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Abstract

Background: Magnetic resonance imaging (MRI) T2 and T1ρ relaxation are increasingly being proposed as imaging
biomarkers potentially capable of detecting biochemical changes in articular cartilage before structural changes are
evident. We aimed to: 1) summarize MRI methods of published studies investigating T2 and T1ρ relaxation time in
participants at risk for but without radiographic knee OA; and 2) compare T2 and T1ρ relaxation between participants
at-risk for knee OA and healthy controls.

Methods: We conducted a systematic review of studies reporting T2 and T1ρ relaxation data that included both
participants at risk for knee OA and healthy controls. Participant characteristics, MRI methodology, and T1ρ
and T2 relaxation data were extracted. Standardized mean differences (SMDs) were calculated within each
study. Pooled effect sizes were then calculated for six commonly segmented knee compartments.

Results: 55 articles met eligibility criteria. There was considerable variability between scanners, coils, software,
scanning protocols, pulse sequences, and post-processing. Moderate risk of bias due to lack of blinding was
common. Pooled effect sizes indicated participants at risk for knee OA had lengthened T2 relaxation time in
all compartments (SMDs from 0.33 to 0.74; p < 0.01) and lengthened T1ρ relaxation time in the femoral compartments
(SMD from 0.35 to 0.40; p < 0.001).

Conclusions: T2 and T1ρ relaxation distinguish participants at risk for knee OA from healthy controls. Greater
standardization of MRI methods is both warranted and required for progress towards biomarker validation.
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Background
Magnetic resonance imaging (MRI) is commonly used to
study knee osteoarthritis (OA), largely because of its
ability to visually detect morphological changes in soft
tissues [1–6]. However, in addition to visualizing struc-
tures within a joint, the measurable characteristics of
MRI enable the quantification of tissue biochemistry,
often termed compositional MRI.
Although several types of compositional MRI tech-

niques exist, the vast majority of research in OA focuses

on knee articular cartilage T2 and T1ρ relaxation times
as these are suggested to show considerable promise and
be clinically feasible [7–10]. Although the reported
strengths of the correlations are variable, T2 and T1ρ re-
laxation times are associated with the composition of
the extracellular matrix. T2 relaxation is inversely corre-
lated with collagen network organization and structure,
and is directly correlated with free water content [7].
Changes in T1ρ relaxation appear to be less specific, yet
are also sensitive to changes in the extracellular matrix
[8–14]. When the extracellular matrix of articular cartil-
age is compromised, characteristic of early biochemical
processes in OA, water moves more freely within the
cartilage, prolonging both MRI T2 and T1ρ relaxation
time [13, 15, 16].
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T2 and T1ρ relaxation have engendered considerable
interest as a potential biomarkers for knee OA [17], es-
pecially given their proposed ability to detect biochem-
ical changes in articular cartilage before structural
changes are evident [15, 18, 19]. If these measures can
detect compromised articular cartilage prior to radio-
graphic evidence of OA, they may have the potential to
serve as an outcome measure in early intervention stud-
ies targeting at-risk populations, such as people with
knee anterior cruciate ligament (ACL) rupture [20–22],
meniscal injuries [23, 24], or obesity [25, 26]. While this
may be true of other compositional MRI measures (such
as sodium, glycosaminoglycan chemical exchange satur-
ation transfer [gagCEST], delayed gadolinium enhanced
MRI of cartilage [dGEMRIC] [27]), T2 and T1ρ relax-
ation are perhaps the most clinically feasible, do not re-
quire a contrast agent, and are the focus of numerous
studies that may enable meta-analysis when investigating
their potential use as a biomarker.
Previous systematic reviews are encouraging in that

they suggest T2 and T1ρ measures can be highly reliable
when similar testing methods are used [27], and can dis-
tinguish between articular cartilage of healthy controls
and patients with established radiographic OA [27, 28].
There are established criteria, however, for biomarker
validation and qualification [29–31]. These include the
ability to consistently measure the biomarker across test-
ing sites [32, 33]. The extent to which previous studies
investigating compositional MRI have used similar col-
lection and analysis methods is presently unclear, and
has been recently called into question [34]. Moreover,
the potential utility of a biomarker to detect changes in
the composition of knee articular cartilage relies on its
ability to do so early in the disease process, before de-
generative joint changes are evident on x-ray. Although
there is abundant evidence suggesting T2 and T1ρ relax-
ation times are prolonged in knees with established
radiographic OA compared to healthy knees [27, 28], the
ability to detect changes between knees at risk for OA
and healthy knees is less clear.
Therefore, purposes of this systematic review and

meta-analysis were to: 1) summarize the MRI
methods of published studies investigating T2 and
T1ρ relaxation times in participants at risk for but
without radiographic knee OA; and 2) compare T2
and T1ρ relaxation values between participants at-risk
for knee OA and healthy controls.

Methods
This systematic review follows the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [35] (Additional file 1: Appendix 5)
(PROSPERO ID: CRD42018088352).

Literature search
We sought the assistance of a research librarian to de-
velop the search strategy. We searched the following
electronic databases from their inception to June 2018:
MEDLINE, EMBASE, Scopus, Cumulative Index to
Nursing & Allied Health Literature (CINAHL), SPORT-
Discus, and Web of Science, in addition to hand search-
ing reference lists of included articles. Combined and
truncated keywords and subject headings included “mag-
netic resonance imaging OR compositional magnetic res-
onance imaging” AND “T2 mapping OR T1rho mapping
OR T2 relaxation OR T1rho relaxation” AND “osteo-
arthritis OR articular cartilage” AND “knee OR tibiofe-
moral OR patellofemoral”. A full example of the search
strategy is provided in Additional file 1: Appendix 1.

