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Immunotherapy has shown excellent therapeutic effects on various malignant tumors;
however, to date, immunotherapy for osteosarcoma is still suboptimal. In this study, we
performed comprehensive bioinformatic analysis of immune-related genes (IRGs) and
tumor-infiltrating immune cells (TIICs). Datasets of differentially expressed IRGs were
extracted from the GEO database (GSE16088). The functions and prognostic values of
these differentially expressed IRGs were systematically investigated using a series of
bioinformatics methods. In addition, CCK8 and plate clone formation assays were used to
explore the effect of PGF on osteosarcoma cells, and twenty-nine differentially expressed
IRGs were identified, of which 95 were upregulated and 34 were downregulated. Next, PPI
was established for Identifying Hub genes and biology networks by Cytoscape. Six IRGs
(APLNR, TPM2, PGF, CD86, PROCR, and SEMA4D) were used to develop an overall
survival (OS) prediction model, and two IRGs (HLA-B and PGF) were used to develop a
relapse-free survival (RFS) prediction model. Compared with the low-risk patients in the
training cohort (GSE39058) and TARGET validation cohorts, high-risk patients had
poorer OS and RFS. Using these identified IRGs, we used OS and RFS prediction
nomograms to generate a clinical utility model. The risk scores of the two prediction
models were associated with the infiltration proportions of some TIICs, and the
activation of memory CD4 T-cells was associated with OS and RFS. CD86 was
associated with CTLA4 and CD28 and influenced the infiltration of different TIICs. In
vitro experiments showed that the knockdown of PGF inhibited the proliferation and
viability of osteosarcoma cells. In conclusion, these findings help us better
understand the prognostic roles of IRGs and TIICs in osteosarcoma, and CD86
and PGF may serve as specific immune targets.
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INTRODUCTION

Osteosarcoma is the most frequent primary solid malignant bone
tumor with a high tendency for local invasion and early
metastases, and it predominantly occurs in children and
adolescents (Ritter and Bielack, 2010; Harrison et al., 2018).
Since the 1980s, treatment has advanced from amputation to
complex limb-sparing surgeries and incorporated multi-agent
chemotherapy; beyond that, there has been no further progress
(Harrison et al., 2018). The prognosis of patients with
osteosarcoma remains suboptimal (Kager et al., 2017).

In recent years, important breakthroughs in immunotherapy
have brought hope for the treatment of malignant tumors,
including osteosarcoma (Rodig et al., 2018). Tumor-infiltrating
immune cells (TIICs) play an important role in tumor
progression and immunotherapy (Arneth, 2019; Yu et al.,
2020; Chen et al., 2021). Tumor cells are lysed by IL-15-
induced NK cells in patients (Buddingh et al., 2011). IL-12 can
promote T-cell and B-cell proliferation, differentiation, and
antibody formation and is used for tumor treatment (Chen
et al., 2021). Regulatory T-cells (Tregs) orchestrate antitumor
immunity by indirectly impeding T-cell activation via the CTLA-
4-mediated inhibition of co-stimulatory signals of APCs (Tanaka
and Sakaguchi, 2017). The inhibition of PD-1 or PD-L1 can
reinvigorate the cytotoxic ability of T-cells and induce tumor
regression (Iwai et al., 2005). As mentioned above, IL-15, IL-12,
CTLA4, PD-1 and PD-L1 belong to immune-related molecules
from ImmPort database (https://www.immport.org/resources)
(Bhattacharya et al., 2018), and they have multiple effects on
tumor development and immunotherapy (Arneth, 2019).
Therefore, targeting and manipulating immune-related
molecules can help control malignancies. As successful
examples of immune-related molecules, anti-PD-1 and anti-
PD-L1 antibodies have shown good clinical efficacy in treating
some tumors, such as lung cancer and melanoma (Jiang et al.,
2019). However, the results of current clinical trials suggest that
most checkpoint inhibitors are less effective in treating solid
tumors, including osteosarcoma (Ma et al., 2019; Chen et al.,
2021). Therefore, it is necessary to explore specific immune-
related targets in different tumors. Previous studies have
indicated that immune-related genes (IRGs) can serve as
effective prognostic biomarkers and potential targets of many
tumors, such as lung adenocarcinoma (Zhang et al., 2019),
ovarian cancer (Shen et al., 2019), and bladder cancer (Qiu
et al., 2020). Therefore, an in-depth understanding of TIICs
and IRGs will facilitate the identification of specific targeted
molecules and provide new therapeutic directions for
osteosarcoma.

