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ABSTRACT
Background. Soil degradation is one of the main problems in agricultural production
and leads to decreases in soil quality and productivity. Improper farming practices
speed this process and are therefore not conducive to food security. The North China
Plain (NCP) is a key agricultural area that greatly influences food security in China. To
explore the effects of different tillage measures on aggregate-associated organic carbon
(AOC), the accumulation and transport of dry matter, and maize yield, and to identify
the most suitable tillage method for use on the NCP, a field experiment was conducted
at Shandong Agricultural University from 2016–2017 using plots that have been farmed
using conservation tillage since 2002.
Methods. In this study, Zhengdan 958 summer maize was used as the test material and
undisturbed soil and plant samples were obtained under four tillage methods—no-
tillage (NT, tillage depth: 0 cm); rotary tillage (RT, tillage depth: 10 cm); conventional
tillage (CT, tillage depth: 20 cm); subsoiling (SS, tillage depth: 40 cm)—which were
used to determine the AOC and dry matter contents, as well as the yields of two
summer maize growing seasons. Each sample was replicated three times and the AOC
content was determined via potassium dichromate oxidation colorimetry. Potassium
dichromate oxidized organic carbon in organic matter was employed to reduce
hexadecent chromium into green trivalent chromium. Colorimetry was then used to
determine the amount of reduced trivalent chromium and calculate the organic matter
content.
Results. The resulting data were statistically analyzed and the results showed that,
compared with CT, the AOC contents with NT and SS increased by 5.65% and 9.73%,
respectively, while that with RT decreased by 0.12%. Conventional tillage resulted in the
highest mean dry matter weight when the maize reached maturity, which was 19.19%,
9.83%, and 3.38% higher than those achieved using NT, RT, and SS, respectively. No
significant difference was found between CT and SS treatments, both of which tended
to increase the accumulation of dry matter as well as its contribution of assimilates
to grain yield post-anthesis. Compared with CT, the mean yield increased at a rate of
0.18% with SS, while yields declined at rates of 17.17% and 11.15 with NT and RT,
respectively. The yield with NT was the lowest, though the harvest indices with NT and
SS were higher than those with RT and CT. Overall, SS increased the accumulation of
dry matter and its contribution of assimilates to grain yields post-anthesis, as well as
the AOC content and yields, making it the ideal tillage method for the NCP.
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INTRODUCTION
At present, soil degradation is one of themain environmental problemsworldwide (Lasanta,
Arnáez & Nadal-Romero, 2019). The deterioration of the soil environment is mainly caused
by adverse natural factors and unreasonable land use by humans (Pandit et al., 2018), which
leads to declines in soil quality and productivity (Lasanta, Arnáez & Nadal-Romero, 2019).
With the growth of Earth’s population, the demand for food will continue to increase,
and the decline in productivity caused by soil degradation is not conducive to global food
security. Over the past few decades, large areas of soil have been degraded globally, with on-
and off-site erosion (Kara et al., 2016) followed by reductions in soil organic carbon (SOC)
(Gibbs & Salmon, 2015). Increasing the chelation or accumulation of SOC can effectively
improve soil quality, reduce the risk of degradation (Qi et al., 2019), and increase grain
yields (Uslu et al., 2020). The components of grain yields depend on and compensate for
each other with changes in soil conditions (Xu et al., 2019), and improper tillage measures
can change soil conditions, making it vulnerable to severe degradation, resulting in lower
yields, and further increasing the risk of food insecurity (Doni et al., 2017).

