were prepared
thereof daily in double distilled water. All other reagents
were purchased from Fluka (Switzerland). Cells were cultured
in Dulbeccos medium with 10% fetal bovine serum (FBS),
1U ug™" antibiotics (penicillin/streptomycin), and 2mM L-
glutamine. Cells were detached from the culture and concen-
trated by centrifugation (2 min, 1200 rpm, 25°C), at a density
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of 2.5 x 10° mL™". During each assay (see below, Section 2.2)
cells were used at a density of 1000 uL™".

2.2. Biosensor Principle. The biosensor was based on cellular
biorecognition elements, which are natural targets of the
pesticide groups under investigation. The first two cell lines
(N2a, SK-N-SH), being neuronal, are natural targets of all
three pesticide groups, due to the inhibition of either acetyl-
choline esterase (AChE) (organophosphates, carbamates) or
ion channels (pyrethroids). Under control conditions (no
pesticides present), when acetylcholine is added to the cells,
it causes a temporary depolarization of the cell membrane
(excitation), which is rapidly cancelled out by the specific
cellular mechanisms. However, when pesticides are present,
they inhibit these mechanisms (such as AChE), thus allowing
for a continuous stimulation of the neural cells. This means
that, when AChE/ion channels are inhibited by pesticide
residues in the sample, addition of ACh will cause the exces-
sive stimulation of N2a or SK-N-SH cells, which will further
lead to membrane depolarization above a predetermined
threshold [12].

As documented in previous studies [13, 14], the third cell
line (Vero) also responds to the pesticides with a general
toxicity response, which is acetylcholine-independent (i.e.,
no addition of acetylcholine is required).

Following an initial calibration of the biosensor system
(analytical results are not shown here), the N2a, SK-N-SH,
and Vero cell lines were identified as the optimal biorecog-
nition elements for the pyrethroid, organophosphate, and
carbamate pesticide groups, respectively.

2.3. Biosensor Device. A customized device was developed
(Uniscan, Buxton, UK) in order to measure electric signals
from the cellular biorecognition elements and allowing for
high throughput screening and high speed of assay. The
device is a portable potentiometer, having a replaceable guide
bearing eight pairs of electrodes connecting on the under-
side. The system provides a connection interface to insert
electrode strips directly into the instrument, utilizing one
electrode strip per channel. Each electrode strip comprised
a 0.5mm thick ceramic substrate with three screen printed
electrodes (working electrode—WE, reference electrode—
RE, and counter electrode—CE). In order to facilitate high
throughput screening, DRP-8X110 disposable sensor strips
(WE: carbon, RE: Ag/AgCl) bearing eight electrode pairs
(corresponding to eight measurement channels) were pur-
chased from DropSens (Asturias, Spain) (Figure1). Thus,
the potentiometer, through its array of eight electrode pairs,
received measurements from corresponding eight units of
cellular biorecognition elements interacting with the assayed
sample(s).

2.4. Creation of Pesticide Group Mixtures. The next step was
to select the pesticides which composed the representative
mixtures for each separate pesticide group. The basic criteria
for the selection were the occurrence of residues of the
respective pesticides as well as their commercial availability.
After an extensive survey, we concluded the formulation
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FIGURE 1: Details of biosensor device used for measuring cell-
pesticide interactions. The eight-channel disposable sensor is con-
nected to the potentiometer through a customized interface.

TaBLE 2: Composition of control and positive sample sets.

MRL dilution Control sample set Positive sample set
0 60%

MRL/20 20%

MRL/10 20%

MRL/2 50%

MRL 50%

presented in Table 1. This formulation is constructed in such
way to include, within each group, pesticidal compounds
which are representative (i) of actual compounds currently
used in European agriculture and (ii) of different levels of
solubility in water or polar solvents, since nonpolar solvents
are not suitable for use with cellular biorecognition elements.