In the present study, data on osteosarcoma were downloaded
from TCGA, GEO, and TARGET. From these data, differentially
expressed IRGs and hub genes were identified, and their potential
functions and mechanisms were explored. An IRG-based
prognostic model was developed and validated in this study.
The association between the risk score and TIICs was also
explored. Finally, our results showed that CD86 and PGF may
serve as potential specific immune targets for osteosarcoma.

MATERIALS AND METHODS

Data Processing
The data of 1793 IRGs (Supplementary Table S1) were extracted
from the ImmPort database (https://www.immport.org/
resources) (Chaussabel and Baldwin, 2014; Bhattacharya et al.,
2018). IRGs were filtered out of gene expression profiles in the
GSE16088 dataset by Perl script. Differentially expressed genes
(DEGs) were identified from gene expression profiles of
GSE16088 (Paoloni et al., 2009) obtained from osteosarcoma
tissues and normal bone tissues using the “limma” package of R
software (Ritchie et al., 2015). DEGs were identified based on
adjusted p-values of <0.05 and log2|fold change| values of >1.
Volcano plots were created using the “ggplot2” package (Maag,
2018), and heatmaps were created using the “pheatmap” package
(Galili et al., 2018).

The training cohort underwent RNA sequencing, and clinical
datasets were extracted from GSE39058 (Kelly et al., 2013). The
validation cohorts were downloaded from TCGA-TARGET
(https://portal.gdc.cancer.gov/) and TARGET (https://ocg.
cancer.gov/). The cut-off value for the duration of survival was
10 years.

GO Enrichment and KEGG Pathway
Analysis
GO and KEGG pathway analyses were conducted using the R
software“clusterProfiler” package (Yu et al., 2012). Functional
enrichment analyses were performed for GO terms and KEGG
pathways through a hypergeometric distribution with a
significance threshold of p < 0.05. The enrichment results
were visualized via the “ggplot2” packages.

Identifying Hub Genes and Biology Network
The STRING database (https://string-db.org/) (Szklarczyk et al.,
2019) was used to retrieve information about the protein-protein
interactions (PPIs) of the differentially expressed IRGs.
Cytoscape 3.7.2 software was used to construct the PPI
network and visualize it. Critical modules and genes were
selected from the PPI network using the MCODE plug-in. The
degree cut-off was 2, the node score cut-off was 0.2, and the
K-core was cut-off was 4. Two topological features from
cytoHubba plug-in, degree and betweenness, were used to
identify candidate hub genes. Nodes’ scores were calculated by
cytoHubba plug-in. The genes with the top 20 highest nodes’
scores were considered as candidate hub genes. Finally, the hub
genes were identified based on the overlap of the results of the
degree topological method, betweenness topological method, and
MCODE method.

Construction and Validation of Prognostic
Models
First, we collated and combined the mRNA expression data and
clinical data from GSE39058. Subsequently, univariate Cox
regression analysis of the DEGs was performed via the
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“survival” package, and statistical significance of the candidate
genes was determined using a log-rank test. Subsequently, a
multivariate Cox regression model was established via
multivariate Cox regression analysis, and the risk score of each
patient was calculated. The formula for the risk score was as
follows: risk score = coefgene1 × Exp gene1 + coefgene2 × Expgene2
+ coefgenei × Expgenei. Patients were assigned to the low-risk or
high-risk groups according to the median risk score. Overall
survival (OS) and relapse-free survival (RFS) of patients in the
two subgroups were compared using the log-rank test. The Kaplan-
Meier survival ROC package was used to develop ROC curves to
evaluate the predictive capability of the aforementioned prognostic
model. In addition, the risk score for the validation cohort from the
TARGETdatasets was calculated using the establishedmodel of the
training cohort. The survival and ROC curves of the validation
cohort were visualized using the aforementioned methods.
Ultimately, to predict OS and RFS more conveniently, we
established a nomogram using the “rms” package.

Tumor-Infiltrating Immune Cell Analysis
Based on CIBERSORT
The tumor-infiltrating immune cells (TIICs) of the GSE16088
and TARGET datasets were assessed using the CIBERSORT
analytical tool (https://cibersort.stanford.edu/) (Newman et al.,
2015). The abundance ratio matrix of the 22 immune cells was
obtained at p < 0.05.

