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Distance‑based clustering using 
QUBO formulations
Nasa Matsumoto1, Yohei Hamakawa2, Kosuke Tatsumura2 & Kazue Kudo1,3*

In computer science, clustering is a technique for grouping data. Ising machines can solve distance-
based clustering problems described by quadratic unconstrained binary optimization (QUBO) 
formulations. A typical simple method using an Ising machine makes each cluster size equal and 
is not suitable for clustering unevenly distributed data. We propose a new clustering method that 
provides better performance than the simple method, especially for unevenly distributed data. The 
proposed method is a hybrid algorithm including an iterative process that comprises solving a discrete 
optimization problem with an Ising machine and calculating parameters with a general-purpose 
computer. To minimize the communication overhead between the Ising machine and the general-
purpose computer, we employed a low-latency Ising machine implementing the simulated bifurcation 
algorithm with a field-programmable gate array attached to a local server. The proposed method 
results in clustering 200 unevenly distributed data points with a clustering score 18% higher than 
that of the simple method. The discrete optimization with 2000 variables is performed 100 times per 
iteration, and the overhead time is reduced to approximately 20% of the total execution time. These 
results suggest that hybrid algorithms using Ising machines can efficiently solve practical optimization 
problems.

Many combinatorial optimization problems can be described by the Ising model or quadratic unconstrained 
binary optimization (QUBO) formulations1. Ising machines, which are special-purpose computers for solving 
combinatorial optimization problems, have attracted significant interest in recent years. Inspired by the first 
quantum annealer2, several devices have been developed, such as digital processors based on simulated annealing 
(SA)3–9, those on simulated bifurcation (SB)10–12, coherent Ising machines implemented with pulsed lasers13–18, 
and other types of optical Ising machines19–21. Most Ising machines accept an objective function in the form of a 
Hamiltonian formulated by the Ising model or QUBO formulation. Ising machines return binary solutions that 
minimize the objective function, although they do not always return optimal solutions because of their heuristic 
nature. Recent research on the application of Ising machines has shifted from simple combinatorial optimization 
to hybrid methods using both an Ising machine and a general-purpose computer22–27. Most hybrid methods are 
iterative methods that offload the sampling or combinatorial optimization step to an Ising machine.

Clustering is a technique for grouping data such that the members in each cluster have similar characteristics. 
Although there are various types of clustering, this work focuses on non-hierarchical and distance-based cluster-
ing. Because clustering can be formulated as a combinatorial optimization problem, several algorithms using Ising 
machines have been developed28–36. Clustering methods using a quantum computer and a quantum annealer 
have also been proposed and investigated37,38. A typical simple method using an Ising machine minimizes the 
distances between data points in the same cluster, resulting in cluster sizes that are approximately equal34,35. Let 
us suppose that a small group is away from other large groups. Then, using this method, part of a large group is 
merged into a small group such that the number of members in each group becomes almost equal. This implies 
that this method is not suitable for clustering unevenly distributed data.

In this work, we propose a clustering method using an Ising machine that applies to unevenly distributed data. 
We compare the clustering of two data sets, one uniformly distributed and the other unevenly distributed, using 
the simple method and the proposed method. Employing the average silhouette coefficient, we evaluate cluster-
ing performance. The proposed method provides better clustering results than the simple method, especially for 
unevenly distributed data. The proposed method is a hybrid algorithm that solves discrete optimization problems 
iteratively. The discrete optimization described in a QUBO formulation is performed by an Ising machine, while 
a general-purpose (conventional) computer calculates parameters for the QUBO formulation in each iteration.

The proposed method could be implemented in one of three possible ways: (i) discrete optimization executed 
on a remote Ising machine provided as a cloud service, (ii) discrete optimization undertaken using a local Ising 
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machine, and (iii) all computations undertaken on a local general-purpose computer. The first approach incurs 
a high communication cost with the Ising machine, and so is unsuitable for hybrid algorithms. The second 
implementation option offloads the computation of discrete optimization steps to the accelerator attached to a 
local server. This approach has the benefit of a much lower communication cost with the Ising machine than the 
first approach. In this work, we compare the second and third implementations. The Ising machine used is an 
SB-based machine implemented with a field-programmable gate array (FPGA)12. The low latency of the SB-based 
machine is advantageous for executing the proposed method. Because the method requires the iterative com-
putation of discrete optimization, a low communication cost between an Ising machine and a general-purpose 
computer is essential for high performance.