Eligibility criteria
Eligible studies included those published in English that
reported T2 and/or T1ρ relaxation time in knee articular
cartilage in at least two groups of participants including
one group with any of the criteria commonly accepted
for being at risk for knee OA, and a control group with-
out any of those criteria. All study designs were consid-
ered. We used the Osteoarthritis Initiative (OAI)
Incidence cohort criteria [36] to define a list of criteria
for participants at risk for knee OA. These criteria in-
clude native knee symptoms in the past 12 months, over-
weight or obesity, history of knee injury which would
cause difficulty walking for at least a week, history of
knee surgery, family history of OA, lifestyle factors such
as occupational risk (i.e. repetitive knee bending, squat-
ting, lifting, etc.), age 70 years or older, and Kellgren &
Lawrence (KL) radiographic grading of 0 or 1 [37]. Stud-
ies that included at-risk knees and contralateral healthy
knees within the same participant were also included.
We excluded patients with KL grade 2 or higher. For
studies with multiple follow-up time points, only the
baseline T2 and/or T1ρ relaxation data were used in our
meta-analyses. Two reviewers independently assessed
the eligibility of each article in two stages. Two reviewers
independently assessed all titles and abstracts identified
by the search. Articles meeting the inclusion criteria, ac-
cording to at least one reviewer, were obtained as
full-text manuscripts for further review. Articles meeting
the inclusion criteria after full-text review were accepted
in the review. Reviewers discussed any conflicts at all
stages and a consensus was achieved.

Data extraction
Two reviewers independently extracted T2 and T1ρ re-
laxation time of knee articular cartilage in six primary
compartments: medial femoral condyle (MF), medial tib-
ial plateau (MT), lateral femoral condyle (LF), lateral tib-
ial plateau (LT), patellar cartilage (P), and trochlear
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groove of the femur (TrF) cartilage. If authors presented
laminar differences (superficial and deep cartilage as sep-
arate regions of interest) the data from both regions
were pooled. Given the variability in defining anterior,
central, and posterior subregions of the femur and tibia
across studies, we pooled the identified subregions
(where necessary) to best analyze the load-bearing re-
gions of the femoral condyles (generally in the region of
the anterior horn of the meniscus to the posterior horn
of the meniscus). For the P and TrF, we pooled all subre-
gions (where necessary) to obtain a single value for the
P or TrF. Reviewers discussed any conflicts and achieved
consensus in all cases. Reviewers independently ex-
tracted relaxation time means and standard deviations
(SD) for each participant group. The same reviewers also
extracted the following information from each article:
sample size, participant demographics, risk factors for
OA, MRI hardware, pulse sequences, and parameters.
Authors were contacted when sufficient data were not
reported. If data were not provided or unclear, we con-
tacted the original authors using provided e-mail ad-
dresses. In the case of no reply from the authors, we
extracted data from figures when available. We used
Covidence systematic review and meta-analysis software
(www.covidence.org) to extract data.

Quality assessment
Two reviewers independently evaluated the methodo-
logical quality of each study using the Risk of Bias in
Nonrandomized Studies of Interventions (ROBINS-I)
tool [38], consisting of seven items to assess the internal
validity of each study (confounding, participant selec-
tion, intervention classification, deviation from interven-
tion, missing data, outcome measurement, and outcome
selection). Each item was evaluated as a low, moderate,
serious, or critical risk of bias. Disagreements between
reviewers were resolved by consensus after initial inde-
pendent evaluation.

Data analyses
We assessed agreement between reviewers using the
kappa (κ) statistic. We compared compositional MRI
data by calculating pooled estimates with 95% confi-
dence intervals (95% CIs) for standardized mean differ-
ences (SMDs) using random-effects models. When
calculating pooled effect sizes, we weighted all SMDs
based on the sample size of the respective study. For
both T2 and T1ρ relaxation time, the SMD was calcu-
lated using the difference between healthy controls and
participants at risk for knee OA, divided by the pooled
SD. If a study had multiple groups at risk for knee OA,
only the group with the lowest risk was included in the
calculation of the overall pooled effect size, based on re-
ported measures of disease severity (KL Grade, International

Cartilage Repair Society [ICRS] grade, Outerbridge Score,
Whole Organ MRI Score [WORMS], etc.). All meta-ana-
lyses were performed using the Comprehensive Meta-Ana-
lysis software program (V3, Biostat; https://www.meta-
analysis.com). We interpreted the magnitude of the SMD
using Cohen’s d as small (< 0.2), moderate (0.2–0.8) and
large (> 0.8) and positive values representing prolonged re-
laxation times in participants at risk for OA [39]. We
assessed publication bias using the Egger’s Regression test
[40], and if present, further analyses were planned to explore
treatment effects adjusted for selective reporting [41]. We
assessed the proportion of variability associated with hetero-
geneity using the I2 statistic and Q statistic [42]. We inter-
preted the size of I2 as low (25%), moderate (50%) or high
(75%) heterogeneity [42].

Sensitivity analyses
We repeated the primary analyses after excluding all but
one study (with the greatest sample size) that included
OAI participants to ensure we included data from the
same knee only once. We also repeated the analyses
after excluding studies that used both limbs from the
same participant.
In the event of substantial heterogeneity, we planned

three subgroup analyses. These groups included partici-
pants with a history of ACL injury (based on physical
exam, imaging, or surgical confirmation), participants at
risk for patellofemoral OA (based on the OAI Incidence
cohort criteria) [36], and participants with articular car-
tilage injuries based on MR imaging, arthroscopic ICRS
grades, or Outerbridge scores [43, 44].