Cell Culture and siRNA Transfection
MG63 and U2OS cell lines were purchased from the Cell Bank of
the Chinese Academy of Sciences (Shanghai, China). MG63 and
U2OS cells were cultured in DMEM (Biological Industries,
Shanghai, China) containing 10% fetal bovine serum
(Biological Industries, Shanghai, China). The cells were grown
at 37°C in an atmosphere of 5% CO2. GenOFF PGF siRNA and
negative control siRNA oligonucleotides were designed and
synthesized by RiboBio (Guangzhou, China). The sequences of
si-1 and si-2 are shown in Supplementary Table S2. The siRNA
transfections were performed using the Ribo FECT™CP
Transduction Kit (Ribobio, Guangzhou, China) according to
the manufacturer’s instructions.

RNA Extraction and Quantitative
Real-Time PCR
Following the manufacturer’s instructions, total RNA was
retrieved with AG RNAex Pro Reagent (Accurate Biology,
Changsha, China) and was reverse-transcribed into cDNA
using the Evo M-MLV RT Premix Kit (Accurate Biology).
Quantitative real-time PCR (RT-PCR) assays were performed
using the SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate
Biology) according to the manufacturer’s protocols. The primer
sequences are listed in Supplementary Table S2.

Western Blotting
Cells were lysed with RIPA lysis buffer (Beyotime Biotechnology,
Shanghai, China) and separated by SDS-PAGE. The proteins

were transferred to polyvinylidene fluoride membranes (Merck
Millipore, Billerica, MA, United States). Subsequently, the PVDF
membranes were soaked in 5% BSA solution for at least one hour
at room temperature, followed by incubation with different
primary antibodies at 4°C overnight. On the second day, the
PVDF membranes were incubated with secondary antibodies for
one hour at room temperature after washing three times. After
washing with TBST solution, the PVDF membranes were
visualized using a BeyoECL Plus Kit (Beyotime
Biotechnology). Anti-β-actin (20536-1-AP) and anti-PGF
antibody (10642-1-AP) were purchased from Proteintech
(Wuhan, China).

Cell Proliferation and Plate Clone Formation
Cell proliferation was detected using the Cell Counting Kit-8
(CCK8, Beyotime Biotechnology) according to the
manufacturer’s instructions. The cells were cultured in a 96-
well plate (2 × 103 cells/well) at 37°C for 0, 24, 48, and 72 h. For
the plate clone formation assay, 500 cells were seeded into 6-well
plates and cultivated for 14 days. After removing the medium, the
cells were washed with PBS, fixed with 4% paraformaldehyde for
20 min, and stained using 1% crystal violet for 20 min at room
temperature. The number of colonies with >50 cells was counted
under a light microscope, and the colonies were visualized.

Statistical Analysis
R software was used for most of the bioinformatics and statistical
analyses in this study, including RNA-seq data normalization and
transformation, CIBERSORT, DEG analysis, survival analyses,
ROC analysis, and Spearman rank correlation analysis.
Univariate and multivariate Cox regression analyses were
performed using the “coxph” command of the “survival” package.

For the in vitro experiments, all quantitative data are presented
as mean ± standard deviation of three independent experiments.
Differences between the three groups were analyzed with one-way
ANOVA using GraphPad Prism 8.0 (GraphPad, La Jolla, CA,
United States). Statistical significance was set at p < 0.05.

RESULTS

Differentially Expressed IRGs in
Osteosarcoma
Differentially Expressed IRGs were identified using the “limma”
package for R software from the GSE16088 data covering normal
bone tissues and tumor tissues. The heat map of IRG expression
in GSE16088 is shown in Figure 1A. Finally, 129 IRGs were
differentially expressed; 95 were upregulated and 34 were
downregulated (Figure 1B, Supplementary Table S3).

GO and KEGG Pathway Enrichment
Analysis
To explore the functions of these differentially expressed IRGs
and their potential mechanisms in osteosarcoma, GO and KEGG
functional analyses of these downregulated and upregulated IRGs
were performed via the “clusterProfiler” package for R software.
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FIGURE 1 | Differentially expressed IRGs and its function enrichment analysis. Heatmap(A) and volcano plot (B) of 1,793 immune-related genes in normal bone
tissues and osteosarcoma tissues from GSE16088. (C) GO pathway enrichment of upregulated and downregulated IRGs. (D) KEGG pathway enrichment of
upregulated and downregulated IRGs.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8288864