This work demonstrates that the proposed hybrid method using an Ising machine provides high-quality 
results in clustering problems. The method’s effectiveness suggests a new usage that takes advantage of a low-
latency Ising machine. Moreover, this work will highly motivate developing iterative hybrid algorithms. Although 
hybrid algorithms using an Ising machine and a general-purpose computer take extra time for communication, 
they have many practical applications. The reduction in communication cost enables iterative hybrid algorithms 
to solve practical optimization problems efficiently. The proposed method will also be applicable as a quantum-
classical hybrid algorithm when the communication cost reduces significantly.

Related work
We briefly review some recent works on the clustering method using Ising machines and quantum computers. 
Simple distance-based clustering is a typical example using an Ising machine or a quantum computer. Simple 
clustering methods based on the distance between data points34,35,37 and graph partitioning33 using a quantum 
annealer still attract some interest. Several methods inspired by classical clustering have been proposed and devel-
oped recently. For example, quantum-assisted clustering based on similarities28, K-means29–31 and K-Medoids32 
clustering on a quantum annealer, as well as K-means clustering on a gate-model quantum computer38, have 
been proposed. K-means-like clustering on a digital Ising machine has also been investigated36.

Models and algorithms
We examine two clustering methods. One is the typical simple method in which the Hamiltonian is given as

where dij is the distance between points i and j, N is the number of points, and G is the number of groups. The 
sum 

∑

i<j is taken over all combinations that satisfy 1 ≤ i < j ≤ N . Here, we refer to this method as the simple-
cost method. When point i belongs to group g, xi,g = 1 ; otherwise, xi,g = 0 . The first term of the Hamiltonian 
sums up all the distances between point pairs in each group. The second term of the Hamiltonian requires each 
point to belong to exactly one group, and α is a positive constant. This term gives a penalty when a point belongs 
to more than two groups or does not belong to any group. Because the number of point pairs in each group 
dominates in the Hamiltonian, each group tends to have almost the same number of points.

To resolve the issue, we propose another Hamiltonian described by

where Ng =
∑N

i=1 xi,g is the number of points in group g. The number of nonzero terms in 
∑

i<j dijxi,g xj,g equals 
the number of point pairs in group g, i.e., Ng (Ng − 1)/2 . Therefore, 

∑

i<j dijxi,g xj,g/[Ng (Ng − 1)] is the average 
distance between the point pairs in group g, where a factor of 2 is omitted for simplicity. In other words, the 
first term on the right-hand side of Eq. (2) expresses the sum of the average distances between the point pairs in 
each group. The dominance of the number of point pairs in each group in Eq. (1) is dissolved in Eq. (2). It will 
be experimentally shown later (in Fig. 4) that this formulation works well, especially for unevenly distributed 
data points.

Ising machines cannot directly minimize non-QUBO formulations such as Eq. (2). Instead, we employ a 
hybrid algorithm in which another Hamiltonian described by a QUBO formulation is iteratively minimized. 
We refer to this method as the iterative fractional-cost method.

The iterative fractional-cost method originates from the hybrid parametric method proposed to solve the 
vehicle routing problem24. The hybrid parametric method is an extension of an inexact parametric algorithm to 
solve fractional programming problems39. Instead of minimizing the original fractional objective function, the 
hybrid method iteratively solves the corresponding parametric problem in the discrete-optimization step, using 
a quantum annealer or an Ising machine.

The algorithm of the iterative fractional-cost method is as follows. 

1.	 Set the error parameter δ , the iteration counter n as n = 0 , and parameter � as an initial value �0 = 0.
2.	 Minimize the following Hamiltonian with an Ising machine. 
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 where {xi,g } represents binary variables. Let {x̂i,g } denote an obtained solution.
3.	 If {x̂i,g } is a feasible solution, set � for the next iteration as 

 where N̂g =
∑

i x̂i,g . Otherwise, terminate with no solution.
4.	 If |�n+1 − �n| ≤ δ , terminate with {x̂i,g } as the final solution. Otherwise, return to step 2 with n → n+ 1 

while n+ 1 < nmax . Alternatively, terminate with no solution when n+ 1 = nmax.

If the algorithm successfully terminates, �n+1 is expected to give the minimum cost. Because of the heuristic 
nature of the Ising machine, �n+1 does not always coincide with the global optimal solution. However, it is proved 
that the inexact parametric method converges to a global optimum if the obtained solution at the discrete-
optimization step (step 2) is a good approximation39.

The key point of the iterative fractional-cost method is the use of an Ising machine to minimize Eq. (3), which 
is a QUBO formulation, instead of the fractional-cost Hamiltonian, Eq. (2). In the simulation below, we take the 
error parameter as δ = 10−6 and the maximum iteration number as nmax = 10.

