
REVIEW
published: 26 November 2019
doi: 10.3389/fonc.2019.01099

Frontiers in Oncology | www.frontiersin.org 1 November 2019 | Volume 9 | Article 1099

Edited by:

Alfons Navarro,

University of Barcelona, Spain

Reviewed by:

Maria Rosa Ciriolo,

University of Rome Tor Vergata, Italy

Dohoon Kim,

University of Massachusetts Medical

School, United States

*Correspondence:

Xiumei Sheng

shengxiumei@ujs.edu.cn

Jie Ma

jsdxmajie@ujs.edu.cn

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 19 July 2019

Accepted: 07 October 2019

Published: 26 November 2019

Citation:

Lu W, Cao F, Wang S, Sheng X and

Ma J (2019) LncRNAs: The Regulator

of Glucose and Lipid Metabolism in

Tumor Cells. Front. Oncol. 9:1099.

doi: 10.3389/fonc.2019.01099

LncRNAs: The Regulator of Glucose
and Lipid Metabolism in Tumor Cells
Wei Lu 1, Fenghua Cao 2, Shengjun Wang 1, Xiumei Sheng 1* and Jie Ma 1*

1Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University,

Zhenjiang, China, 2 Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China

Metabolism is a complex network of regulatory system. Cells often alter their metabolism

in response to the changes in their environment. These adaptive changes are

particularly pronounced in tumor cells, known as metabolic reprogramming. Metabolic

reprogramming is considered to be one of the top 10 characteristics of tumor cells.

Glucose and lipid metabolism are important components of metabolic reprogramming. A

large number of experimental studies have shown that long non-coding RNAs (lncRNAs)

play an important role in glucose and lipid metabolism. The current review briefly

introduces the regulatory effect of lncRNAs on glucose and lipid metabolism of tumor

cells, and the significance of lncRNA-mediated metabolism in tumor therapy, hoping to

provide new strategies for clinical targeting tumor therapy.
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INTRODUCTION

Long non-coding RNAs (lncRNAs) are a class of RNA molecules <200 bp in length. LncRNAs
are normally transcribed by RNA polymerase II and undergoes 5′ end capping, RNA splicing,
and polyadenylation procedures (1, 2). LncRNAs do not code or have very low protein-coding
capacity (3), and they have been regarded as “transcriptional noise” without any biological effects
in the past (4). However, increasing evidence shows that lncRNAs are involved in gene regulation
(5), cell cycle regulation (6), cell differentiation (7), immune response (8), tumor metabolism (9),
and other processes (10, 11). LncRNAs often perform different functions in the cytoplasm and
the nucleus (2). Interestingly, environmental transitions or infections can also induce changes
of the lncRNA localization in the nucleus and the cytoplasm. For example, the nuclear export
and mitochondrial localization of lncRNA RMRP is regulated by G-rich RNA sequence-binding
factor 1 and human antigen R in the environments (12). In general, the molecular mechanisms of
lncRNAs mainly include signals, decoys, guides, and scaffolds (13). As signal molecules, lncRNAs
could mark the regulation of space, time, developmental stage, and gene expression. A signal
molecule, linc-p21 as an example, is found to play an important role in apoptotic response after
DNA damage, and this depends on the p53 pathway (14). In addition, lnc-c/EBPβ and lnc-chop are
found to regulate the immunosuppressive function of myeloid-derived suppressor cells (MDSCs)
in tumor and inflammatory environments, which as scaffolds bring together multiple proteins to
form complexes (15, 16).

In the tumor microenvironment, lncRNAsmay show oncogenic or tumor-suppressive functions
due to the changes in its expression (17). The hypoxia, low pH, and energy stress of the tumor
microenvironment are all factors that cause alteration in lncRNAs. It is reported that energy
stress-induced lncRNA FILNC1 and lncRNA HAND2-AS1 could repress tumor development
by regulating energy metabolism (18, 19). Hypoxia is also one of the microenvironmental cues
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responsible for lncRNAs changes, for example, the
overexpression of lncRNA EIF3J-AS1 in atocellular carcinoma
and lncRNA-HAL in breast cancer (20, 21). HIF-1α and c-Myc
are often involved in the regulation of lncRNAs under hypoxia
conditions. The potential mechanisms of dysregulation of
lncRNAs will not be described in detail; here, we will focus on the
regulatory effects of lncRNAs on glucose and lipid metabolism.