Li et al. IRGs in Osteosarcoma

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


As shown in Figure 1C, significant differences in the
functional enrichment of the downregulated and upregulated
IRGs were observed. For the cellular component (CC), the
upregulated IRGs were enriched on the external side of the
plasma membrane, MHC protein complex, ER to Golgi
transport vesicle membrane, COPII-coated ER to Golgi
transport vesicle, an integral component of the luminal side of
the endoplasmic reticulummembrane, and the luminal side of the
endoplasmic reticulum membrane. The downregulated IRGs
were enriched in the proteasome accessory, proteasome,
endopeptidase, and peptidase complexes, proteasome
regulatory particle, and base subcomplex. Differences in the
CC correspond to the different molecular functions. Regarding
molecular function (MF), the upregulated IRGs play roles in
amide binding, peptide binding, cytokine binding, growth factor
binding, peptide antigen binding, and transmembrane receptor

protein kinase activity, and the downregulated IRGs play roles in
receptor-ligand activity, growth factor activity, peptidase
activator activity, and proteasome binding. Biological process
(BP) analysis showed that the upregulated IRGs participated in
the response to interferon-gamma, antigen processing and
presentation of exogenous and peptide antigens, and
interferon-gamma-mediated signaling pathways, and the
downregulated IRGs participated in the regulation of the
cellular ketone metabolic process, NIK/NF-kappaB signaling,
stimulatory C-type lectin receptor signaling pathway, and
innate immune response-activating cell surface receptor
signaling pathway.

Moreover, the KEGG pathway enrichment analysis showed
differences between the upregulated and downregulated IRGs
(Figure 1D). The upregulated IRGs were enriched in
phagosomes, cell adhesion molecules, antigen processing and

FIGURE 2 | Hub genes and biology network. (A) Protein-protein interaction (PPI) network of 129 differentially expressed IRGs and three critical modules. (B)
Identifying the first 20 IRGs and constructing the corresponding PPI network using the degree and betweenness topological method. (C) Venn calculation applied to
identify eight hub IRGs.
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FIGURE 3 | Development and validation of the OS-prediction model for osteosarcoma. (A) Survival curve, ROC curve, survival status, and heat map for low- and
high-risk subgroups in training cohort (GSE39058). (B) Survival curve, ROC curve, survival status, and heat map for low- and high-risk subgroups in validation cohort
(TARGET).
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FIGURE 4 | Development and validation of the RFS-prediction model for osteosarcoma. (A) Relapse curve, ROC curve, relapse status, and heat map for low- and
high-risk subgroups in training cohort (GSE39058). (B) Relapse curve, ROC curve, relapse status, and heat map for low- and high-risk subgroups in validation cohort
(TARGET).
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presentation, and natural killer cell-mediated cytotoxicity, and
the downregulated IRGs were enriched in the proteasome and
Ras signaling pathways.

Identify Hub Genes and Biology Network
The PPI network of 129 DEGs was mapped by STRING and
reconstructed using the Cytoscape MCODE plug-in
(Figure 2A). Three critical modules were screened
(Figure 2A). We selected the first 20 genes and
constructed the corresponding PPI network using the
degree and betweenness topological methods (Figure 2B).
By crossing the results of the three methods (Figure 2C),
eight genes were identified as hub genes: CXCR4, PDGFRB,
CXCL10, B2M, CD86, CSF1R, TYROBP, and FGF2.

Construction and Validation of Prognostic
Model
To further analyze the effects of IRGs on the prognosis of
osteosarcoma patients, we first performed univariate Cox
regression analysis to assess the impact of DEGs on OS and
RFS in GSE39058 sets. The results suggested that nine and eight
candidate IRGs were significantly associated with OS and RFS,
respectively (Supplementary Image S1). Subsequently, the
impact of these candidate IRGs on OS or RFS was established
using multivariate Cox regression analysis. Finally, APLNR,
TPM2, PGF, CD86, PROCR, and SEMA4D were selected as
features of the OS prediction model as follows: risk score =
(−4.377*Exp APLNR) + (12.781*Exp TPM2) + (5.755*Exp PGF)
+ (−11.809*Exp CD86) + (11.874*Exp PROCR) + (−3.496*Exp
SEMA4D). HLA-B and PGF were selected as features for the RFS
prediction model, and the formula was as follows: risk score =
(0.623 * Exp HLA-B) + (0.568 * Exp PGF). The risk score for each
patient was assessed. Based on the median risk score, patients
from the training cohort (GSE39058) were assigned to the low-
risk and high-risk groups. The results of the survival analysis
demonstrated that patients in the high-risk group had
significantly poorer OS (p < 0.001, Figure 3A) and RFS (p <
0.01, Figure 4A) than those in the low-risk group. To further
evaluate the prognostic utility of these IRGs, we subsequently
performed a time-dependent ROC analysis, and the results
revealed that the areas under the ROC curve (AUCs) were 1,
0.991, and 0.988 (Figure 3A) for the OS model and 0.796, 0.829,
and 0.807 for the RFSmodel for 1, 3, and 5 years (Figure 4A). The
survival status of the patients and the heat maps for the
expressions of these are shown in Figures 3A, 4A.