Conservation tillage is a new tillage method in which straw is returned to the field
post-harvest; no-tillage (NT) and less tillage are at the core of this approach (Zhang & Gao,
2005; Li et al., 2020). Conservation tillage systems increased in use from 5.3 to 106 million
ha between 1990 and 2009 (Kassam et al., 2009). Research has shown that conservation
tillage can improve soil structures (Eden et al., 2020), SOC contents (Guo et al., 2020),
and water retention capacities (He et al., 2009; Yang et al., 2020), reduce wind (Gao et
al., 2016) and water (Bertol et al., 2003) erosion, and improve the physical properties of
soils (Khan et al., 2017). Currently, conservation tillage is widely used around the world,
and in some areas of China, NT and subsoiling (SS) are especially common. No-tillage
is an effective means of improving soil structures, nutrients, and organic matter (OM)
contents (Müller-Nedebock & Chaplot, 2015). Zhang et al. (2015) also found that crop
yields increased under NT. Meanwhile, SS can break compacted hardpan layers, reduce soil
strengths, improve water use efficiencies (Wang et al., 2020a;Wang et al., 2020b), promote
crop growth, and improve crop yields (Jr & Aase, 2003). Some studies have shown that
there is a significant positive correlation between maize yield and SOC content (Xu et al.,
2019), the latter of which can be directly affected by tillage methods. Reportedly, 90% of
SOC exists in the form of aggregates (Karami et al., 2012), and the stability of soil aggregates
and SOC contents interact with each other (Liang et al., 2019; Yao et al., 2020). However,
the relationship between aggregate-associated organic carbon (AOC) contents and crop
yields under different tillage methods has rarely been explored.

Dry matter is the basis of crop yields, as the amount of accumulated dry matter
determines crop yields (Xu et al., 2017). Regarding grain yields, improving the production
capacity of dry matter, as well as the ability to transfer dry matter to grains post-anthesis,
has been effective in improving crop yields (Tollenaar & Daynard, 1982). Yin (2002) also

Shen et al. (2021), PeerJ, DOI 10.7717/peerj.11099 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.11099


showed that there was a positive correlation between the accumulation of dry matter and
crop yields to a certain extent, especially in late growth stages. Tillage practices impact the
dry matter of crops, significantly affecting its translocation post-anthesis and contribution
to the grain (Shi et al., 2016). Therefore, it is important to study which tillage practices
positively affect the accumulation and transport of dry matter to increase crop yields.

The North China Plain (NCP) is an important agricultural area in China, especially for
winter wheat and summer maize, which play an important role in national food security.
The arable land area of the NCP accounts for 21% of all arable land nationwide, and the
grain output of this region accounts for 26% of the national total. The planting area of
maize accounts for 31% of all maize grown in China and yields 30% of the national total
(China Statistical Yearbook, 2016). Therefore, ensuring increased and stable grain yields in
this region is vital to China’s food security.

Conventional tillage (CT) methods on the NCP are practiced using small motorized
cultivators equipped with disk plows to loosen the surface soil (0–20 cm), which is known
to be unconducive to high and stable grain yields. Long-term CT will not only cause a
shallow soil layer but also increase SOC mineralization, soil erosion, and nutrient loss
(Feng et al., 2018). In contrast, conservation tillage can reduce the damage caused to the
soil by over tillage. The effects of tillage on soils develop over time, while the study of grain
yields is complex and benefits cannot be demonstrated in the short term. Therefore, to
study the effects of different tillage measures on agricultural soils, we conducted a study in
2016 on a field that has been under conservation tillage since 2002. In this field, four tillage
measures were employed—NT, rotary tillage (RT), CT, and SS—with tillage depths are 0,
10, 20, and 40 cm, respectively. The objectives of our study were to: (1) identify ongoing
NCP experiments with tillage measures as an experimental factor, (2) analyze the effects of
different tillage measures on AOC and plant dry matter, and (3) relate the effects of tillage
on crop yields to the experimental data.

MATERIALS AND METHODS
Experimental site
A long-term conservation tillage experiment began in 2002 at the Experimental Station
of Shandong Agricultural University (36◦10′′9′N, 117◦9′′03′E), which is an area that has a
temperate continental climate and exhibits the typical climatic characteristics of the NCP.
This area is also characterized by abundant sunlight and distinct seasons, and its mean
annual temperature, number of sunshine hours, and rainfall are 13.6 ◦C, 2,624 h, and
697 mm, respectively. The soil at this site, which is brown loam, has a bulk density of 1.4 g
cm−3, and it contains 44% silt, 40% sand, and 16% clay. Before the experiment began, the
pH of the surface soil was 6.8, and its SOC, total nitrogen, and total phosphorus contents
were 6.7, 1.3, and 7.2 g kg−1, respectively.