It is commonly believed that the balance of glucose,
fatty acid, and protein metabolism plays an essential role in
mammals. Once this metabolic balance is broken, it may cause
various diseases, even tumor (22). Abundant evidence reveals
that during the process of various diseases, especially cell
carcinogenesis (23), the metabolic pattern changes significantly,
involving glycolysis, mitochondrial oxidative phosphorylation,
fatty acid oxidation, and other aspects. The researchers called
this phenomenon the metabolic reprogramming of tumor cells
(24–27). Glucose metabolism and lipid metabolism are the main
energy metabolism modes of organisms, and they are closely
related. Moon et al. reported that the products of glucose
metabolism are substrates of lipid synthesis. Androgen can
stimulate the conversion between metabolisms, and it increases
the utilization of glucose by activating HK2 and PFKFB2 to
provide a sufficient carbon source for fatty acid synthesis (28).
Researchers also detected that the lactic acid from active TCA
cycle is the primary raw material for fatty acid synthesis in
glioblastoma cells by using 13C NMR spectroscopy (29). It has
been reported that in the tumor microenvironment, the majority
of tumor cells choose to increase glycolysis to meet their own
energy and material needs, but some prefer to fatty acids as an
energy source. In adipocytes and breast cancer cell co-culture
models, breast cancer cells prefer to use β-oxidation of fatty acids
(FAO) to supply the energies for proliferation and migration,
which may be related to the tissue specificity of the breast (30).
There are also some reports that suggest that under metabolic
pressure, tumor cells ingest fatty acids in the surroundings and
perform FAO to provide nutrients when glucose levels are low
(31). Also, the amount of ATP produced by the full oxidation of
each fatty acid molecule is more than twice that of glucose (32).

In conclusion, the metabolic mode of tumor cells is
complex and changeable, and under pathological conditions,
tumor cells will choose the optimal metabolic mode for their
survival according to the different environments in which
they are located. Recently, with the development of metabolic
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reprogramming of tumor cells, the roles of lncRNAs in glucose
and lipid metabolism become a research hotspot, especially in
glucose metabolism. Numerous evidence shows that lncRNAs
can reprogram glucose and lipid metabolism in tumor cells,
which influence tumor initiation, development, and progression,
and may serve as a promising novel target for diagnosis and
treatment of tumor.

LncRNAs PARTICIPATE IN GLUCOSE
METABOLISM IN TUMOR CELLS

As the most important energy source of tumor cells, glucose
metabolism mainly includes glucose uptake (primary entrance),
entry into mitochondrial oxidative phosphorylation, and
excretion of lactate (two primary exits) (33). Also, a little
bit goes into pentose phosphate pathway (PPP). Glucose
metabolic reprogramming is an important feature of tumor
cells, providing sufficient ATP and NADPH for tumor
cells to adapt to the changes in survival conditions and
rapid proliferation. Under normal physiological conditions,
mitochondrial oxidative phosphorylation is the main source
of ATP, while tumor cells tend to have enhanced glycolysis
even under sufficient oxygen conditions (34–36). Compared
to oxidative phosphorylation, which produces 36 molecules of
ATP, glycolysis only produces two molecules of ATP. However,
ATP is formed faster than oxidative phosphorylation and it
provides abundant macromolecular precursors to meet the
demands for rapid growth and differentiation of tumor cells to
the maximum extent. This is known as Warburg effect (37). In
addition, the PPP is also an important process for the synthesis
of biomacromolecules and reduction of equivalent (38). In the
process of metabolic reprogramming, glucose transporters and
many key enzymes determine the metabolic rate of glucose in
most cases. The expression levels of these dominating enzymes
usually markedly change during cell carcinogenesis (27). It is
reported that lncRNAs regulate glucose metabolism primarily by
regulating key enzymes in the glucose metabolism pathway.