Results
Study selection & article screening
We performed the initial search August 1st, 2018 and
updated the search March 7th, 2019. We identified 6417
articles by the database search. After removing dupli-
cates, we reviewed 3071 articles by title and abstract
with excellent inter-rater agreement (κ =0.96) and 53
disagreements (1.7%) between reviewers. Disagreements
were discussed, and after consensus, 386 articles were
deemed eligible for full-text review (Fig. 1). After full
text reviews, inter-rater agreement was excellent (κ =0.95),
with 12 disagreements between reviewers. Disagreements
were discussed, and after consensus, 55 articles met our
inclusion criteria (Fig. 1) [15, 16, 20, 23, 24, 45–94], with a
total of 3676 participants. Forty-seven studies were
included in the meta-analysis, including data from
3079 participants. Articles included in the systematic
review but excluded from the meta-analysis either ex-
amined incomparable regions of interest (ROI), or
had insufficient data to be included in the meta-analyses
[54, 66, 68, 69, 77, 85, 89, 90].
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Study characteristics
Characteristics of all studies included in the systematic re-
view are described in Table 1 [15, 16, 20, 23, 24, 45–94].
T2 relaxation was included as an outcome measure in 38
studies, T1ρ relaxation was an outcome measure in 24
studies, and 8 of those studies evaluated both T2 and T1ρ
relaxation. Studies varied considerably in terms of com-
positional MRI data acquisition and post-processing. Two
different magnet strengths, four different manufacturers,
12 different magnet models, 16 different reported knee
coils, 17 reported pulse sequences, and a wide variety of
parameters were used to acquire compositional MRI data.

Quality assessment
Agreement between reviewers for all seven items in the
ROBINS-I tool was moderate (κ =0.54, 95% CI = 0.48–
0.61), with disagreements being primarily on the subject-
ive severity of bias rather than the presence or absence
of bias. Forty-five studies presented with a moderate
overall risk of bias, seven presented with a serious risk
of bias, and three presented with a low risk of bias. The
most common sources of risk for bias was lack of blind-
ing, or reporting of blinding, of the outcome assessors,
as well as risk of bias in participant selection. No studies
were excluded based on quality assessment. Results of
the quality assessment are included in Additional file 1:
Appendix 2.

Descriptive analyses
Forty-seven out of 55 studies observed a significant in-
crease in compositional MRI values in one or more re-
gions of interest in the at-risk group compared to the
healthy control group. Specifically, 31 of 38 studies
assessing T2 relaxation time reported significant length-
ening in the at-risk group, and 21 of 24 studies assessing
T1ρ relaxation time reported significant lengthening in
the at-risk group.

Meta-analyses
We were able to pool data for T2 and/or T1ρ relaxation
time for cartilage ROIs in the MF and LF, MT and LT, P,
and TrF cartilage. Forest plots, including individual and
pooled SMDs are presented in Figs. 2, 3, and 4.
At-risk knees had significantly prolonged T2 relaxation

times for all compartments, small-to-moderate effect
sizes (SMD = 0.33–0.74; p < 0.001; Figs. 2, 3, and 4).
At-risk knees had significantly prolonged T1ρ relaxation
times for the MF and LF with small effect sizes (SMD =
0.35–0.40; p < 0.001; Figs. 2a, 3a). There were no signifi-
cant differences in T1ρ relaxation between groups for
the MT, LT, P, or TrF compartments (SMD = 0.04–0.19,
p > 0.05–0.76; Figs. 2b, 3b and 4b).

Publication Bias and heterogeneity
Egger’s regression test for publication bias was not sig-
nificant for any meta-analysis assessing pooled SMD of
T2 relaxation time. For T1ρ relaxation time, meta-ana-
lyses of the MF and LT compartments showed significant
evidence of publication bias (p < 0.01). After using Duval
& Tweedie’s trim and fill method [41] to correct for
publication bias, T1ρ relaxation time of the MF was not
significantly different in participants at risk for knee OA
(SMD = 0.16[95% CI:-0.07;0.40]; p = 0.17). After adjust-
ment for publication bias, T1ρ relaxation time of the LT
remained non-significant (SMD = 0.17[95%
CI:-0.38;0.71]; p = 0.54).
For meta-analyses assessing T2 relaxation time, hetero-

geneity was significant for all analyzed compartments (I2 =
77–87%; p < 0.01) except for the TrF compartment (I2 =
31%; p = 0.19). Four studies consistently contributed to the
heterogeneity of T2 relaxation SMD, including two studies
fitting in the cartilage injury subgroup. Removal of these
studies resulted in non-significant heterogeneity in the MF
and P compartments (I2 = 19–23%; p > 0.2); however, het-
erogeneity remained high after removal of outliers in the
MTand LF compartments (I2 = 66–70%, p > 0.01). After re-
moval of outliers, T2 relaxation time remained significantly
prolonged for those at risk for knee OA. For meta-analyses
assessing T1ρ relaxation time, heterogeneity was significant
for the MF and LT compartments (I2 = 44–87%; p < 0.01),
and non-significant for all other compartments (I2 = 0–
28%; p = 0.15–0.94). The trim & fill method [41] is limited

Fig. 1 PRISMA flowchart quantifying studies accepted and rejected
with reasons at different phases of review
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Table 1 Description of studies included in the systematic review

Authors Participants n
(nmale)

Age Scanner Coil T1ρ Sequence
(resolution)

TSL (ms)/SL
Frequency
(Hz)

T2 Sequence
(resolution)

TR/TE

Amano et al.
(2016)c

Control 19
(13)

31
±5

3T GE Invivo 8-Ch Tx/Rx Sag 3D MAPSS
(0.3×0.3×1.5)

0, 10, 40,
80/500

Sag 3D MAPSS
(0.3×0.3×1.5)

4000/0, 13, 26, 51

ACL injured 51
(29)

29
±9

van der
Heijden et al.
(2016)c

Control 70
(29)

23
±6

3T GE Invivo 8-Ch Tx/Rx 3D FSE
(0.5×0.8×3.0)
[3 slices/SR]

1, 16, 32,
64, 125/500

3D FSE
(0.5×0.8×3.0)
[3 slices/SR]

1263/3, 13, 27, 40, 68

PFP 64
(35)

23
±7

Apprich et al.
(2010)bc

ICRS Grade
0

14 (N/
A)

37
±8

3T
Siemens

8-Ch Knee Array -- -- Ax 2D MESE
(0.4×0.4×3.0)

1200/14, 28, 41, 55,
69, 83

ICRS Grade
1

5 (N/
A)