Crop management and experimental design
The experimental plots were based on a winter wheat–summer maize (Triticum aestivum
L.–Zea mays L.) double-cropping system. The variety of maize was Zhengdan 958, which
had a planting density of 66,700 plants/hm2. It was sown from June 18–25 every year and
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harvested from October 8–12 of the same year. During the summer maize growing period,
basal fertilizer was applied at a rate of 120 kg N, 120 kg P2O5, and 100 kg K2O ha−1, and at
the maize joining state, topdressing fertilizer was applied at a rate of 120 kg N ha−1 (Lu &
Xie, 2011; Fu & Zhang, 2015). The planting specifications and field management strategies
employed were the same as those used in generally high-yielding fields. The wheat variety
in the experimental field was Jimai 22, which was sown from October 10–15 each year and
harvested from June 8–15 of the following year. After the wheat and maize matured, all of
the straw was returned to the field.

The experimental field was split into distinct plots, and four tillage measures were
adopted—NT (0 cm), RT (10 cm), CT (20 cm), and SS (40 cm). The area of each plot was
30× 4 m2, for which there were three replicates per tillage measure. To minimize the edge
effect, a 0.5-m buffer region was set around each plot. The total experimental land was
∼0.16 ha. The winter wheat–summer maize double-cropping system, with tillage measures
before the sowing of winter wheat and direct stubble sowing of summer maize, is the main
cropping practice in this region.

Grain sampling and analysis
Samples were collected at the mature stage of maize to determine grain yields. During the
experiment, 10-m double-row sampling was used, and the output area was 5 m2. From
among the harvested ears, 15 were chosen to measure their characteristics after 20 days
of natural air drying. The ear characteristics included row number, kernels per row, and
kernels per ear. After attaining these measurements, kernels were threshed by a grain
thresher, and their 1,000-kernel weights were determined.

Soil sampling and analysis
During maize harvesting, soil samples at different depths (0–10, 10–20, and 20–40 cm)
were collected. To determine the amount of AOC, a composite undisturbed soil sample
(homogenized soil from three replicate plots in one treatment) was collected from the
different soil layers with the use of a flat spade. Each sample was then placed into an airtight
aluminum container and transported to the laboratory. To prevent soil deformation,
samples were peeled into soil blocks along their structural textures and soil samples that
passed the 1-cm sieve were retained. After the removal of visible organic residue, the
samples were air-dried and subjected to wet sieving (Zhang et al., 2019).

Dried soil (100 g) was weighed and placed on an aggregate analyzer (TTF-100, Shangyu
Shunlong Laboratory Instruments, China). The pore sizes of the sieves were 5 mm,
2 mm, 0.25 mm, and 0.053 mm from the top to the bottom (Cambardella & Elliott, 1993).
Deionized water was slowly poured into the sieve barrel until it was level with the edge. Soil
samples were first infiltrated for 10 min and then the amplitude of the agglomerate analyzer
was adjusted to 20 times/min and screened for 10 min. After screening, the aggregates on
each sieve were washed into an aluminum box with deionized water and let to stand for
48 h. The supernatant was then discarded from the aluminum box and the samples were
left to air dry naturally. The AOC contents of air-dried aggregates were then determined
via potassium dichromate external heating (Bao, 2000). Each analysis was repeated three
times.
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Plant sampling and analysis
In the middle of each plot, five successive uniform plants were selected manually and cut at
ground level at anthesis and physiological maturity. The plants were packed into different
envelopes according to their different organs and then dried to a constant weight at 70 ◦C
to determine the dry matter content. Dry matter accumulation and distribution indices
were calculated using the following equations (Ma et al., 2015b):

Translocation

= dry matter at anthesis−dry matter of vegetative plant parts at maturity (1)

Translocation efficiency

= (dry matter translocation/dry matter at anthesis)×100 (2)

Contribution of pre-anthesis assimilates to grain

= (translocation/grain yield)×100 (3)