LncRNAs Participate in Glucose Uptake
Glucose transporters (GLUTs) are a family of transmembrane
protein that regulate the entry of extracellular glucose into cells
during the processes of glucose metabolism (39). There are
many subtypes of GLUTs, of which GLUT4, GLUT3, GLUT2,
and GLUT1 are mostly relevant to the glucose metabolism.
Insulin-regulated GLUT4 membrane transport is the most
important glucose transporter in adipocytes and skeletal muscle
cells (40). GLUT3 is a kind of glucose transporter mainly
distributed in nerve tissue (41). GLUT2 is critical for the
maintenance of hepatocytes’ glucose balance and meanwhile
plays a key role in the glucose perception of the nervous system
(42). GLUT1 is a kind of glucose transporter that is widely
distributed in many tissues and organs (43). It regulates basal
glucose uptake during maintenance of normal physiological
functions of most cells. This may be closely related to the
rapid growth of tumor cells requiring a large amount of
glucose. The expression and dysfunction of GLUTs are related
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FIGURE 1 | LncRNAs modulate the molecules of glucose metabolism in tumor cells. LncRNAs modulate glucose uptake by GLUTs. LncRNAs influence glycolysis,

oxidative phosphorylation, and pentose phosphate pathway by key enzymes.

to many diseases, especially in the metabolism of tumor cells
(44). For example, the deficiency of lncRNA HAND2-AS1 is
identified to up-regulate GLUT1 and GLUT3 in the process
of promoting glucose uptake in osteosarcoma (19) (Figure 1
and Table 1).

In pathological conditions, impaired membrane transport
or functions of certain GLUTs are an important cause of
disorders of glucose levels in various tumor cells, such as
hepatocellular carcinoma (HCC) cells (45, 48), renal tumor cells
(64), osteosarcoma cells (65), and so on. The high expression
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TABLE 1 | LncRNAs involve in glucose metabolism.

lncRNAs Metabolism-

related

enzyme

Tumor/cell

types

Year of

publication

References

HAND2-AS1 GLUT1, GLUT3 Osteosarcoma 2018 (19)

lncRNA Ftx GLUT1, GLUT4

PFK, LDH, CS

IDH, OGDH

Hepatocellular

carcinoma

2018 (45)

lnc-p23154 GLUT1 Oral

squamous

cell

carcinoma

2018 (46)

lncRNA-NEF GLUT1 Non-small cell

lung cancer

cells

2019 (47)

HOTAIR GLUT1 Hepatocellular

carcinoma

2017 (48)

MACC1-AS1 GLUT1 Gastric

cancer

2018 (49)

SNHG3 PFK, PKM, CS

IDH, OGDH

Ovarian

cancer

2018 (50)

LINC00470 HK1 glioblastoma 2018 (51)

TUG1 HK2 Hepatocellular

carcinoma

2018 (52)

TUG1 HK2 Osteosarcoma 2018 (53)

Pvt1 HK2 Osteosarcoma 2017 (54)

Pvt1 HK2 Gallbladder

cancer

2019 (55)

HOTAIR HK2 Oesophageal

squamous

cell

carcinoma

2017 (56)

YIYA PFKFB3 Breast cancer 2018 (57)

FEZF1-AS1 PKM2 Colorectal

cancer

2018 (58)

LINC01554 PKM2 Hepatocellular

carcinoma

2019 (59)

CRYBG3 LDHA Lung cancer 2018 (60)

CASC8 LDHA Bladder

cancer

2017 (61)

PDIA3P G6PD Multiple

myeloma

2018 (62)

PCGEM1 G6PD Prostate

cancer

2014 (63)

of GLUTs satisfies the energy needs of tumor cells. In a
recent study, a new lncRNA named lnc-p23154 was found
to promote glucose uptake and glycolysis by GLUT1, and it
affected oral squamous cell carcinoma metastasis and invasion.
A further study demonstrated that lnc-p23154 inhibited the
transcription of miR-378a-3p by interacting with the promoter
of miR-378a-3p. MiR-378a-3p could then bind to the 3′UTR
of GLUT1 directly and repressed GLUT1 expression both at
the mRNA and at the protein level (46). In non-small-cell
lung cancer (NSCLC), the lncRNA-NEF is down-regulated,
comparing adjacent healthy tissues and tumor tissues in patients
with NSCLC. The overexpression of lncRNA-NEF inhibits
NSCLC cell proliferation and glucose uptake and down-regulated

GLUT1 expression. In short, lncRNA-NEF targets GLUT1 to
influence the proliferation of NSCLC cells (47). The relationship
between glucose uptake and HOTAIR has also been revealed
in HCC cells. HOTAIR mediates the expression of GLUT1 via
activating mammalian target of rapamycin (mTOR) signaling,
which may provide a therapeutic strategy for HCC (48) (Figure 1
and Table 1).