Within each pesticide group, and due to the fact that
individual pesticides are associated with different maximum
residue level (MRL) values, also depending on the food
commodity under investigation, we decided to create the
three different mixtures (corresponding to the three different
pesticide groups) by adding pesticides at the concentration
corresponding to the lowest MRL within each group. In this
way, we secured that the biosensor would be developed on the
principle of maximum sensitivity, in respect of the cumulative
MRL of each group (actually 0.01 ppm for all groups).

Next, we created two types of sample sets (collections)
for training the ANN. The first type of sample set was
considered the control sample set, which contained pesticide-
free samples as well as samples with pesticides at a cumulative
concentration of MRL/20 and MRL/10 (i.e., too low). The
second type of sample set was the positive sample set,
which contained samples with pesticides at a cumulative
concentration of MRL/2 and MRL. The relative composition
of each MRL dilution in each sample set is presented in
Table 2.

2.5. Assay Procedure. For screening the presence of a par-
ticular pesticide group, the corresponding cultured cells in
suspension (see Section 2.2) were placed on the top of each of
the eight carbon screen-printed electrodes contained in each
disposable sensor strip (40 uL = 40 x 10° cells) with the help of
a multichannel automatic pipette (Figure 2). Next, the sample
was added (pesticide mixture) (5 uL), followed by 5 uL Ach
(10 mM).



FIGURE 2: Pouring of cultured cells in suspension placed on the top
of each of the eight carbon screen-printed electrodes contained in
each disposable sensor strip.

The response of the cells to the different samples (control
and positive sample sets from pesticide group) was recorded
as a time series of potentiometric measurements (in Volts).
The duration of each measurement was 180 sec, and 360
values/sample were recorded at a sampling rate of 2 Hz.

2.6. ANN Design and Training Process. Three main aspects
of feedforward ANN modeling were considered for the
development of the classification systems:

(i) network architecture (number of nodes in one or two
hidden layers);

(ii) the type of backpropagation training algorithm:

(1) steepest-descent algorithm,

(2) quasi-Newton algorithm,

(3) Levenberg-Marquardt algorithm,
(4) Conjugate-gradient algorithm;

(iii) the type of activation function in the hidden nodes:

(1) logistic function,
(2) hyperbolic tangent (tanh) function.

Trial-and-error experimentations were conducted for the
discovery of the best combinations of these parameters.
Network weights were randomly initialized, thus several
training trials were performed for each possible combination.
The widely used methodology of cross-validation [11] was
used for terminating the training process, so that over-
training was avoided, and good generalization capabilities
were ensured. All training algorithms, ANN modeling and
experimentations were implemented in MATLAB.

In addition to the trial-and-error approach for the design
and parameterization of the ANN model, an evolutionary
methodology that combines network design and parame-
terization with feature extraction from time series was also
used (a detailed description of the system is presented in
[15]). Its primary goal was to produce meta-data from the
information contained in the original time-series, reduce the
dimensionality of the input data space, and reduce the noise
contained in the initial raw information. A genetic algorithm
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was used to normalize the initial information and discover
the optimal design and parametrization of the ANN model.
This evolutionary approach gave poorer results than the trial-
and-error approach combined with the feature extraction
technique presented.

2.6.1. Meta-Data Creation. Each time series of data consisted
of 360 sequential measurements (see also Section 2.5). One
way to feed time-series data into an ANN is to convert
the information of the time-series data into more suitable
meta-data. These meta-data must be much fewer than the
number of data samples of each time-series and must capture,
in the maximum possible degree, the characteristics of
the time series data samples. After some experimentations
with several statistical variables (e.g., minimum, maximum,
mean, median, standard deviation, skewness) and ways of
segmenting the time-series data, from each time series the
following set of meta-data was extracted to be used as ANN
inputs:

(i) mean and standard deviation of all 360 data samples;

(ii) mean and standard deviation of each quarter part of
the data samples (data samples were divided into four
equal-length segments);

(iii) minimum and maximum values of all data samples.

Thus, each time series of 360 measurements was con-
verted into 12 single values.