Accumulation post-anthesis

= dry matter of grains at maturity−dry matter translocation (4)

Contribution of accumulation post-anthesis to grains

= (accumulation post-anthesis/dry matter of grains at maturity)×100 (5)

Harvest index (HI)= grain yield/total aboveground biomass at maturity. (6)

Data processing
An analysis of variance (ANOVA) was used according to a 2 × 4 factorial design with
three replications per treatment to assess the soils and crop yields of each experimental
treatment. Simultaneously, the least significant difference (LSD) was used for multiple
comparisons. The significance level for the testing of all hypotheses was preset at p< 0.05.
Pearson’s correlation coefficients were used to analyze the correlations between variables.
All statistical analyses were performed using SPSS v. 19.0 (SPSS Inc., USA) (Xue, 2019) and
Microsoft Excel v. 2016 (Microsoft Corp., USA).

RESULTS
Yield components, yields, and harvest indices
The yields and components of summer maize in 2016 and 2017 are shown in Table 1. The
lowest productive ear number appeared under the SS treatment in 2017, but there was no
significant difference among the treatments. The number of grains per ear was the lowest
in the CT treatment in 2017, and the highest in the SS treatment, the latter of which was
significantly higher than that in the CT treatment. There was no significant difference
between the CT, RT, and NT treatments. In terms of 1000-grain weight and grain yield,
the order of each treatment was SS > CT > RT > NT. In terms of yield, the difference
between SS and CT was not significant, but their yields were significantly higher than those
with RT and NT. Compared with CT, the mean yield increased at a rate of 0.18% with SS,
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Table 1 Effects of tillage onmaize yield and its components.

Year Treatment Productive ear
No. (104/ha)

Grain per ear
(grain/ear)

1,000–grain
weight (g)

Grain yield
(Mg/ha)

HI

NT 6.67a 531.18bc 302.00c 11.46c 0.481a

RT 6.67a 556.81ab 311.76bc 12.71b 0.471b

CT 6.66a 552.57ab 311.89bc 13.55a 0.463c
2016

SS 6.66a 564.66a 328.27a 13.57a 0.479a

NT 6.69a 581.26ab 326.86c 10.97b 0.468b

RT 6.71a 553.30ab 335.29b 11.35b 0.442c

CT 6.70a 520.01b 343.67a 13.53a 0.464b
2017

SS 6.58a 595.84a 345.50a 13.56a 0.482a

Notes.
Different letters in each column indicate significant differences between different tillage measures (P<0.05; Duncan’s test).
NT, no-tillage; RT, rotary tillage; CT, conventional tillage; SS, subsoiling; HI, harvest index.

while yields declined at rates of 17.17% and 11.15% with NT and RT, respectively. The
yield of the NT treatment was the lowest, but the HI indices with NT and SS were higher
than those with RT or CT.

Aggregate-associated Organic Carbon (AOC)
The AOC contents of the experimental soils are shown in Fig. 1. Among all aggregates, the
highest AOC content was found in 2–5-mm aggregates at soil depths of 0–10 cm. At the
same soil depth, the AOC contents decreased with decreases in particle sizes (i.e., 2–5 mm
> 0.25–2 mm > 0.25–0.053 mm). From the perspective of different tillage methods, the
AOC content with SS was the highest among all treatments, except for aggregates with 2–5
mm particle sizes under 20–40 cm of soil. Secondly, the AOC content in the NT treatment
was significantly higher than those with RT or CT once 2–5-mm particle aggregates were
removed from the 20–40-cm soil layer. The AOC content at particle sizes of 2–5 mm and
soil depths of 20–40 cmwere the highest in the CT treatment. Compared with CT, the AOC
content with NT, RT, and SS changed by +5.65%, −0.12%, and +9.73%, respectively.