37
±8

Apprich et al.
(2012)bc

ICRS Grade
0

11 (N/
A)

30
±9

3T
Siemens

8-Ch Knee Array -- -- Ax 2D MESE
(0.2×0.2×2.0)

1200/14, 28, 41, 55,
69, 83

ICRS Grade
1

10 (N/
A)

30
±9

Bae et al.
(2015)bc

Uninjured
Knee

10 (7) 34
±8

3T
Siemens

Siemens 8-Ch Tx/Rx -- -- 2D ME-FSE
(0.5×0.5×3.0)
[3 slices/SR]

1700/11, 21, 32, 42,
53, 64, 74, 85, 95, 106

ACLR Knee 10 (7) 34
±8

Baum et al.
(2012)ac

OAI
Healthy

42
(21)

50
±3

3T
Siemens

Siemens 15-Ch Tx/Rx -- -- Sag 2D MESE
(0.3×0.4×3.0)

2700/10, 20, 30, 40,
50, 60, 70

OAI
Incidence

42
(21)

50
±3

Baum et al.
(2013)ac

OAI
Healthy

36
(11)

50
±3

3T
Siemens

Siemens 15-Ch Tx/Rx -- -- Sag 2D MESE
(0.3×0.4×3.0)

2700/10, 20, 30, 40,
50, 60, 70

OAI
Incidence

78
(33)

51
±3

Baum et al.
(2012)ac

OAI
Healthy

41
(15)

51
±3

3T
Siemens

Siemens 15-Ch Tx/Rx -- -- Sag 2D MESE
(0.3×0.4×3.0)

2700/10, 20, 30, 40,
50, 60, 70

OAI
Incidence

101
(50)

51
±3

Möstrom et al.
(2015)c

Healthy
Control

16 (9) 22
±2

1.5T
Philips

N/R -- -- Sag 2D MESE
(0.5×0.5×3.0)

2000/9, 18, 27, 36,
45, 54, 63, 72

Patellar
Dislocation

16 (9) 22
±2

Bining et al.
(2009)c

Healthy
Control

60 (N/
A)

38
±14

1.5T GE Signa HD Tx/Rx -- -- Sag 2D MESE
(0.6×0.6×4.0)

1000/8, 16, 24, 32,
40, 48, 56, 64

Cartilage
Lesions

24 (N/
A)

45
±17

Bolbos et al.
(2008)c

Healthy
Control

15
(11)

30
±9

3T GE Tx/Rx Quadrature Knee Sag 3D SPGR
(0.5×0.7×3.0)

0, 10, 40,
80/500

-- --

ACL
Rupture

16
(11)

33
±6

Farrokhi et al.
(2011)bc

Healthy
Control

10 (0) 27
±4

3T GE GE 8-Ch Knee -- -- Sag 2D MESE
(0.4×0.8×4.0)
[3 slices/SR]

1800/20, 40, 60, 80

PFP 10 (0) 28
±4

Gheno et al.
(2016)c

Healthy
Control

27
(22)

28
±4

3T
Philips

Invivo 8-Ch Tx/Rx -- -- Sag 2D MESE
(0.3×0.3×3.0)

3100/15, 30, 45, 60,
75, 90

ACLR 27
(22)

29
±5
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Table 1 Description of studies included in the systematic review (Continued)

Authors Participants n
(nmale)

Age Scanner Coil T1ρ Sequence
(resolution)

TSL (ms)/SL
Frequency
(Hz)

T2 Sequence
(resolution)

TR/TE

Van Ginckel
et al. (2013)

Healthy
Control

15 (8) 27
±3

3T
Siemens

8-Ch Knee -- -- Sag 2D MESE
(0.4×0.4×3.0)

1000/14 28, 41,
55, 69

ACLR 15 (8) 27
±1

Gupta et al.
(2014)c

Healthy
Control

10 (8) 35
±6

3T GE Tx/Rx Quadrature Knee Sag 3D SPGR
(0.5×1.1×4.0)
[3 slices/SR]

0, 10, 40,
80/500

-- --

ACL Injury 10 (5) 39
±6

Haughom
et al. (2012)c

Healthy
Control

11 (4) 33
±9

3T GE 8-Ch Tx/Rx Sag 3D SPGR
(0.3×0.6×1.5)

0, 10, 40,
80/500

-- --

ACLR 11 (4) 33
±9

Hovis et al.
(2011)ac

OAI
Healthy

33 (8) 50
±3

3T
Siemens

N/R -- -- Sag 2D MESE
(0.3×0.4×3.0)

2700/10, 20, 30, 40,
50, 60, 70

OAI
Incidence

128
(57)

51
±3

Joseph et al.
(2011)ac

OAI
Healthy

53
(17)

50
±3

3T
Siemens

N/R -- -- Sag 2D MESE
(0.3×0.4×3.0)

2700/10, 20, 30, 40,
50, 60, 70

OAI
Incidence

93
(42)

51
±3

Kai et al.
(2011) c

Healthy
Control

143
(72)

40
±13

1.5T
Siemens

Signa HD 8-Ch Tx/Rx -- -- Sag 2D MESE
(0.6×0.6×4.0)

1000/8, 16, 24, 32,
40, 48, 56, 64

Meniscal
Lesions

57
(27)

41
±13

Kang et al.
(2016)c

Healthy
Control

53
(15)

16
±2

1.5T GE N/R -- -- Sag 2D MESE
(0.5×0.9×4.0)

1500/9, 18, 27, 36, 45,
54, 63, 72, 81, 90, 99

PF
Instability

53
(15)

16
±2

Lansdown
et al. (2015)bc

Healthy
Control

10 (4) 31
±5

3T GE Invivo 8-Ch Tx/Rx Sag 3D MAPSS
(0.6×0.6×3.0)

0, 10, 40,
80/500

-- --

ACLR 20 (8) 32
±8

Lau et al.
(2016)c

Healthy
Control

6 (3) 29 3T GE Invivo 8-Ch Tx/Rx 2D FSE
(0.3×0.6×1.5)