The OS and RFS models were applied to the validation cohort
from the TARGET sets to validate them. For the OS model, the
patients with high risk scores had significantly worse OS than
those with low risk scores in the validation cohort (p < 0.05,
Figure 3B). The AUCs for OS in the validation cohort were 0.592,
0.639, and 0.589 for 1, 3, and 5 years (Figure 3B). The survival
status of patients and the heat map for the expressions of these
IRGs in the validation cohort are shown in Figure 3B. For the
RFS model, patients with high risk scores had worse RFS than
those with low risk scores in the validation cohort (p < 0.01,
Figure 4B). The AUCs for the RFS in the validation cohort were

0.601, 0.62, and 0.683 for 1, 3, and 5 years (Figure 4B). The
survival status of patients and the expression heat maps for the
expressions of these IRG in the validation cohort are shown in
Figure 4B. In summary, seven prognosis-related IRGs were
identified, and the OS and RFS models were reliable in
predicting the outcomes of patients with osteosarcoma.

Building a Predictive Nomogram
A nomogram (Figure 5) was constructed to generate a clinically
practical model that would enable physicians to predict the OS
and RFS of osteosarcoma patients using prognosis-related IRGs.
Based on the results of multivariate Cox analysis of the validation
cohort, each variable was assigned a corresponding point based
on the point scale obtained using this nomogram. A horizontal
line was drawn to determine the points of each variable. The
patient’s total score was calculated by adding up the points of all
the variables, based on which the 1-, 3-, and 5-year survival rates
were estimated.

Tumor-Infiltrating Immune Cells Based on
CIBERSORT
To explore the impact of the risk score on TIICs, the
infiltration proportions of 22 immune cells in the
GSE16088 and TARGET sets were calculated using the
CIBERSOT algorithm. For the osteosarcoma samples, M0
and M2 macrophages were the major constituents of TIICs
(Supplementary Image S2). Compared with normal bone
tissues, the infiltration proportions of plasma cells (p = 0.003)
and naïve CD4 T-cells (p = 0.001) were significantly reduced
in osteosarcoma tissues, while the infiltration proportions of
M0 macrophages (p = 0.012) and M2 macrophages (p =
0.006) were increased (Figure 6A). We analyzed the
relationships between the TIICs and OS or RFS. The
results suggested that patients with high infiltration
proportions of naïve CD4 T-cells had poorer OS than
those with low infiltration proportions (p = 0.018,
Figure 6B), while patients with high proportions of
activated memory CD4 T-cells had longer OS (p = 0.025,
Figure 6B) and RFS (p = 0.011, Figure 6C) than those with
low infiltration proportions.

Compared with the low-risk group designated by the OS
model, the proportions of B-cell memory (p = 0.043,
Figure 6D) and TRegs (p = 0.022, Figure 6D) were
significantly reduced in the high-risk group. The infiltration
proportions of the activated NK cells (p = 0.023), M2
macrophages (p = 0.038), and resting dendritic cells (p =
0.001) in the high-risk group designated by the RFS model
were significantly higher than those in the low-risk group,
while the infiltration proportions of M0 macrophages in the
high-risk group designated by the RFS model were
significantly lower than those in the low-risk group
(Figure 6E). In addition, the associations between the seven
prognosis-related IRGs and TIICs were analyzed, and these
IRGs had different associations with different TIICs
(Supplementary Image S3). All these results suggest that the
seven prognosis-related IRGs interact with some TIICs, and they
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all influence the progression and prognosis of osteosarcoma. Key
links still need to be further explored.