Accumulation, partitioning, and translocation of dry matter
Tillage measures had a significant impact on the indicators described in Table 2. Except
for the dry matter of vegetative plant parts at maturity, growth years and the interaction of
growth years and tillage measures significantly influenced the other indices. The dry matter
content of maize under different tillage measures is shown in Table 3. In the anthesis stage,
the contents of leaves and culm and the total dry matter weight of each tillage treatment
were ordered as follows: CT > SS > RT > NT. Compared with CT, the NT, RT, and SS
treatments reduced the leaf and culm dry matter weight in the anthesis period by 11.44%,
7.47%, and 3.48%, and the total dry matter weight during anthesis by 10.85%, 10.01%, and
3.87%, respectively, over two years. The order of ear weights in the anthesis period was as
follows: CT > SS > NT > RT. Compared with CT, the NT, RT and SS treatments reduced
the ear dry matter weight of maize in the anthesis period by 8.41%, 19.16%, and 5.14%,
respectively, over two years. The weight distribution of mature vegetative plant parts was
the same as that of the total dry matter weight during anthesis, and the total dry matter
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Figure 1 Aggregate-associated organic carbon under different soil layers in different treatments.NT
(no-tillage), RT (rotary tillage), CT (conventional tillage), SS (subsoiling). The different letters in the pic-
ture indicate that they are significantly different in different treatments at the 5% level. Vertical bars are
standard errors.

Full-size DOI: 10.7717/peerj.11099/fig-1

Table 2 Analysis of variance of dry matter and dry matter translocation indices that were affected by growth year and tillage measures.

Anthesis Maturity DMT DMTE CDMRG

Leaf+ culm Ear Total Vegetative
plant part

Grain Total

Tillage (T) *** *** *** *** *** *** *** *** ***

Year (Y) ** *** *** ns *** *** ** ** ***

Y× T ** *** ** ns *** *** ** * **

Notes.
DMT, dry matter translocation; DMTE, dry matter translocation efficiency; CDMRG, contribution of pre-anthesis assimilates to grain (%); ns, not significant.
*P<0.05.
**P<0.01.
***P<0.001.

weight at maturity was also the highest with CT. Compared with CT, the NT, RT, and SS
treatments reduced the dry weights of mature vegetative plant parts by 20.95%, 8.72%,
and 6.47%, and their associated total dry matter weights decreased by 19.19%, 9.83%, and
3.38%, respectively. The dry matter weight of grains was maximized with SS at maturity,
and was significantly higher than those with NT and RT, though there was no significant
difference between SS and CT. Compared with CT, the NT, RT, and SS treatments changed
the grain dry matter weight at maturity by −17.15%, −11.11%, and +0.20%, respectively.

Shi et al. (2016) showed that tillage has an effect on the transportation of dry matter
and its contribution to the grain yields of wheat—similar to the results presented here. In
this study, the translocation and translocation efficiency of dry matter with CT and RT
were lower than those with NT and SS (Table 4). No-tillage increased the accumulation of
pre-anthesis dry matter and its contribution of assimilates to grain yields. At the same time,
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Table 3 Effects of tillage on the dry matter contents of vegetative and reproductive parts in anthesis
andmaturity of maize.

Treatments Anthesis Maturity

Leaf+ culm Ear Total Vegetative
plant part

Grain Total

NT 243.6d 70.2c 313.8c 185.1d 171.8c 356.9c

RT 255.3c 60.5d 315.8c 214.0c 190.6b 404.6b

CT 283.9a 77.2a 361.1a 235.7a 203.1a 438.8a
2016

SS 270.8b 74.4b 345.2b 221.7b 203.4a 425.1a

NT 245.9c 67.0b 312.9c 186.6c 164.5b 351.1d

RT 256.2b 60.6c 316.8c 215.2b 170.2b 385.4c

CT 269.3a 72.6a 341.9a 234.5a 202.8a 437.3a
2017

SS 263.0ab 67.7b 330.6b 218.1b 203.3a 421.4b

Notes.
Different letters in each column indicate significant differences between different tillage measures (P <0.05; Duncan’s test).
NT, no-tillage; RT, rotary tillage; CT, conventional tillage; SS, subsoiling.

Table 4 Effects of tillage on dry matter transfer efficiency.