Results
We apply the two methods to two kinds of data sets. One is the set of points distributed uniformly in a square 
region. The other is the set of unevenly distributed points in the same size region. Each set comprises 200 points 
( N = 200 ), and we take the number of groups as G = 10 here, so that there are 2,000 binary variables in total. 
The data sets are provided as Supplementary Information.

Simple‑cost method.  In the simple-cost method, we minimize Eq. (1) using the SA or SB. Figure 1 exhibits 
clustering results, where points with the same color belong to the same group. Each panel shows a result selected 
to demonstrate the best performance of the method. We obtained Fig. 1a,c using SA, and Fig. 1b,d using SB. We 
find almost no difference between Fig. 1a and Fig. 1b, with little difference between Fig. 1c and Fig. 1d. For the 
unevenly distributed data, an apparent cluster is divided into two groups, and some points in apparent clusters 
are classified as other group members.

Solutions provided by SA or SB are not always valid because they sometimes violate the constraint that each 
point should belong to exactly one group. We call the solution satisfying this constraint a feasible solution. Here, 
we perform the simulation 100 times for each data set, using either SA or SB for the given time steps. The ratio of 
feasible solutions among the solutions obtained in the 100 trials is the feasible solution rate shown in Fig. 2. The 
horizontal axis in Fig. 2 represents the number of time steps. The larger the number of steps, the slower the SA 
or SB process. Here, the hyperparameter values are α = 5.5 and α = 6.0 for SA and SB, respectively, for the data 
set with a uniform distribution; α = 5 for SA and SB for that with an uneven distribution. In Fig. 2, the feasible 
solution rate is almost 100%, except for the region where the number of steps is relatively small. However, a low 
feasible solution rate does not always result in an inferior result. By changing the value of α , we obtained similar 
clustering results even though feasible solution rates were 40–80%.

For evaluation of the clustering result, we introduce the silhouette coefficient40. Because the silhouette coeffi-
cient is defined for each data point, we take the average of every point’s silhouette coefficient in a feasible solution. 
The better the clustering result, the higher the average silhouette coefficient. Figure 3 demonstrates how cluster-
ing results depend on the execution time. The box plots show the distribution of average silhouette coefficients 
for feasible solutions. The execution time is the average of the feasible solutions for each number of steps. The 
average silhouette coefficient is about 0.35–0.39 or lower for the uniformly distributed data set [Fig. 3a,b], while 
it is approximately 0.45–0.6 or higher for the unevenly distributed one [Fig. 3c,d]. The difference reflects the 
difference in data distribution. On the other hand, the difference between SA and SB is significant. Although the 
execution time is much shorter for SB than for SA, the average silhouette coefficient for SB is almost equal or 
even higher. Moreover, the variance of the average silhouette coefficient is small for SB in the long-time region.

Iterative fractional‑cost method.  We use only SB to perform discrete optimization in the iterative frac-
tional-cost method. Because the simulation using SA had a longer run time and provided similar or worse 
results than SB in the simple-cost method, we cannot expect SA to provide better results than SB in the iterative 
fractional-cost method. Figure 4 exhibits examples of clustering results in the iterative fractional-cost method. 
Compared with Fig. 1, unevenly distributed data points are well classified.

Figure 5 illustrates the final feasible solution rates. Here, the simulation was run 50 times for each data set. In 
other words, the final feasible solution rate is the ratio of feasible solutions obtained at the end of the algorithm 
among the 50 trials. The number in the legend represents the number of iterations of steps 2–4 in the iterative 
fractional-cost method before the final solution is obtained. In this work, we perform optimization sampling 
100 times at the discrete optimization step (step 2) to obtain several feasible solutions for Eq. (3). The optimal 
solution among them is x̂ , which evaluates �n+1 in Eq. (4). Even if x̂ is feasible at each iteration, this method 
sometimes fails to obtain a final solution within nmax = 10.
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In most cases in Fig. 5, the final feasible solutions are obtained in three iterations. More iterations are required 
to reach a final feasible solution in the small-number-of-step region for the uniformly distributed data, as shown 
in Fig. 5a,c. The simulation for the unevenly distributed data requires more iterations for a large number of steps, 
as shown in Fig. 5b,d. The discrete optimization step works better when the number of steps is large compared 
to when it is small, which can cause overfitting. If the solution is overfitted to a temporal parameter �n in each 
iteration, it may become difficult for the algorithm to converge. However, controlling the hyperparameter α can 
result in the simulation requiring fewer iterations.