Potential Targets of Osteosarcoma
Immunotherapy
As mentioned above, CD86 was found to be a hub gene and a
prognosis-related gene. Our results showed that CD86 mRNA
expression in tumor tissues was higher than that in normal bone
tissues (Figure 7A), and elevated CD86 expression was beneficial
to the prognosis of osteosarcoma (Supplementary Image S1). As
a co-stimulatory molecule, CD86 binds to CTLA4 or CD28
receptors and produces coinhibitory or costimulatory signals,
respectively; costimulatory signals are necessary for T-cell

activation and survival. In this study, CD86 expression was
significantly correlated with CTLA4 and CD28 expression in
osteosarcoma (Figure 7B). CTLA4 binds more strongly to CD86
than CD28; however, CD86 has a relative preference for CD28
(Pentcheva-Hoang et al., 2004; Esensten et al., 2016). Combining
these results, we deduced that the CD86/CD28 stimulatory
pathway was dominant in osteosarcoma patients with a good
prognosis.

CD86 is expressed in antigen-presenting cells. In this study,
CD86 expression was significantly associated with naïve B cells,
M2 macrophages, and Tregs (Figure 7C). In osteosarcoma
tissues, M0 and M2 macrophages are the major constituents of
TIICs (Supplementary Image S2). Therefore, CD86 may be
mainly expressed in M2 macrophages in osteosarcoma. The

FIGURE 5 | The nomograms for predicting 1-, 3-, and 5-year OS and RFS of the validation cohort (TARGET). (A) Nomogram for predicting 3- and 5-year OS and
calibration plots. (B) Nomogram for predicting 3- and 5-year RFS and calibration plots.
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FIGURE 6 | Tumor-infiltrating immune cells based on CIBERSORT. (A) Violin plot comparing the proportions of TIICs in normal bone tissues and osteosarcoma
tissues in GSE16088. (B) The OS analysis of naïve and memory-activated CD4 T-cells for the validation cohort (TARGET). (C) The RFS analysis of the memory
CD4 T-cells for the validation cohort (TARGET). (D) Violin plot comparing the proportions of TIICs associated with low and high risk scores designated by the OS
prediction model for the validation cohort (TARGET). (E) Violin plot comparing the proportions of TIICs associated with the low and high risk scores designated by
the RFS prediction model for the validation cohort (TARGET).
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association between CD86 and Tregs may be due to CTLA4
expression on CD4 T cells, CD8 T cells, and Tregs
(Rowshanravan et al., 2018). Similar results were observed in
this study; CTLA4 expression was significantly associated with
CD8 T-cells and Tregs (Figure 7D). The CTLA4 co-inhibitory
signal directly prevents T-cell activation and inhibits the activity
of other cells through Tregs (Rowshanravan et al., 2018).
Therefore, the CTLA4 co-inhibitory signal mainly inhibits the
activity of CD8 T-cells in osteosarcoma. Conversely, blocking
CTLA4 may benefit the activity of CD8+ T-cells and improve
prognosis. CD86/CD28 costimulatory signals are necessary for
T-cell activation and survival (Esensten et al., 2016). In
osteosarcoma, CD28 expression is significantly associated with
activated memory CD4 T-cells (Figure 7D). It is possible that the
CD86/CD28 costimulatory signal primarily affected the survival

and activation of memory CD4 T-cells, which were associated
with OS and RFS (Figure 6) and could kill tumor cells
(Golubovskaya and Wu, 2016). In summary, blocking CD86/
CTLA4 signaling and promoting CD86/CD28 signaling are
potential strategies for osteosarcoma immunotherapy.

Knockdown of PGF Inhibited the
Proliferation and Viability of Osteosarcoma
Cells
Placental growth factor (PGF) has been identified as an OS- and
RFS-related IRG, but its role in osteosarcoma is still unclear.
Therefore, we verified the effect of PGF on osteosarcoma cells
in vitro. PGF mRNA expression was upregulated in tumor tissues
compared to that in normal bone tissues (Figure 8A,