Besides influencing the expression of GLUT1, lncRNAs are
also likely to affect the distribution of GLUT1 in tumor cells
to regulate the uptake of glucose. In gastric cancer cells,
the expression of GLUT1 surrounding the cell membrane is
induced by MACC1-AS1, which is a lncRNA, that is highly
expressed under metabolic pressure. This is an indication
that MACC1-AS1 is likely to promote glucose uptake and
then promote glycolysis by increasing the distribution of
GLUT1 in the vicinity of the cell membrane. However, the
specific relationship between the MACC1-AS1 and GLUT1
remains to be further studied (49). The above results indicate
that the role of lncRNAs in glycolysis-mediated proliferation
or metastasis of tumor cells depends on GLUTs (Figure 1
and Table 1).

LncRNAs Participate in Glycolysis and
Oxidative Phosphorylation
As we all know, the cells absorb glucose in the cytoplasm
and catalyze the formation of pyruvate through a series of
key enzymes of glucose metabolism. The process by which
pyruvate enters the mitochondria to produce large amounts
of energy is called mitochondrial oxidative phosphorylation,
while the process in which pyruvate is oxidized directly in
the cytoplasm to produce lactic acid that does not enter the
mitochondria is called glycolysis. Glycolysis and mitochondrial
oxidative phosphorylation are inseparable. The process of
glycolysis and mitochondrial oxidative phosphorylation involve
a large number of enzymes, of which the major ones include
hexokinases (HKs) (66), pyruvate kinase enzyme M (PKM) (67),
lactate dehydrogenase (LDH) (68), citrate synthase (CS), and
so on. Alterations of lncRNAs drive tumor cells to aerobic
glycolysis and mitochondrial oxidative phosphorylation through
regulation of metabolic enzymes involving these pathways.
In HCC progression, lncRNA Ftx affects glucose metabolism
reprogramming through the PPARγ pathway. On the one hand,
it promotes glycolysis by promoting the expression and activity
of phosphofructokinase (PFK) and LDH, and at the same
time weakens the activity and expression of tricarboxylic acid
cycle key enzymes CS, isocitrate dehydrogenase (IDH), and α-
ketoglutarate dehydrogenase (OGDH) (45). The lncRNA SNHG3
is likely to play a similar role. Li et al. found that SNHG3
could up-regulate the expression of the metabolic enzymes PFK,
PKM, CS, IDH, and OGDH to regulate the energy metabolism of
ovarian cancer through mitochondrial proteomics analysis (50)
(Figure 1 and Table 1).

HKs catalyzes the first and irreversible step of glycolysis (69).
Hexokinase 1 (HK1) is one of the subtypes of HK. A cytoplasmic
lncRNA LINC00470 involving fused in sarcoma (Fus), AKT,
and HK1 pathway promotes glycolysis in glioblastoma cells by
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repressing HK1 ubiquitination (51). In addition toHK1, there are
three other enzymes of HK identified, out of which hexokinase
2 (HK2) is the major enzyme that is closely involved in tumor
cell glycolysis (70). For example, lncRNA taurine up-regulated
gene 1 (TUG1) is disclosed to be related to HK2 involved in
glycolytic metabolism and cell metastasis in HCC. The process
involves a series of cascades, including TUG1/p21/miR-455-
3p/AMPKβ2/HK2/Snail (52). TUG1 has also been associated
with the HK2-mediating glycolysis regulating the viability
ability of osteosarcoma cells, although the exact mechanism
is unknown (53). In addition, one of the main functions of
lncRNAs is to interact with microRNAs acting as a molecular
sponge. It has been reported that lncRNA Pvt1, which is
usually regarded as an oncogene, influences the expression
of HK2, promoting glycolysis, and tumor progression in
osteosarcoma and gallbladder cancer through acting as a
competitive endogenous RNA to directly bind to miR-497
or miR-143, respectively (54, 55). Similarly, HOTAIR binding
to miR-125 and miR-143 directly promotes the expression
HK2 in esophageal squamous cell carcinoma cells (56). The
above research findings fully show that HK2 is implicated in
the regulation of tumor progression and metabolic programs
involving lncRNAs (Figure 1 and Table 1).