Figure 1.   Clustering results for (a,b) uniformly and (c,d) unevenly distributed data. The color of each point 
represents its group. (a,c) were obtained using SA, whereas (b,d) were obtained using SB.

Figure 2.   Feasible solution rates in (a) SA and (b) SB. The horizontal axis is the parameter representing the 
number of time steps: (a) the number of annealing steps, (b) the number of SB time steps. ◦ and × are for the 
data sets with uniform and uneven distributions, respectively.
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Figure 6 exhibits the execution time taken for the discrete optimization in the iterative fractional-cost method. 
Each panel of the figure corresponds to each one of Fig. 5. The execution time depends on the number of itera-
tions, optimization samplings at the discrete optimization step, and SB time steps.

The average silhouette coefficient is almost independent of α and the number of SB time steps in the 
region corresponding to Figs. 5 and 6. For the uniformly distributed data, the average silhouette coefficient is 
0.392–0.394, which is comparable to that of the simple-cost method. However, for the unevenly distributed data, 
the average silhouette coefficient is 0.709–0.716, approximately 18% higher than that of the simple-cost method.

Discussion
In this work, we have compared two clustering methods based on QUBO formulations. One is the simple-cost 
method, and the other is the iterative fractional-cost method. We have applied each method to data sets with 
uniform and uneven distributions. The simulation of the simple-cost method is performed using SA and SB, 
whereas that of the iterative fractional-cost method is performed using only SB.

Clustering results highly depend on data distribution. For an uneven distribution, the iterative fractional-
cost method works better than the simple-cost method. However, the iterative fractional-cost method requires 

Figure 3.   Box plots of the average silhouette coefficient for (a,b) the uniformly distributed data set and (c,d) the 
unevenly distributed one. (a,c) were obtained using SA, whereas (b,d) were obtained using SB. The horizontal 
axis is execution time.

Figure 4.   Clustering results obtained using SB for the (a) uniformly and (b) unevenly distributed data.
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Figure 5.   Final feasible solution rates for (a,c) the uniformly distributed data set and (b,d) the unevenly 
distributed one. The number in the legend is the number of iterations of steps 2–4 in the iterative fractional-cost 
method. The horizontal axis represents the number of SB time steps. The hyperparameters α = 5.5 in (a,b), and 
α = 6.0 in (c,d).

Figure 6.   Box plots of execution time for (a,c) uniformly and (b,d) unevenly distributed data. The horizontal 
axis represents the number of SB time steps. The hyperparameters α = 5.5 in (a,b), and α = 6.0 in (c,d).
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more time to obtain a result because it requires several iterations. If the variation in cluster size is significant, the 
iterative fractional-cost method is a better choice. Otherwise, the simple-cost method is acceptable.

The difference between SA and SB is significant, especially in execution time. The difference in execution time 
arises mainly from the parallelization of an algorithm. In this work, SA is based on the single spin-flip Monte 
Carlo method and is out of parallelization. However, SB is executed through massively parallel processing. The 
parallelization is the key to the acceleration of finding reasonable solutions.

Another reason why SB outperformed SA in execution time is that the accelerator made of an FPGA is 
attached to the local server. Even if a remote Ising machine or a quantum annealer solves QUBO problems faster 
than SA, the communication time between the machine and the local server may cancel the acceleration. The 
results shown above imply that the acceleration by the SB-based machine overcame the communication overhead 
between the accelerator and the general-purpose processor, i.e., CPU, in the local server.

This work paves the way for solving practical optimization problems requiring iterative hybrid algorithms in 
a reasonable time by using an Ising machine. For most present Ising machines, including quantum annealers, 
iterative hybrid algorithms are relatively inefficient, mainly because of communication overheads. However, 
iterative hybrid methods using a high-speed Ising machine with low latency can provide high performance in 
solving practical optimization problems. The present work demonstrates such an example.

Methods
Execution time.  In this section, we define one-shot execution time as the time required to solve a discrete 
optimization problem. The detailed definition differs between SA and SB because different architectures were 
used for each method. For SA, we used the dwave-neal package41, which is an SA software, and measured the 
time from calling the SA sampler to obtaining solutions. When the SA sampler executes SA nreads times per call, 
the one-shot execution time is the measured time divided by nreads . In SB, the one-shot execution time, which 
is measured for each call, includes the FPGA calculation time and the communication time between the CPU 
and FPGA.