2.6.2. Initial ANN System Development. As a first approach,
we used only the 12 meta-data values as inputs of the ANN
model. This approach was initially tested on the development
of a classification model for the pesticides of the pyrethroid
group. The available data were 450 time series (each con-
taining 360 measurements), that is, 214 control time series
(negative) and 236 MRL time series (positive). For each time
series, the only available information was the existence or not
of pesticide in the sample. These available time series were
divided into training and testing sets. 30 random “control”
time-series and 30 random “MRL” time series (i.e., 60 in total)
constituted the testing set, leaving the rest 390 time-series to
form the training set.

The ANN had one output, denoting the existence (value
equal to 1) or not (value equal to 0) of the pesticides under
question. The training was performed with the values 0 and
1, but the actual output of the network was a real value
(normally, but necessarily, between the values of 0 and 1).
During the testing of model, all values less than 0.5 were
considered to be 0, and all values greater than or equal to 0.5
were considered to be L.

Several  trial-and-error = experimentations  were
conducted, concerning the parameters mentioned before
(network architecture, type of backpropagation algorithm,
and type of activation functions). The best performance
during these training experimentations was given by a
1-hidden-layer network with 10 hidden nodes and hyperbolic
tangent activation functions, trained with the quasi-Newton
minimization algorithm.
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TABLE 3: Best ANN models for the pyrethroid group.

Activation functions

Hidden layers/nodes (hidden nodes/output node) Minimization algorithm in backpropagation algorithm
ANN-PI 1-HL/23 Logistic/linear summation Levenberg-Marquardt
ANN-P2 2-HL/5,15 Logistic/linear summation Levenberg-Marquardt
ANN-P3 2-HL/10, 10 Logistic/linear summation Levenberg-Marquardt

The ANN that gave the best results during the training
and parameterization process described above was further
trained for a larger number of training iterations. The perfor-
mance of the final ANN system was evaluated on the testing
data set. The correct classification rate was 70%.

2.6.3. Final ANN Systems Development. The correct classifi-
cation rate of 70% was not considered satisfactory. Therefore,
it was decided that additional information for each time series
was necessary. For that reason, two additional parameters
were recorded:

(i) the age of the cells (in days),

(ii) the generation number of the cells (four different
generation values).

These two additional inputs were added to the 12 meta-
data inputs, so the final ANNs had in total 14 inputs.

3. Results

Following appropriate validation, the ANN architectures
and minimization algorithms combinations that gave the
best results during training were further trained and tuned,
leading to the development of the final ANNSs. These models
were evaluated in specific testing data sets, that is, new data,
different than those used during training. The analytical
results for each pesticide group are presented.

3.1. ANN Models for the Pyrethroid Group. The available data
were 809 time-series (each containing 360 measurements
and the corresponding values of the two additional inputs).
Specifically, they included 405 control time series (negative)
and 404 positive time series. These available time series
were divided into training and testing sets. Thirty random
“control” time series and 30 random “positive” time series
(i.e., 60 in total) constituted the testing set, leaving the rest
749 time series to form the training set.

Similarly to the initial models, the ANN had one output
with values corresponding to the existence (1) or nonexis-
tence (0) of pesticides of the pyrethroid group.

Again, several trial-and-error experimentations were
conducted, concerning the usual parameters described before
(network architecture, type of backpropagation algorithm,
and type of activation functions). The parameters of the
ANNs with the best performance during these training
experimentations are presented in Table 3, while their corre-
sponding performances on the testing data set are presented
in Table 4. Their actual outputs on the testing set are shown
in Figures 3, 4, and 5. The best ANN (ANN-P3) achieved an

TaBLE 4: Correct classifications for the pyrethroid group (number of
samples and corresponding percentages) during the testing process
of the ANNG.