FIGURE 7 | Association between CD86 and TIICs. (A) CD86 expression in normal bone and osteosarcoma tissues (GSE16088). (B) Correlation between CD86
expression and CTLA4 or CD28 expression in validation cohort (TARGET). (C) Associations between CD86 expression and infiltration of naïve B-cells, M2macrophages,
and regulatory T-cells in the validation cohort (TARGET). (D) Correlation between CTLA4 or CD28 expression and infiltration of CD8 T-cells, Tregs, and memory
CD4 T-cells in the validation cohort (TARGET).
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Supplementary Table S3). Patients with high PGF mRNA levels
had poorer OS and RFS than those with low PGF mRNA levels
(Figure 8B). Subsequently, PGF mRNA expression in multiple
osteosarcoma cell lines was detected by RT-PCR (Figure 8C).
MG63 and U2OS cells were used for the subsequent experiments.
Next, siRNAs (si-nc, si-1, and si-2) were transfected toMG63 and
U2OS cells. RT-PCR and western blotting assays showed that
PGF expression was significantly downregulated in osteosarcoma
cells (MG63 and U2OS) transfected with si-1 or si-2 compared
with those transfected with si-nc (Figure 8D). The results of the
CCK8 showed that the proliferation of MG63 and U2OS cells
with knockdown PGF (si-1 or si-2) was weaker than that of the
control group (si-nc) (Figure 8E). Plate clone formation assays

showed that the colony numbers of MG63 and U2OS cells with
PGF knockdown were significantly reduced (Figure 8F). This
suggested that the knockdown of PGF inhibited the viability of
osteosarcoma cells. Taken together, these results show that PGF
plays an important role in osteosarcoma progression and may
serve as a potential prognostic biomarker.

DISCUSSION

Immunotherapy has shown excellent therapeutic effects on
various malignant tumors, bringing hope to patients; however,
to date, immunotherapy for osteosarcoma is still suboptimal

FIGURE 8 | Knockdown of PGF inhibited the proliferation and viability of osteosarcoma cells. (A) PGF expression in normal bone tissues and osteosarcoma tissues
(GSE16088). (B) The OS and RFS analysis of PGF expression in validation cohort (TARGET). (C) PGF mRNA expression in osteosarcoma cells. (D) PGF knockdown
MG63 and U2OS cells were constructed and confirmed by RT-PCR andWestern blotting. (E) The proliferation ability of MG63 and U2OS cells with PGF (si-nc, si-1 or si-
2) via CCK8 assays. (F) Plate clone formation assays of MG63 and U2OS cells with PGF (si-nc, si-1 or si-2). *p < 0.05, **p < 0.01, ***p < 0.001.
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(Rodig et al., 2018; Chen et al., 2021). It is urgent to further study
the molecular mechanisms of osteosarcoma to identify specific
targets and provide new therapeutic directions. Therefore, we
performed a comprehensive analysis of IRGs and TIICs
associated with osteosarcoma.

First, 129 differentially expressed IRGs were identified
from 1793 IRGs; 95 were upregulated and 34 were
downregulated. These upregulated and downregulated
IRGs may play different roles in osteosarcoma, and GO
and KEGG pathway analyses were performed. The results
showed that the upregulated IRGs mainly affected antigen
processing and presentation and NK cell-mediated
cytotoxicity through cytokine and growth factor binding,
while the downregulated IRGs mainly regulated receptor
signaling pathways through receptor-ligand and growth
factor activities. Although these upregulated and
downregulated IRGs play different roles in osteosarcoma,
they both interact with growth factors. Some growth factors
have also been shown to promote osteosarcoma progression
(Yang and Zhang, 2013), but core growth factors have yet to
be discovered.

Next, eight hub genes were identified by Cytoscape: CXCR4,
PDGFRB, CXCL10, B2M, CD86, CSF1R, TYROBP, and
FGF2. CXCR4 (Zhu et al., 2018), CSF1R (Smeester et al.,
2020), and FGF2 (Yang et al., 2021) have been shown to
promote OS progression. PDGFRB (Liu et al., 2018), CXCL10
(Niu et al., 2020), CD86 (Jin et al., 2019), and TYROBP
(Wang et al., 2021) were identified as hub genes according to
bioinformatic analysis.

To explore the prognostic significance of these differentially
expressed IRGs, we performed Cox survival analysis and
constructed OS and RFS prediction models for the training
cohort (GSE39058). APLNR, TPM2, PGF, CD86, PROCR, and
SEMA4D were selected as features for the OS prediction model,
and HLA-B and PGF were selected as features for the RFS
prediction model. The ROC analysis demonstrated that the OS
and RFS prediction models were reliable in selecting patients with
osteosarcoma, which was further validated by the TARGET
validation cohort. These findings suggest the clinical
practicality of OS and RFS prediction models. To enable
physicians to predict patients, survival at 1 year, 3 years, and
5 years more intuitively, OS- and RFS-prediction nomograms
were constructed.