Treatments Pre-anthesis
dry

matter
accumulated

Post-anthesis
dry

matter
accumulated

Dry
matter
transl.
(kg/hm2)

Dry
matter
transl.
efficiency (%)

Contr.
assimilates
to grain
(%)

Accumulation
into
grain
(kg/hm2)

Contr.
assimilates
to grain
(%)

NT 3896.10a 24.01a 34.05a 7546.72c 65.95b

RT 2750.58c 16.18d 21.67c 9940.36b 78.33a

CT 3210.12b 16.98c 23.73b 10320.00a 76.27a
2016

SS 3270.06b 18.13b 24.13b 10280.00ab 75.87a

NT 3949.38a 24.12a 36.06a 7004.17d 63.94c

RT 2730.60c 16.00c 24.09b 8602.38c 75.91b

CT 2317.68d 12.92d 17.16d 11192.04a 82.84a
2017

SS 2990.34b 17.07b 22.09c 10549.33b 77.91b

Notes.
Different letters in each column indicate significant differences between different tillage measures (P <0.05; Duncan’s test).
NT, no-tillage; RT, rotary tillage; CT, conventional tillage; SS, subsoiling.

CT and SS tended to increase the accumulation of dry matter, as well as its contribution
of assimilates to grain yields post-anthesis. This may be because different tillage methods
have different effects on the soil environment, thus affecting the growth, development, and
yield of crops (Bisheng et al., 2015).

Correlations
The experimental correlations among crop yields, physiological characteristics, and AOC
contents are shown in Table 5. Maize yield was significantly and positively correlated with
the translocation and translocation efficiency of dry matter, as well as with AOC1, AOC2,
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Table 5 Pearson correlation coefficient of the annual yield, physiological characteristics and aggregate-associated organic carbon content in
2016 and 2017.

1 2 3 4 5 6 7

1 Grain yield –
2 Dry matter transl. 0.540** –
3 Dry matter transl. efficiency (%) 0.409* 0.989*** –
4 Contr. of preanth. assimilates to grain (%) −1.70 0.731*** 0.822*** –
5 AOC1 0.694*** 0.707*** 0.640** 0.310 –
6 AOC2 0.609** 0.730*** 0.680*** 0.405* 0.993*** –
7 AOC3 0.832*** 0.285 0.160 −0.301 0.812*** 0.742*** –

Notes.
AOC1, AOC2 and AOC3 represent the content of aggregate-associated organic carbon in 0–10, 10–20 and 20–40 cm soil layers respectively.
*P <0.05.
**P<0.01.
***P<0.001.

and AOC3 contents. Unsurprisingly, the translocation of dry matter displayed a significant
positive correlation with its translocation efficiency, as well as with the contribution of pre-
anthesis assimilates to grains, AOC1, and AOC2. The drymatter translocation efficiency was
also significantly and positively correlated with the contribution of pre-anthesis assimilates
to grains, AOC1, and AOC2, and the contribution of pre-anthesis assimilates to grains was
significantly and positive correlated with AOC2. Finally, AOC1 showed significant positive
correlations with AOC2 and AOC3, and AOC2 was significantly and positively correlated
with AOC3.