ANN-PI ANN-P2 ANN-P3

Control (negative)
sample set

Positive sample set  23/30 (76.7%) 25/30 (83.3%) 25/30 (83.3%)

28/30 (93.3%) 26/30 (86.7%) 27/30 (90.0%)

Overall 51/60 (85.0%) 51/60 (85.0%) 52/60 (86.7%)
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FIGURE 3: The actual output of ANN-PI model on the testing data

of the pyrethroid group (the two black boxes represent the correct
classification areas). Success rate: 85%.

overall success rate equal to 86.7%. In comparison, the best
ANN designed by the evolutionary approach described in
Section 2.6 gave an overall success rate equal to 83%.

3.2. ANN Models for the Organophosphate Group. The avail-
able data were 1206 time series (each containing 360 mea-
surements and the corresponding values of the two additional
inputs). Specifically, they included 506 control time series
(negative) and 700 positive time series. These available time
series were divided into training and testing sets. Fifty
random “control” time series and 50 random “positive” time
series (i.e., 100 in total) constituted the testing set, leaving the
rest 1106 time-series to form the training set. The ANN had
one output with values corresponding to the existence (1) or
nonexistence (0) of pesticides of the organophosphates group.

The ANN with the best performance during these train-
ing experimentations was a 2-hidden-layer network with 4
and 19 nodes, respectively, and logistic activation functions
(linear summation function in the output node), trained
with the Levenberg-Marquardt backpropagation algorithm.
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FIGURE 4: The actual output of ANN-P2 model on the testing data
of the pyrethroid group (the two black boxes represent the correct
classification areas). Success rate: 85%.

Its evaluation on the testing data set gave a correct classifi-
cation rate equal to 81% (Table 5). The actual output of the
ANN on the testing set is shown in Figure 6. In comparison,
the evolutionary-designed ANN gave a correct rate equal to
77%.

3.3. ANN Models for the Carbamate Group. The available data
contained 1170 time series (each containing 360 measure-
ments and the corresponding values of the two additional
inputs). Specifically, they included 585 control time series
(negative) and 585 positive time series. These available time
series were divided into training and testing sets. Thirty
random “control” time series and 30 random “positive” time
series (i.e., 60 in total) constituted the testing set, leaving
the rest 1110 time series to form the training set. Similarly
to the other models, the ANN had one output with values
corresponding to the existence (1) or nonexistence (0) of
pesticides of the carbamates group.

The ANN with the best performance during these train-
ing experimentations was an I-hidden-layer network with 10
nodes and logistic activation functions (linear summation
function in the output node), trained with the Levenberg-
Marquardt backpropagation algorithm. Its evaluation on the
testing data set gave a correct classification rate equal to 85%
(Table 6). The actual output of the ANN on the testing set is
shown in Figure 7. In comparison, the evolutionary-designed
ANN gave a correct rate equal to 78%.

4. Discussion

Biosensors designed for performing food quality and toxi-
city analysis can have a significant social, economical and
commercial impact. Such sensing units can be of invaluable
use for both public authorities (such as custom offices) or
private bodies (e.g., food production industry) for the “in
situ” monitoring of food quality. Such units will provide
reliable information on the food quality, eliminating dangers
emerging from adulteration, chemical or biological contami-
nation, improper storage conditions, and chemical residues.
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FIGURE 5: The actual output of ANN-P3 model on the testing data
of the pyrethroid group (the two black boxes represent the correct
classification areas). Success rate: 86.7%.

TaBLE 5: Correct classifications for the organophosphate group
(number of samples and corresponding percentages) during the
testing process of the ANNs.

Correct classification
36/50 (72.0%)
45/50 (90.0%)
81/100 (81.0%)

Control (negative) sample set
Positive sample set
Overall

During the last years, several applications of multiclas-
sifier systems have been developed. These have been par-
ticularly useful for the interpretation of data retrieved from
biosensors, which are usually associated with difficult pattern
recognition problems. For example, a multinet biosensor
system for the detection of plant viruses was reported by
Frossyniotis et al. [16]. Similar to the present study, the
system was based on a BERA sensor. The results showed that
the ANN approach performed better than empirical tech-
niques. Another critical parameter in real-life applications,
the corresponding time of the proposed classification system,
was very competitive compared to the relatively long time
required by an expert to make a decision by examining a data
curve. Concerning the same end application, Glezakos et al.
[17] used the evolutionary approach (see [15] for details) to
produce meta-data from the information contained in the
original time series, reduce the dimensionality of the input
space and drastically decrease the noise contained in the
initial raw information.