The execution time for the simple-cost method (shown in Fig. 3) is the same as the one-shot execution time. 
On the other hand, in the iterative fractional-cost method, the execution time shown in Fig. 6 is defined as the 
sum of the one-shot execution times. As shown in Fig. 7, only the discrete optimization step (step 2) is executed 
in the FPGA. The step is iterated several times, and 100 shots of SB are executed at each iteration. Thus, the 
execution time for the iterative fractional-cost method is several hundred times longer than that for the simple-
cost method.

The overhead time in SB is a minor component of execution time. For example, as shown in Fig. 3b, the execu-
tion time for 2000 SB time steps is approximately 14 ms. The communication time between the CPU and FPGA, 
which is independent of the number of SB time steps, is approximately 3 ms. Thus, on average, the overhead time 
is approximately 20% of the execution time for the problem considered in this work.

Ballistic simulated bifurcation.  The SB algorithm, which is a quantum-inspired algorithm, was proposed 
to accelerate combinatorial optimization10–12. The SB is based on adiabatic evolution in classical nonlinear sys-
tems showing bifurcations. The SB algorithm finds a spin configuration minimizing the Ising model energy 
defined by

where si = ±1 is the ith spin, N is the number of spins, Ji,j is the coupling coefficient between the ith and jth 
spins, and hi is the local field on the ith spin.

SB has several variants, the first of which was adiabatic SB (aSB). The set of equations for aSB is given by

(5)E = −
1

2

N
∑

i,j=1

Ji,jsisj +

N
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(6)
dxi

dt
= a0yi ,

(7)
dyi
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Figure 7.   Schematics of the iterative fractional-cost method using SB. Only the discrete optimization step (step 
2), in which the QUBO Hamiltonian in Eq. (3) is minimized, is executed in the FPGA.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2669  | https://doi.org/10.1038/s41598-022-06559-z

www.nature.com/scientificreports/

where xi and yi are real numbers corresponding to the ith spin, a0 , c0 and η are positive constants, and a(t) is a 
control parameter that increases from zero to a0 . Equations (6) and (7) express the equations of motion of the 
classical particle corresponding to the ith spin: xi and yi represent the position and momentum of the ith par-
ticle, respectively. Classical particles interact in a potential whose shape gradually changes. The sign of xi at the 
end of the time evolution gives si as the solution to the problem described by Eq. (5). Because xi is a continuous 
variable, even though spin si = ±1 is discrete, analog errors arise in the aSB.

The ballistic SB used in this work was developed to suppress analog errors12. Instead of the nonlinear term x3i  
in Eq. (7), perfectly inelastic walls are introduced at xi = ±1 . Using the symplectic Euler method, we numerically 
solve the set of equations of motion for bSB, whose updating rule is as follows12.

where tk is the kth time step, and �t is the time-step width. Namely, tk+1 = tk +�t . Here, we take t0 = 0 . At each 
time after the update of xi , if |xi| > 1 , we replace xi with sgn(xi) = ±1 and set yi = 0.

Parameters.  The hyperparameter α in Eqs. (1) and (3) are tuned such that the feasible solution rate and 
average silhouette coefficient become large. Setting the number of time steps as 10,000 and 2,000 for SA and SB, 
respectively, we changed α from 3 to 7 in 0.5 increments. The feasible solution rate (final feasible solution rate in 
the iterative fractional-cost method) rapidly increases at a specific value of α . We selected one from a few α values 
around the value based on the following criteria: (i) The average values of the average silhouette coefficients are 
higher than those of any other α in the entire time-step region of our experiments. (ii) If the average values are 
similar among the α values, the (final) feasible solution rates are high.

In SA, the parameter controlling the annealing time is the number of sweeps or steps, called num_sweeps 
in the dwave-neal package. In SB, the number of steps nsteps controls the increasing rate of a(t), that is, 
a(tk) = (1− k/nsteps)a0 . In this work, we set c0 = a0/�max , where �max is the maximum eigenvalue of matrix 
Jij , and a0 = η = 1 and �t = 0.5 in Eqs. (8) and (9).

Average silhouette coefficient.  The silhouette coefficient is defined for each data point, and it is higher 
when the point belongs to a well-defined cluster. The silhouette coefficient for point i is defined by

where a(i) is the mean distance between point i and the other points in the same group, and b(i) is the mean 
distance between point i and points in the neighboring group. However, if a point belongs to several groups or 
does not belong to any group, the silhouette coefficient cannot be properly calculated. Therefore, we calculate 
the silhouette coefficient for a feasible solution in which each point belongs to exactly one group and take the 
average over all the points in the feasible solution.
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