DISCUSSION
Effects of different tillage methods on maize yield and its components
High crop yield is the most important purpose of agricultural production; thus, it is
important to consider the effect of tillage measures on crop yields. In some studies, it has
been demonstrated that conservation tillage can improve soil fertility (Wang et al., 2019),
maintain maize yield (Shao et al., 2016), and guarantee increased production (Ren et al.,
2016). In this study, conducted from 2016–2017, SS resulted in a higher maize yield than
other treatments and had a positive effect on the number of grains per ear and 1,000-grain
weight, similar to the findings of Kuang et al. (2020). At the same time, the AOC content
in the SS treatment was also higher than in other treatments. Lal (2009) found that there
was a close relationship between yields and SOC. Soil organic carbon is an important
soil characteristic and plays an important role in soil fertility and sustainable agricultural
development (Su & Zhao, 2002; Li et al., 2020). It is considered to be a decisive factor
affecting soil fertility and crop yields (Qiu et al., 2009). In this study, SS increased the
organic carbon content in soil aggregates and soil fertility and promoted increases in crop
yield (Xie et al., 2020). Subsoiling can not only increase soil AOC and improve soil fertility,
but also break hard plow bottoms (Ma et al., 2015b), improve soil pore conditions, and
increase permeability (Wang et al., 2007), all of which are conducive to the distribution
of plant roots in deep soils (Sun et al., 2017) and promote the use of nutrients and water
therein. Thus, SS is conducive to high crop yields.
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In this study, the AOC content with NT was only lower than that with SS, which was
better than the contents in the RT and CT treatments. Considering the NT measure
employed, its effect on the environment was insignificant (Basso et al., 2011), and may
result in a decrease in organic carbon mineralization (Kan et al., 2020b), though it remains
an important conservation tillage approach. Nevertheless, the results of studies regarding
its effect on maize yield in China and abroad have not been consistent. Some studies had
shown that NT had a positive effect on yield; for example, Lamm, Aiken & Kheira (2009)
showed that NT could effectively increase crop yields. However,Wang & Li (2014) showed
that in the arid lands of northern China, continuous NT reduced crop yields by 12–18%.
These differences may be attributable to different soil types and climatic conditions,
which led to NT affecting yields differently between the regions. It is also possible that the
length of time the NT process takes differs by region (Boomsma et al., 2010). Wang et al.
(2012) showed that NT was beneficial to increasing the contents of soil aggregates, thereby
increasing soil nutrients; however, it was suggested that years of NT would increase soil
compactness and reduce crop yields. Here, NT resulted in the lowest maize yield and it was
found that long-term NT could cause soil hardening and increases in bulk density (Kan et
al., 2020a), affecting the development of crop root systems, as well as nutrient and water
absorption, which may be why the lowest yields were recorded with NT in this study (Ren
et al., 2018).

Conventional tillage showed a certain advantage with respect to maize yield, which was
significantly higher than those with RT and NT. Under the conditions of NT and RT, the
volumetric weight of the soil was large and the plow bottoms remained hard (Hua, Guo &
Zhang, 2008; Gong & Lv, 2014; Ma et al., 2014), while CT greatly disturbed the soil, which
can break the plow bottom to a certain extent and increase the distribution of the root
systems in deep soils (Zhai et al., 2017;Wang et al., 2020b), both of which are conducive to
increases in crop yield. Nevertheless, while the yield of the CT treatment was high, the HI
was significantly lower than those of the NT and SS treatments. The HI is an important
index for evaluating yields and cultivation is significantly correlated with economic yield.
In this study, the HI was the greatest in the SS and NT treatments. Although the maize
yield and dry matter weights with NT were the lowest, the HI was high, and while the CT
treatment was better than NT in terms of grain yield, it did not exhibit any advantages in
HI over NT. This may be because CT was more helpful that NT for improving the dry
matter weight rather than the grain weight of maize plants.

Effects of different tillage measures on AOC
The differences in AOC contents at different soil depths are mainly caused by the surface
layer receiving external OM and the transformation and exchange of SOC in this layer.
Newly input OM first accumulates and decomposes on the soil surface, and then infiltrates
into the deep soil (Wei et al., 2015). By turning the soil during tillage, OM on the surface
layer can be transported to deeper soil layers, causing differences in the AOC contents of
different soil layers. In this study, compared with CT and RT, NT primarily increased AOC
content in the 0–20-cm soil layer. Instead of soil turnover, NT reduced the exposed area,
minimized soil disturbance, and reduced the mineralization rate of organic carbon (Chen
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et al., 2013), which resulted in increases in AOC due to long-term accumulation. Subsoiling
significantly increased AOC content in the 0–40-cm soil layer, as previously described by
Chan, Heenan & Oates (2002). Furthermore, Liu (2019) showed that SS could reduce soil
compaction and bulk density (Zhang et al., 2017), and promote the transformation of straw,
stubble, and roots into deep soils, thus increasing the carbon contents of deep soils. Kushwa
et al. (2016) found that CT often interferes with soil aggregates, leading to the exposure
of the organic carbon protected by them, as well as the turnover of macro-aggregates,
which leads to the decomposition of soil aggregates and AOC loss and limits crop yields.
Compared with CT, themean AOC content in the 0–40-cm soil layer increased by 5.4% and
9.1%, respectively, with NT and SS, but there was no significant difference between RT and
CT. Meanwhile, the AOC content decreased with decreasing aggregate size (i.e., 2–5 mm
> 0.25–2 mm > 0.053–0.25 mm). Carter (1992) also showed that aggregate particle size
was positively correlated with AOC content and Huo et al. (2019) found that conservation
tillage contributed more to the formation of macro-aggregates and increases in AOC. The
results of this study show that there is a significantly positive correlation between AOC
content and maize yield, and this correlation was strongest at soil depths of 20–40 cm.
When there are more macro-aggregates in the soil, more AOC will be available, favoring
higher crop yields.