0, 10, 40,
80/500

-- --

PFP 10 (2) 32

Liebl et al.
(2015)a

OAI
Healthy

80
(30)

58
±8

3T
Siemens

USA Instruments Tx/Rx -- -- Sag 2D MESE
(0.3×0.4×3.0)

2700/10, 20, 30, 40,
50, 60, 70

OAI
Incidence

50
(22)

60
±8

H. Li et al.
(2013)c

Healthy
Control

15
(15)

27
±5

3T
Siemens

N/R -- -- Sag 2D MESE
(0.4×0.4×3.0)
[5 slices/SR]

1523/14, 28, 41, 55,
69

ACLR 30
(30)

29
±5

X. Li et al.
(2011)ac

Healthy
Control

10 (7) 34 3T GE Quadrature Tx/Rx Sag 3D SPGR
(0.5×1.1×2.5)

20, 40. 60,
80/500

Sag 2D MESE
(0.5×1.1×2.5)

2000/7, 12, 28, 60

ACL Injured 12 (7) 34

Matsubara
et al. (2015)c

Healthy
Control

19
(19)

39
±7

3T
Philips

8-Ch Tx/Rx Sag 2D FFE
(0.4×0.4×3.0)
[3 slices/SR]

1, 20, 40,
60, 80/500

-- --

Meniscal
Tear

22
(15)

57
±14
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Table 1 Description of studies included in the systematic review (Continued)

Authors Participants n
(nmale)

Age Scanner Coil T1ρ Sequence
(resolution)

TSL (ms)/SL
Frequency
(Hz)

T2 Sequence
(resolution)

TR/TE

Mosher et al.
(2004)

18-30 y.o.
Healthy

8 (0) 25
±1

3T
Bruker

Doty Scientific Litz -- -- Sag 2D MESE
(0.5×0.5×3.0)

1500/9, 18, 27, 36, 45,
54, 63, 72, 81, 90,
99, 108

66-86 y.o.
Healthy

7 (0) 75
±7

Okazaki et al.
(2015)c

Healthy
Control

6 (N/
A)

32
±2

3T
Philips

8-Ch Tx/Rx Sag 2D SPGR
(0.4×0.4×3.0)
[4 slices/SR]

1, 20, 40,
60, 80/500

-- --

PCL
Deficient

6 (N/
A)

17
±6

Osaki et al.
(2015)c

Healthy
Control

14
(14)

37
±6

3T
Philips

8-Ch Tx/Rx Sag 2D SPGR
(0.4×0.4×3.0)
[3 slices/SR]

1, 20, 40,
60, 80/500

-- --

ACL Injured 49
(30)

25
±9

Palmieri-Smith
et al. (2016)

Healthy
Control

11 (5) 20
±5

3T
Philips

N/R -- -- Sag 2D MESE
(0.5×0.5×2.0)

1000/8, 16, 24, 32, 40,
48, 56, 64

ACL Injured 11 (5) 19
±6

Pedoia
et al. (2015)c

Healthy
Control

15 (N/
A)

32
±5

3T GE Invivo 8-Ch Tx/Rx Sag 3D MAPSS
(0.5×1.1×4.0)

0, 10, 40,
80/500

-- --

ACL Injured 40 (N/
A)

30
±8

Pedoia
et al. (2016)c

Healthy
Control

10 (5) 32
±4

3T GE Invivo 8-Ch Tx/Rx Sag 3D MAPSS
(0.5×1.1×4.0)

0, 10, 40,
80/500

-- --

ACL Injured 52
(21)

28
±12

Pedoia et al.
(2017)c

Healthy
Control

15
(10)

31
±5

3T GE Invivo 8-Ch Tx/Rx Sag 3D MAPSS
(0.5×1.1×4.0)

0, 10, 40,
80/500

Sag 3D MAPSS
(0.5×1.1×4.0)

4000/0, 14, 27, 55

ACL Injured 40
(25)

30
±8

Rehnitz
et al. (2014)c

Healthy
Control

10 (N/
A)

25 3T
Siemens

Siemens 15-Ch Tx/Rx -- -- Sag 2D MESE
(0.4×0.4×3.0)
[3 slices/SR]

1940/12, 24, 35, 47,
59, 71, 83, 94, 106,
118, 130, 142, 153

Cartilage
Lesions

40 (N/
A)

47

Russell et al.
(2017)c

Healthy
Control

15 (6) 57
±9

3T GE Invivo 8-Ch Tx/Rx Sag 2D SPGR
(0.5×1.1×4.0)

0, 2, 4, 6,
8, 12, 20,
40, 80/500

Sag 2D MESE
(0.5×1.1×4.0)

4000/0, 2, 4, 7, 15,
29, 44, 58

Cartilage
Lesions

15 (6) 56
±8

Sauerschnig
et al. (2014)c

Neutral 12 (4) 25
±2

1.5T
Siemens

Medical Advances 8-Ch -- -- Sag 2D MESE
(0.4×0.5×1.0)

1690/10, 20, 30,
40, 50, 60

Varus
Alignment

12
(10)

26
±1

ACLR 40
(26)

35
±8

Snoj et al.
(2016)bc

Healthy
Controls

20
(11)

33
±7

3T
Siemens

Invivo 8-Ch Tx/Rx -- -- Sag 2D MESE
(0.4×0.4×3.0)
[2 slices/SR]

1000/14, 28, 41, 55,
69, 83

ACLR 40
(26)

35
±8

Subhawong
et al. (2014)c

Healthy
Control

28
(17)

31
±10

3T
Siemens

N/R -- -- Sag 2D MESE
(N/A) [1 slice/SR]

1650/13, 26, 39, 52,
65, 77

PFP 22 (8) 34
±13
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Table 1 Description of studies included in the systematic review (Continued)

Authors Participants n
(nmale)

Age Scanner Coil T1ρ Sequence
(resolution)

TSL (ms)/SL
Frequency
(Hz)

T2 Sequence
(resolution)