PFKFB3 and PKM2 are also key enzymes regulating glycolysis
and oxidative phosphorylation. LncRNA YIYA regulates
the PFKFB3 phosphorylation in cyclin-dependent kinase 6-
dependent pathway, promoting glycolysis in breast cancer cell
(57). The overexpression of lncRNA FEZF1-AS1 in colorectal
cancer cells reduced the ubiquitination degradation of PKM2.
As a result, the expression of cytoplasmic and nuclear PKM2
protein in glucose metabolism process increased (58). Contrary
to FEZF1-AS1, LINC01554 shows a suppressive function because
of the acceleration in PKM2 ubiquitination degradation in HCC
cells (59) (Figure 1 and Table 1).

LDHA catalyzes the last step of aerobic glycolysis, which
is highly critical to the glycolysis phenotype of tumor cells
(71). Overexpression of LDHA promotes tumor cell malignant
transformation and growth, indicating the important role of
LDHA in tumor initiation or maintenance (68). In lung
cancer cell lines, it is reported that lncRNA CRYBG3 regulates
glycolysis rather than oxidative phosphorylation to increase
lung cancer cell proliferation through interacting with LDHA.
Knockdown of lncRNA CRYBG3 reduces the expression
and activity of LDHA and then decreases the consumption
of glucose and pyruvate; however, there are no notable
changes in the level of oxidative phosphorylation including
all kinds of tricarboxylic acid cycle intermediates regardless
of overexpression or knockdown lncRNA CRYBG3 (60). In
bladder cancer, the lncRNA cancer susceptibility candidate 8
(CASC8) is reported to function as a tumor suppressor and
reduces glycolysis via inhibiting fibroblast growth factor receptor
1-mediated LDHA phosphorylation at Tyr10 (61) (Figure 1
and Table 1).

LncRNAs Participate in the PPP
The PPP is another way of catabolizing glucose, which can
produce large amounts of NADPH, providing a reducing agent

for various synthesis reactions of tumor cells. The ribose-5-
phosphate (R5P) produced by this pathway can also provide raw
materials for the synthesis of many substances (72). Glucose-
6-phosphate dehydrogenase (G6PD) is the first key enzyme
in the oxidation phase of the PPP, which transfers glucose-
6-phosphate to 6-phosphogluconate. G6PD is up-regulated in
many tumor cells and tumor tissues and generally its level
correlates with the overall survival of patients. The lncRNA
protein disulfide isomerase family A member 3 pseudogene 1
(PDIA3P) is a 2099-bp lncRNA located at chromosome 1q21.1.
It has been reported that PDIA3P regulates multiple myeloma
growth and drug resistance through up-regulating G6PD in
the PPP. Researchers further discovered that PDIA3P increased
the G6PD expression and the PPP flux through enhancing c-
MYC transactivation activity bound to the G6PD promoter (62).
Similar to PDIA3P, the lncRNA prostate cancer gene expression
marker 1 (PCGEM1) also affects pentose phosphate shunt to
facilitate biosynthesis of nucleotide and generates NADPH for
redox homeostasis as a coactivator for c-MYC and androgen
receptor (63). Although the PPP is not the main pathway of
glucose metabolism and there are not many studies on lncRNAs
and PPP, it is reasonable to believe that PPP is also an important
link in the regulation of lncRNAs during tumor progression
(Figure 1 and Table 1).

LncRNAs PARTICIPATE IN LIPID
METABOLISM IN TUMOR CELLS

The metabolism of tumor cells is completely different from
that of normal cells; in addition to glucose metabolism, lipid
metabolism may also undergo adaptive changes (73, 74). Such
changes in the overall metabolic pattern constitute the metabolic
reprogramming of tumor cells (27). Lipid biosynthesis is not
surprising as a part of metabolic abnormalities in tumor cells,
which require a large amount of lipid to synthesize biofilms,
organelles, and important signaling molecules during rapid
proliferation (32). As such, FAO also could provide ATP for
tumor cells (31), and one molecule of fatty acid produces much
more ATP than glucose. Numerous key enzymes related to
lipid synthesis and lipolysis are highly expressed in tumor cells.
LncRNAs can be involved in the regulation of multiple lipid
metabolism-related genes in tumor cells. It is reported that
lncRNA associated with lymph node metastasis in cervical cancer
(LNMICC) facilitates fatty acid metabolism reprogramming to
promote lymph node metastasis of cervical cancer cells by
regulating fatty acid-binding protein 5 (FABP5), which is a carrier
of fatty acid uptake and transport. Many key genes involved
in fatty acid metabolism, including fatty acid synthase (FASN),
carnitine palmitoyl transferase 1A (CPT1A), acyl-CoA oxidase 1
(ACOX1), and acetyl-CoA carboxylase 1 (ACC1), are all altered
by the gain- and loss-of-function strategies of LNMICC, and this
regulation of LNMICC on lipid metabolism depends on FABP5
(75) (Figure 2 and Table 2).