Over the last years, the use of ANN methodologies
in combination with biosensor-based analytical methods is
steadily increasing. Typical examples are ANNS used for the
detection of glucose and sucrose [18], phenolic compounds
[19-21], and neuroactive compounds [22]. In direct associ-
ation with the present study, ANNs have been used in the
biosensor-based determination of various insecticides, such
as paraoxon (organophosphate) and carbofuran (carbamate)
[23], as well as a series of organophosphate pesticides such
as chlorpyrifos-oxon, chlorfenvinphos and azinphos-methyl
oxon [24-26], dipterex, dichlorvos, and omethoate [27]. In
this context, the novel system presented here allows, for
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FIGURE 6: The actual output of the “2-HL/4, 19 nodes/logistic fun’s”
ANN model on the testing data of the organophosphates group (the
two black boxes represent the correct classification areas). Success
rate: 81%.

TaBLE 6: Correct classifications for the carbamate group (number of
samples and corresponding percentages) during the testing process
of the ANNE.

Correct classification
25/30 (83.3%)
26/30 (86.7%)
51/60 (85.0%)

Control (negative) sample set
Positive sample set
Overall

the first time, the successful discrimination among pesticides
belonging to three different groups. In this way, it allows
for a broader coverage of screened chemical residues than
previously achieved. More importantly, perhaps, the novel
ANN completes an advanced pesticide screening system
in such way that it is fully operational and ready to use.
The integrated biosensor platform described in this study
has the additional advantage of rapid results (three minutes
from sample input to classification report), which makes it
attractive for routine use.

5. Conclusions

The present report is a demonstration of the classification
properties of artificial neural networks, such that they can
tully replace the traditional technique of empirical examina-
tion of biosensor’s response data curve and therefore boosting
the utilization potential of the coupled cellular bioelectric
assay system. At this stage of development, the perfor-
mance of the system is quite satisfactory, considering the
noisy nature of the measurements and the biological factors
involved in the entire process. It was shown that although the
initial ANN system performed quite poorly it was radically
improved by the inclusion of additional biological factors
(age of the cells and their generation number). Obviously, the
system can be further improved, but the improvement of the
assay principle that would lead to better and more accurate
measurements is necessary. The basic scope of the current
work was to validate, with real measurements, the viability
of the proposed system at different matrix environments.

0.5 — —— ‘

ANN output

~05 ; A . .
0 10 20 30 40 50 60

Data sample

>

FIGURE 7: The actual output of the “I-HL/10 nodes/logistic fun’s
ANN model on the testing data of the carbamates group (the two
black boxes represent the correct classification areas). Success rate:
85%.

The reliability of the novel system is safeguarded due to
the use of different cell lines as biorecognition elements, all of
which are targets of the screen pesticide groups, as well as the
large number of time series used for training. The spectrum
of detected substances can be increased by adding other cell
lines with differential susceptibility to pesticides. In addition,
we envisage that, either by enriching the composition of
test (control and positive) sample sets with more pesticide
compounds or by creating sample sets for other pesticide
groups and then proceed with ANN training, end-users will
be able to use the integrated biosensor system for screening
essentially all types of residues in food commodities. This
is particularly important considering that currently only
70,000-80,000 samples are annually tested in Europe, an
extremely minor fraction of the actual screening needs.
Therefore, we feel that the present report could contribute to
a screening system milestone for the future landscape in food
safety control. We currently conduct a series of tests with real
samples in order to validate the performance of the system at
different food matrix environments.

Abbreviations

ANN: Artificial neural network
BERA: Bioelectric recognition assay
MRL: Maximum residue level
PBS:  Phosphate buffer saline.
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