Previous studies have shown that IRGs are inseparable from
TIICs (Zhang and Zhang, 2020). Therefore, we further explored
the composition of TIICs in osteosarcoma and the effect of the
risk score on TIICs. The results showed that M0 and M2
macrophages were the major constituents of TIICs, and the
infiltration proportions of M0 and M2 macrophages in tumor
tissues were significantly increased compared with those in
normal bone tissues. This also confirmed that macrophages
are the main component of immunity in the OS
microenvironment (Cersosimo et al., 2020). Survival analysis
showed that memory CD4 T-cells were positively correlated
with OS and RFS. Therefore, promoting the proliferation and
activation of memory CD4 T cells may be a strategy for improving
osteosarcoma prognosis. Moreover, the risk score designated by

OS- and RFS- prediction models were associated with the
infiltration of some TIICs, which suggested that these
prognosis-related IRGs influenced immune cell infiltration.
However, the key prognosis-related IRGs still need to be explored.

In this study, CD86 was found to be a hub gene and a
prognosis-related gene. Importantly, CD86 is an immune
checkpoint molecule. Our results showed that CD86
expression was upregulated and associated with a good
prognosis. Moreover, CD86 expression depended on its
receptors, CTLA4 and CD28, in osteosarcoma. Moreover,
in the 22 TIICs, CD28 was only associated with memory
CD4 T-cells, which were associated with OS and RFS. In
competition, compared with CTLA4, CD86 had a relative
preference for CD28 (Esensten et al., 2016). Based on these
results, we concluded that CD86/CD28 costimulatory signals
played a major role in patients with a good prognosis,
possibly by influencing the activation of memory
CD4 T-cells. CD86 is expressed in antigen-presenting cells.
In this study, CD86 expression was significantly correlated
with naïve B cells and M2 macrophages, and M0 and M2
macrophages were the major constituents of TIICs in
osteosarcoma. In addition, CD86 expression and the
infiltration proportions of M0 and M2 macrophages in
tumor tissues were significantly increased. Although
dendritic cells (DCs) are common specialized antigen-
presenting immune cells (Wylie et al., 2019), the
infiltration proportion of DCs was much lower than that
of M2 macrophages. Therefore, the upregulation of CD86
expression was mainly due to the increase in M2 infiltration,
which may affect the CD86 signaling pathway, CD86/CD28
costimulatory signal, or CD86/CTLA4 co-inhibitory signal.
In this study, CTLA4 expression was significantly associated
with CD8 T-cells and Tregs, which was consistent with the
expression of CTLA4 on CD4, CD8, and Tregs
(Rowshanravan et al., 2018). Moreover, the CTLA4 co-
inhibitory signal directly prevents T-cell activation and
inhibits the activity of other cells through Tregs
(Rowshanravan et al., 2018). Therefore, we concluded that
CD8 activation by T-cells was directly prevented by the
CD86/CTLA4 coinhibitory signal and was indirectly
inhibited by Tregs in osteosarcoma. Hence, blocking
CTLA4 may benefit the activity of CD8 T-cells and
possibly improve prognosis. Thus, blocking CD86/CTLA4
signaling and promoting CD86/CD28 signaling are potential
strategies for osteosarcoma immunotherapy.

Moreover, PGF was related to both OS and RFS, but the
role of PGF in osteosarcoma remains unclear. The role of PGF
in osteosarcoma cells was preliminarily explored. Our results
suggest that PGF promotes the proliferation and viability of
osteosarcoma cells. Therefore, PGF plays an important role in
osteosarcoma progression and may serve as a potential
prognostic biomarker. In addition, the depletion of PGF
inhibited the transformation from tumor-associated
macrophages to M2-like macrophages and remodeled the
tumor-immunosuppressive microenvironment to an
antitumoral condition in breast cancer (Song et al., 2018).
In the present study, PGF expression was positively
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correlated with the expression of M2 macrophages.
Combined with the results of the previous paragraph, we
hypothesized that PGF affected CD86 signaling by regulating
the polarization of M2 macrophages. More studies are needed
to further explore the role and mechanism of PGF and CD86
in osteosarcoma. However, PGF and CD86 signaling deserve
our attention.

In conclusion, we comprehensively investigated the prognostic
values and potential functions of differentially expressed IRGs in
osteosarcoma. OS and RFS prediction models that can reliably
predict the prognosis of osteosarcoma patients were developed
and validated by the TARGET validation cohort. Seven
prognosis-related IRGs and eight hub IRGs were identified.
CD86 signaling and PGF may serve as potential specific
immune targets in osteosarcoma.
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