TR/TE

Su et al.
(2013)c

Healthy
Control

16 (8) 33 3T GE Clinical MR Solutions
Tx/Rx Quadrature

Cor 3D SPGR
(0.5×0.7×4.0)

0, 10, 40,
80/500

Sag 3D SPGR
(0.5×0.7×4.0)

2000/4, 15, 25, 46

ACL Injured 15 (7) 35

Su et al.
(2016)c

Healthy
Control

54
(31)

30
±8

3T GE Clinical MR Solutions
Tx/Rx Quadrature

Cor 3D SPGR
(0.5×0.7×4.0)

0, 10, 40,
80/500

Sag 3D SPGR
(0.5×0.7×4.0)

2000/4, 15, 25, 46

ACL Injured 54
31(31)

30
±8

Theologis
et al. (2014)bc

Healthy
Control

18 (8) 38
±8

3T GE Clinical MR Solutions
Tx/Rx Quadrature

Sag 3D SPGR
(0.5×0.7×4.0)

0, 10, 40,
80/500

-- --

ACLR 18 (8) 38
±8

Thuiller et al.
(2013)c

Healthy
Control

10 (4) 31
±3

3T GE Invivo 8-Ch Tx/Rx 2D FSE
(0.3×0.6×1.5)

0, 10, 40,
80/500

-- --

PFP 20
(10)

31
±5

Wirth et al.
(2016)ac

Healthy
Control

89
(36)

55
±8

3T
Siemens

Siemens 15-Ch Tx/Rx -- -- Sag 2D MESE
(0.3×0.3×3.0)

2700/10, 20, 30, 40,
50, 60, 70

Risk for OA 28
(14)

61
±9

Witschey
et al. (2010)

Healthy
Controls

9 (2) N/R 1.5T
Siemens

Invivo 8-Ch Tx/Rx 3D GRE
(0.5×0.6×0.5)

-- -- --

Cartilage
Lesions

6 (3) N/R

Xu et al.
(2011)

Healthy
Controls

30
(18)

25 3T
Philips

SENSE 8-Ch -- -- Sag 2D MESE
(0.5×0.3×3.0)

2400/15, 30, 45, 60,
75, 90

Cartilage
Injury

42
(25)

37

Zaid et al.
(2015)bc

Healthy
Controls

25
(12)

28
±7

3T GE Invivo 8-Ch Tx/Rx Sag 3D SPGR
(0.5×1.1×4.0)

-- -- --

ACLR 25
(12)

28
±7

Kim et al.
(2018)bc

Healthy
Control

10 (7) 34
±8

3T
Siemens

Siemens 8-Ch -- -- Sag 2D MESE
(0.5×0.5×3.0)
[2 slices/SR]

1700/11, 21, 32, 42,
53, 64, 72, 85,
95, 106

ACLR 10 (7) 34
±8

Kogan et al.
(2018)c

Healthy
Control

15
(10)

33
±11

3T GE NeoCoil 16-Ch Tx/Rx
Flex

-- -- 3D DESS
(0.5×0.5×1.5)

24.6/5.8, 43.4

ACL Injured 15
(10)

33
±11

Mostrom
et al. (2017)c

Healthy
Control

17 (5) 25
±3

1.5T
Philips

N/R -- -- Sag 2D MESE
(0.5×0.5×3.0)

2000/9, 18, 27, 36,
45, 54, 63, 72

PF
Instability

17 (5) 25
±3

Pfeiffer et al.
(2017)abc

Healthy
Control

21
(11)

24
±3

3T
Siemens

Siemens XR 80/200
Gradient Coil

3D FLASH
(1.8×0.9×3.0)

0, 10, 20,
30, 40/500

-- --

ACLR 21
(11)

24
±3

Pietrosimone
et al. (2017)bc

Healthy
Control

18 (8) 22
±4

3T
Siemens

Siemens 4-Ch Flex Coil 3D FLASH
(0.6×1.3×3.0)

0, 10, 20,
30, 40/500

-- --

ACLR 18 (8) 22
±4
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in its ability to identify publication bias in heterogeneous
datasets where no true bias exists [95]. Thus there may be
no significant publication bias for the heterogeneous SMD’s
of T1ρ in the MF and LTcompartments.

Sensitivity analyses
We performed two sensitivity analyses. The first analysis
excluded all but one study (6 articles excluded) using
OAI data to ensure no subjects in the meta-analyses
were used more than once. Effect sizes remained moder-
ate and significant in all compartments (SMD = 0.38–
0.73; p < 0.02). The second analysis excluded all studies
which used within-patient comparisons (healthy knee
versus at-risk knee). Following exclusion of articles
(6 articles for T2, 6 for T1ρ), effect sizes remained
moderate-to-large for T2 (all compartments: SMD =
0.42–0.83; p < 0.1), and remained moderate for some
T1ρ compartments (MF, MT, LF: SMD = 0.27–0.37;
p < 0.02) and remained small and non-significant for
others (LT, P, TrF: SMD = 0.13–0.14; p > 0.29. De-
tailed results of sensitivity analyses can be found in
Additional file 1: Appendix 3.

Subgroup analyses
We performed three subgroup analyses to determine re-
spective effect sizes for patients with ACL injury, risk for
patellofemoral OA, and articular cartilage lesions. Re-
sults of the subgroup analyses suggested that SMDs con-
trols were small-to-moderate for the ACL-injury
subgroup compared to controls (14 articles for T2: SMD

= 0.13–0.56; p = 0.002–0.27. 14 articles for T1ρ: SMD
= -0.11–0.30; p = 0.001–0.8). We obtained similar
small-to-moderate effect sizes for the patellofemoral OA
risk subgroup (8 articles for T2: SMD = 0.06–0.20; p =
0.004–0.78. 3 articles for T1ρ: SMD = -0.13–0.28; p =
0.06–0.89). These effect sizes were generally smaller
compared to the remainder of the sample in the primary
analysis. The articular cartilage injury subgroup demon-
strated large effect sizes (4 articles for T2: SMD = 1.29–
2.88; p = 0.001–0.38) which were larger in comparison to
the remainder of the sample in the primary analysis. De-
tailed results of subgroups analyses can be found in
Additional file 1: Appendix 4.