Accumulation, partitioning, and remobilization of dry matter
Dry matter is the highest form of photosynthetic products in crops, and its accumulation
is closely related to grain yield. The accumulation of crop dry matter is restricted by many
factors, such as tillage practices (Chen et al., 2014) and fertilization systems. Different
tillage methods have different effects on the accumulation and distribution of dry matter.
Among them, tillage practices can regulate accumulation by changing the hydrothermal
characteristics of the soil (Yin et al., 2016). In this study, the dry matter weight of maize
with CT was the greatest. Guan et al. (2014) also showed that after NT, short-term CT
significantly increased the aboveground biomass of NCP maize, similar to our findings.
In addition to the CT treatment, the dry matter weight of the SS treatment was also high,
and Huang et al. (2009) found that the increase in dry matter was mainly due to improved
photosynthesis.

Subsoiling can delay the senescence of maize leaves, thus maintaining a higher leaf
area index and photosynthetic rate, which favor increased maize dry matter weights and
lay a solid physiological foundation for an overall increase in grain yields (Sun et al.,
2017). Additionally, Shi et al. (2016) showed that tillage methods effect the accumulation,
transport, and contribution of stem dry matter to grain yields during the late anthesis stage
in wheat. In this study, NT increased the pre-anthesis accumulation of dry matter and
its contribution to grain yields, while CT and SS tended to increase the accumulation of
dry matter, as well as its contribution to gain yields post-anthesis. This may be because
different tillage methods have different effects on the soil environment, and thus affect the
growth, development, and yields of crops (Bisheng et al., 2015).

Crop yield was determined by the pre-anthesis accumulation of carbohydrates and the
transport to grains post-anthesis (Jiang et al., 2002). The pre-anthesis accumulation of dry

Shen et al. (2021), PeerJ, DOI 10.7717/peerj.11099 11/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.11099


matter and the transport to grains post-anthesis of maize with SS and CT were higher than
those of the NT treatments, which provided a foundation for increases in yield. Moreover,
past studies have shown that CT and SS can improve water use efficiency (Li et al., 2006),
promote chlorophyll synthesis, and slow chlorophyll degradation, thus prolonging the
functional period and increasing the distribution of dry matter post-anthesis, thereby
improving the growth rate, ensuring the accumulation of dry matter and grain filling, and
ultimately leading to increased crop yields (Xu et al., 2017).

CONCLUSIONS
In summary, our results from two years of field experiments showed that SS effectively
increased the AOC content, with the effect being better than in the other three treatments.
Although the dry matter content was slightly lower than that of the CT treatment, the
difference between SS and CT was not significant in this regard. The yield with SS was the
highest among the four tillage methods, and this method of tillage also effectively improved
the HI. No-tillage also increased the AOC content and HI, but the dry matter contents
and yields of the NT treatment were the lowest. Conventional tillage resulted in more dry
matter content at maturity but displayed no advantage with respect to AOC content, yield,
or HI when compared to SS or NT. Finally, RT did not show any significant advantages
in this study. Overall, among the research indices involved in this study, SS was found to
be the ideal tillage method. It is essential to study the effects of conservation tillage on
cultivated lands in order to improve grain yields and ensure national food security on the
NCP, and this study provides guidance for optimizing agricultural tillage management in
this vital agricultural region.
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