Lipid metabolism balance includes lipid uptake, synthesis,
catabolism, and secretion. Currently, abundant lncRNAs have
been confirmed to be involved in the regulation of lipid
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FIGURE 2 | LncRNAs regulate the molecules of lipid metabolism in tumor cells. LncRNAs regulate lipid synthesis and decomposition by different ways and molecules.

metabolism (83, 84). However, lncRNAs involved in lipid
metabolism is mostly associated with cardiovascular disease or
hepatic disease. There are few reports on the lipid metabolism
functions of lncRNAs in tumor cells. The following headlines
below principally discusses the role of lncRNAs in lipid synthesis
and lipolysis.

LncRNAs Participate in Lipid Synthesis
Lipid synthesis is a landmark change in tumor cells. Synthesis
of lipid can not only provide a large number of membrane
phospholipids as raw materials for the continuous division
and proliferation of tumor cells, but also synthesize a
series of cancer-promoting lipid signaling molecules, such
as phosphatidylinositol and sphingomyelin, etc.

FASN is a key rate-limiting enzyme catalyzing de novo fatty
acid biogenesis (85). Since FASNwas discovered, its role in tumor
growth and intracellular signal transduction has been widely
studied. HAGLR, also called HOXD-AS1, is generally elevated
in NSCLC and it is regarded as a predictor of poor patient
survival. The proliferation and invasion ability of NSCLC cells
decreased after HAGLR knockdown and cells mainly remained
in the G1 phase. Furthermore, the expression of FASN and

the amount of free fatty acids significantly reduced with the
decrease of HAGLR expression in the non-small cells (78).
In human nasopharyngeal carcinoma cells, high expression
of HOTAIR is positively correlated with FASN expression.
Adenovirus encoded short hairpin RNA knockdown of HOTAIR
causes the decrease of free fatty acid and FASN at transcriptional
and post-transcriptional levels in nasopharyngeal carcinoma cells
(79). Although the specific mechanism, of how lncRNAs regulate
lipid synthesis involving FASN is unclear, they at least partly
demonstrate that lncRNAs play an important role in tumor
cells by FASN-mediated lipid synthesis. In osteosarcoma cells,
lncRNA Pvt1 was found to act as a sponge molecule to adsorb
miR-195. As a result, the expression of FASN, B-cell lymphoma
2 protein, and Cyclin D1 increased. At the same time, the
study also showed that silencing Pvt1 reduced cell invasion,
and FASN could reverse this effect (80). Sterol regulatory
element binding protein 1 (SREBP1) is a major transcription
factor involved in lipid accumulation and desaturation. Zhang
et al. in their study indicated that the lncRNA LINC01138
increased the arginine methylation of SREBP1 at the post-
transcriptional level to regulate lipid desaturation and cells
growth of clear cell renal cell carcinoma by interacting

Frontiers in Oncology | www.frontiersin.org 6 November 2019 | Volume 9 | Article 1099

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lu et al. LncRNAs and Glucose and Lipid Metabolism

TABLE 2 | LncRNAs involve in lipid metabolism.

lncRNAs Metabolism-

related

gene

Tumor types Year of

publication

References

HULC ACSL1 Hepatocellular

carcinoma

2015 (76)

LNMICC FASN, ACC1

ACOX1, CPT1

Cervical

cancer

2017 (75)

LINC01138 SREBP1 Clear cell

renal cell

carcinoma

2018 (77)

HAGLR FASN Non-small cell

lung cancer

2017 (78)

HOTAIR FASN Human

nasopharyngeal

carcinoma

2017 (79)

Pvt1 FASN Osteosarcoma 2016 (80)

NEAT1 ATGL Hepatocellular

carcinoma

2018 (81)

MACC1-AS1 ACS, CPT1A Gastric

cancer

2018 (82)

with protein arginine methyltransferase 5 (77) (Figure 2
and Table 2).