Discussion
The present pooled within-study effect sizes that com-
bine data from 47 studies involving 3661 participants
suggest T2 and T1ρ relaxation times distinguish between
healthy participants and participants at risk for knee
OA. The present results are consistent with the only
other published systematic review we are aware of [23],
yet extends its findings by focusing on persons at-risk
for but without radiographic knee OA, and by providing
a thorough summary of the variable T2 and T1ρ collec-
tion, processing, and analysis methods. Strengths of the
present study include adherence to well-established
guidelines for conducting systematic reviews and
meta-analyses [35]. These include multiple reviewers
reaching consensus at each step of the literature search,

Table 1 Description of studies included in the systematic review (Continued)

Authors Participants n
(nmale)

Age Scanner Coil T1ρ Sequence
(resolution)

TSL (ms)/SL
Frequency
(Hz)

T2 Sequence
(resolution)

TR/TE

Tao et al.
(2018)c

Healthy
Control

23 (7) 29
±8

3T
Siemens

Siemens 8-Ch Tx/Rx -- -- Sag 2D MESE
(0.4×0.4×3.0)

1523/13.8, 27.6, 41.4,
55.2, 69.0

ACL
Rupture

23 (5) 32
±10

Teng et al.
(2017)c

Healthy
Control

12 (8) 32
±6

3T GE Invivo 8-Ch Tx/Rx Sag 3D MAPSS
(0.5×1.1×4.0)

0, 10, 40,
80/500

Sag 3D MAPSS
(0.5×1.1×4.0)

0, 14, 27, 55

ACL
Rupture

33
(20)

31
±9

Wang et al.
(2018)c

Healthy
Control

9 (4) 26
±5

3T
Siemens

Siemens 8-Ch -- -- Sag 2D MESE
(0.4×0.4×3.0)
[3/5/10 slices/SR]

1200/14, 28, 41, 55, 69

ACLR 28
(17)

30
±6

Collins et al.
(2018)b

Normal BMI 8 (5) 30 3T
Siemens

Invivo 8-Ch Tx/Rx Sag 3D FISP
(1.1×0.5×3.0)

3500/5, 10,
40, 80/500

-- --

Obese BMI 7 (3) 32

ms milliseconds, SL spin lock, Hz Hertz, TR Repetition time, TE echo time, ACL anterior cruciate ligament, ACLR ACL reconstruction, GE General Electric, MAPSS
magnetization-prepared spoiled gradient echo, SR subregion, PF patellofemoral, PFP patellofemoral pain, FFE fast field echo, FSE fast spin echo, ICRS International
Cartilage Rating Scale, Ch channel, Sag sagittal, Cor coronal, Ax axial, MESE multi-echo spin echo, OAI Osteoarthritis Initiative, Tx transmit, Rx receive, N/R not
reported, SPGR spoiled gradient recalled echo, FISP fast imaging with steady state precession
amulticenter study
buse of pre-scan unloading protocol
cindicates post-processing methods that could be used in any dataset
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Fig. 2 (See legend on next page.)

Atkinson et al. BMC Musculoskeletal Disorders          (2019) 20:182 Page 10 of 18



study selection and data extraction; assessment of study
quality; assessment and adjustment for publication bias;
and pre-planned meta-analyses including sensitivity
analyses based on a priori hypotheses in the event of
substantial heterogeneity. Limitations of the present
meta-analyses may include pooling participants at
risk, as there are likely several different phenotypes
for the development of OA [90]. Our subgroup ana-
lyses suggest that T2 and T1ρ values of articular car-
tilage are slightly different across participants with
various risk factors, and future research should ex-
plore those differences further. A common methodo-
logical limitation in the studies included in this
review is the lack of blinding and/or reporting of
blinding procedures. Other limitations include those
inherent to cross-sectional versus prospective designs
that measure change in patient status over time.
Importantly, there was considerable variability between

MRI methods, including scanners, coils, software, scan-
ning protocols, pulse sequences, and post-processing,
which can all influence T2 or T1ρ relaxation. For ex-
ample, knee articular cartilage T2 relaxation time is in-
versely proportional to magnetic field strength [96], and
can differ significantly when using different brands of
scanners of the same advertised field strength [97]. In
this review alone, four brands of scanners, and two mag-
net strengths were identified across studies (Table 1). T2
relaxation time is significantly prolonged when using a
phased-array knee coil compared to a quadrature trans-
mit receive knee coil [98]. Sixteen different knee coils
were used in studies in this review (Table 1), with a wide
variety of phased-array and quadrature coils. Choice of
pulse sequence can also significantly affect relaxation
time, with a difference of as much as 10 ms observed
across commonly used sequences [99, 100]. Knowledge
of the context and collection methods is important when
comparing compositional MRI values across the litera-
ture, as a 1.8 ms increase in T2 relaxation time is repre-
sentative of a 1% increase in free water content when
comparing within the same participant [101, 102].
Seventeen different pulse sequences were used to collect
the data presented in this review (Table 1). Pre-scan
unloading protocol is an important consideration that
varies across studies, as T2 relaxation time increases
with unloading time due to water reuptake into the

cartilage [93]. Post-processing and segmentation can also
affect T2 and T1ρ values, such as how the assessor de-
fines the ROI, ROI variance between studies, number of
slices included in the ROI [103], proximity of borders to
other tissues, and partial volume effects [104]. Contin-
ued use of proposed standardized nomenclature and
ROI definition will improve comparability of ROI’s
across studies and sites [105]. Taken together, these find-
ings identify substantial differences in methods across
testing sites, suggest considerable caution should be
adopted when making comparisons across studies, and
highlight the limitation in the current state of T2 or T1ρ
relaxation as imaging biomarkers.
These findings suggest future use of compositional