LncRNAs Participate in Lipolysis
Fat mobilization is the first step in lipid catabolism, and adipose
triglyceride lipase (ATGL) is a first key lipase that has been
discovered in recent years to initiate fat mobilization (86, 87). It is
vital to maintain the balance of lipid storage mobilization (88). In
fact, ATGL has been reported to be reduced in leiomyosarcoma,
non-small cell lung cancer as well as pancreatic adenocarcinoma,
and the levels of ATGL are associated with patients survival
(89). In the diet-induced murine HCC model of steatohepatitis
and human HCC, the expression of ATGL is also found to be
decreased by Di Leo (90). Although it is frequently reported
that ATGL shows anti-neoplastic effect, some studies have
proposed its tumor-promoting function (91). Interestingly, Liu
et al. found that the expression of ATGL at transcriptional
level and post-transcriptional level is higher in human HCC
tissues and orthotopic HCC mouse model, which is exactly the
opposite of Di Leo. It is showed that high expression of ATGL
promoted the growth of HCC cells by catalyzing the production
of diacylglycerol (DAG) and free fatty acids (FFA). This opposite
phenomenonmay be due to differences in the clinicopathological
features of the patients and the mouse model. Simultaneously,
the study also indicated that the lncRNA NEAT1 could regulate
the expression of ATGL and affect the abnormal lipidosis of
HCC cells through ATGL. Further research confirmed miR-124-
3p/ATGL/DAG+FFA to participate in the regulation effect of
NEAT1 on the lipid decomposition in HCC and thus promoted
the progress of HCC (92) (Figure 2 and Table 2).

It is well-known that the most important form of fatty acid
decomposition is β-oxidation of fatty acids (FAO), and studies
have shown that lncRNAs are also extremely important in the

oxidation of fatty acids. Acyl-CoA synthetase (ACS) is the rate-
limiting enzyme in the first step of the fatty acid oxidation
reaction. HULC is the first lncRNA identified to be specifically
elevated in HCC compared with normal liver tissues (93).
Cui et al. revealed that, in hepatoma carcinoma cells, HULC
could modulate lipogenesis by the pathway involving miR-9,
peroxisome proliferator-activated receptor alpha (PPARA), and
ACS long-chain family members 1 (ACSL1), and interestingly,
ACSL1 also seems to have a positive feedback effect on HULC
expression during this process (81). In gastric cancer cells,
transforming growth factor β1 secreted by mesenchymal stem
cells could promote the high expression of lncRNAMACC1-AS1.
The high expression ofMACC1-AS1 relieved the inhibitory effect
of miR-145-5p on FAO by inhibiting miR-145-5p, ultimately
promoting the stemness and chemoresistance depending on FAO
of gastric cancer cells (94). Taken together, lncRNAs participate
in lipid decomposition in different ways to affect tumor progress
(Figure 2 and Table 2).

LncRNAs PARTICIPATE IN THE ADJUVANT
THERAPY OF TUMOR POSSIBLY

Tumor is the leading killer of human health. Luo et al.
demonstrated that lncRNA MALAT1 was crucial in arsenite-
induced hepatotoxicity. In the process of cell carcinogenesis
induced by arsenic, there is also a phenomenon of enhanced
glycolysis, which is mainly manifested by the accumulation
of lactate, the acceleration of glucose consumption, and the
increased expression of a series of glycolytic related genes, such
as HK2, Eno1, and GLUT4. MALAT1 further stabilizes HIF-1α,
enhancing the arsenite-induced glycolysis process by disrupting
the VHL–HIF-1α interaction (76). It provides new insight into
the mechanism of arsenic toxicity on the human body. For
a long time, people have been committed to exploring and
studying the mechanisms of tumor occurrence and development,
trying to find a more effective therapy for tumors. LncRNAs are
abnormally expressed in many tumors, and lncRNA-mediated
metabolic reprogramming plays a key role in promoting and
maintaining tumor formation and progression. These have
shown the clinical potential as a therapeutic target of lncRNAs.

Radiotherapy is a common method of tumor treatment.
Li et al. unveiled the role of UCA1 in the radiotherapy of
cervical cancer from the perspective of glucose metabolism and
proposed UCA1 as a potential target for improving the efficacy of
radiotherapy for cervical cancer. The radiosensitivity of cervical
cancer cells was enhanced after treating with glycolysis inhibitor
2-DG. Knockdown of UCA1 contributed to reduce glucose
consumption and lactic acid production by down-regulation of
HK2 expression rather than GLUTs or PKM. The discovery of the
UCA1/HK2/glycolysis pathway in the radiotherapy of cervical
cancer provides a newmethod to improve the radiotherapy effect
(82). Abnormal energy metabolism is a characteristic of tumor
cells, and biguanides are often used as potential tumor therapy
drugs because of their role in inhibiting the mitochondrial
respiratory chain (95). Phenformin is a type of biguanides used
in the treatment of tumor. In this treatment with phenformin,
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lncRNA NBR2 has been discovered to have a potential role in
the adaptive response of tumor cells. Elevated NBR2 expression
reduced the apoptosis of tumor cells induced by phenformin. As
a result, the number of tumor cells increased (96). Thus, the role
of lncRNA-mediatedmetabolic reprogramming in tumor therapy
cannot be ignored. They can, therefore, be used as an adjunct to
other therapies to treat tumors.

SUMMARY AND PROSPECT

In recent years, the studies of lncRNAs on tumor cells’ metabolic
reprogramming have developed rapidly. Numerous reports
have been published on the different lncRNAs that affect the
proliferation, migration, invasion, and other pathological
processes of tumor cells by regulating the energy metabolism.
As an important part of tumor microenvironments, similar
to tumor cells, there is also a phenomenon of metabolic
reprogramming in immune cells (97). Immune cells of different
states and different stages of differentiation show different
metabolic phenotypes (98, 99). For example, naive T cells are
primarily dependent on FAO and oxidative phosphorylation
to maintain their quiescence (100), while activated T cells and
effector T cells, including Th1, Th2, and Th17, have a similar
metabolic pattern to tumor cells and mainly obtain energy by
aerobic glycolysis (98). A recent study found that the expression
of lncRNA Malat1 was significantly different in macrophages
treated with LPS and IL-4, respectively. Knockdown of Malat1
promoted the M2 macrophage polarization induced by IL-4.
After the use of mitochondrial pyruvate carriers inhibitor
UK-5099 or mitochondrial oxidative phosphorylation complex
1 inhibitor, the oxidative phosphorylation of macrophages
was prevented, and the effect of Malat1 knockdown on M2
macrophage polarization was also eliminated (101), thus
suggesting that Malat1-mediated alternative activation of
macrophages is dependent on the elevated mitochondrial
oxidative phosphorylation.

Notwithstanding, the regulation of lncRNAs on immune
cell metabolism has rarely been reported, but the regulation
of lncRNAs on immune cells has been extensively studied.
MDSCs are a group of heterogeneous cells with significant

immunosuppressive activity derived from bone marrow. It
abnormally expands during inflammation, infection, and
tumor microenvironments (102). Previous experiments in our
laboratory showed that lncRNA RUNXOR accelerates MDSC-
mediated immunosuppression via targeting RUNX1 in lung

cancer (103). Pvt1 regulates the immunosuppression activity
of granulocytic myeloid-derived suppressor cells (G-MDSCs),
which is a subgroup of MDSCs, and Pvt1 is up-regulated by
HIF-1α under hypoxia conditions in tumor-bearing mice (104).
In turn, different living environments and metabolic state
will also affect the phenotype and functions of immune cells,
making immune cells more suitable for their functional needs
(105–107). Also, Hossain et al. revealed that the oxidation of
fatty acids could induce the immunosuppressive function of
MDSCs and ultimately promoted the progression of the tumor
(108). In nasopharyngeal carcinoma cells, the promotion of
latent membrane proteins 1 on MDSC expansion also depends
on GLUT1-mediated glycolysis (109).

Therefore, it is reasonable to believe that lncRNAs is also
likely to regulate the function of immune cells by regulating the
metabolic reprogramming. Of course, this conclusion remains to
be confirmed by more studies. In-depth discussion of the effect of
lncRNAs on the metabolic function of tumor cells and immune
cells will help to further understand the mechanism of tumor
occurrence, development, and the function of immune cells in
tumor microenvironments, and could provide new ideas and
strategies for clinical diagnosis and anti-tumor therapy.
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