MRI measures as potential biomarkers would benefit
considerably from a greater understanding of the ef-
fects of different testing methods [106] and greater
standardization of data collection and analysis mea-
sures [34]. The importance of greater standardization
across testing sites is underscored by the variability in
results of studies evaluating the test-retest reliability
of compositional MRI measures, even when the exact
same methods are used [28]. For example, studies
evaluating test-retest reliability using the same testing
conditions report intra-class correlation coefficients
(ICC) ranging from 0 to 0.98 [107, 108], and coefficients
of variation (CV) ranging from 1.7 to 22.2 [65, 96–98,
106, 109–116]. Fewer studies evaluating test-retest reli-
ability using similar methods but different scanner manu-
facturers suggest ICCs ranging from 0.2 to 0.93 [107], and
CVs ranging from 2.3 to 6.3 [97, 106]. Arguably, the most
important consideration regarding improved reliability of
compositional MRI as an imaging biomarker is compar-
ability of values across scanners and centers. The present
findings therefore support current international efforts
from researchers and vendors to improve sequences, cali-
bration, and standardization [17], such as the Radiological
Society of North America Quantitative Imaging Bio-
marker Alliance [117], and multicenter studies such as the
OAI [118]. In addition to these efforts, another approach
may be the use of calibration phantoms [119] to develop
correction functions to account for varying hardware and
software used by different centers [17].
By pooling within-study comparisons, the present pri-

mary analysis indicates that T2 and T1ρ relaxation times

(See figure on previous page.)
Fig. 2 a Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of medial femoral articular
cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence
interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis
Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla. b Forest plots illustrating individual and pooled SMD for differences in T1rho and T2
relaxation time of medial tibial articular cartilage between healthy controls and participants at risk for knee OA. SMD = standardized mean difference,
95% CI = 95% confidence interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society,
OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla
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Fig. 4 a Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of patellar articular cartilage between
healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate
ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla. b Forest plots
illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of trochlear articular cartilage between healthy controls and
participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL = anterior cruciate ligament,
ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA = osteoarthritis, GE = General Electric, T = Tesla

(See figure on previous page.)
Fig. 3 a Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of lateral femoral articular cartilage
between healthy controls and participants at risk for knee OA. SMD = standardized mean difference, 95% CI = 95% confidence interval, ACL =
anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative, OA=
osteoarthritis, GE = General Electric, T = Tesla. b Forest plots illustrating individual and pooled SMD for differences in T1rho and T2 relaxation time of lateral
tibial articular cartilage between healthy controls and participants at risk for knee OA. SMD= standardized mean difference, 95% CI = 95% confidence
interval, ACL = anterior cruciate ligament, PCL = posterior cruciate ligament, ICRS=International Cartilage Repair Society, OAI=Osteoarthritis Initiative,
OA = osteoarthritis, GE = General Electric, T = Tesla
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in articular cartilage are significantly prolonged in knees
at risk for developing OA, especially in the more com-
monly affected compartments. T2 relaxation time was
significantly prolonged in participants at risk for knee
OA in all analyzed compartments with effect sizes ran-
ging from small-to-moderate (SMD = 0.33–0.74; p <
0.001), suggesting T2 is sensitive to early changes in col-
lagen orientation and structural integrity [120], as well
as water content in these at-risk participants [13, 15, 16].
These findings add support to the use of T2 relaxation
time for early detection of OA, before substantial radio-
graphic changes are evident, and support further efforts
towards compositional MRI biomarker validation and
qualification.
Interestingly, effect sizes for T1ρ relaxation time were

small, and lower for each analyzed compartment in com-
parison to effect sizes for T2 relaxation time, (SMD =
0.04–0.40; p = 0.001–0.76), and only the MF and LF
compartments demonstrated significantly prolonged
T1ρ relaxation time compared to healthy controls (SMD
= 0.35–0.40; p < 0.001). However, there were fewer stud-
ies that included T1ρ as an outcome measure with gen-
erally smaller sample sizes. More research comparing T2
and T1ρ relaxation times for participants at various
stages of knee OA is required.
In all knee compartments, there was significant het-

erogeneity associated with the overall pooled effect sizes
for T2 relaxation time (Figs. 2, 3, and 4). Sensitivity ana-
lysis suggested that the high effect sizes of the cartilage
injury subgroups are responsible for this heterogeneity
(SMD = 1.29–2.88; p = 0.001–0.38), and after removal
from the analyses, heterogeneity was no longer signifi-
cant in the MF and P compartments (I2 = 19–23%; p >
0.2) but remained moderate in the MT and LF compart-
ments (I2 = 66–70, p > 0.01). There were no articles
assessing T1ρ relaxation time of participants with cartil-
age injury, which may explain the lack of heterogeneity
in the T1ρ meta-analyses. The large effect sizes observed
in these studies including patients with cartilage injury
may be due to the different mechanopathology as a re-
sult of focal defects [18] in comparison to other partici-
pants in this systematic review. Alternatively, we must
acknowledge the substantial difference in age between
this at-risk subgroup and controls. Publication bias was
also significant in three compartments for T1ρ relax-
ation time, which may be due to the relative novelty of
such measures in comparison to T2 relaxation time.
There was no publication bias observed in any
meta-analyses assessing T2 relaxation time.

Conclusions
Based on these results, T2 and T1ρ relaxometry of ar-
ticular cartilage show substantial promise in their ability
to identity pathological cartilage in participants at risk

for knee OA. The present results are consistent with
cross-sectional studies reporting known risk factors,
such as increased age [89], body mass [42], and knee
malalignment [111], and their association with signifi-
cantly prolonged articular cartilage T2 relaxation times.
The present study also highlights the wide variety of
methods currently used to collect, process, and analyze T2
and T1ρ mapping. Overall, the present results emphasize
both the potential, as well as the need for greater
standardization of methods across sites for T2 and T1ρ
data collection and processing procedures to make greater
gains toward potential biomarker validation.
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