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Abstract: A vaccine will likely be one of the key tools for ending the HIV-1/AIDS epidemic by
preventing HIV-1 spread within uninfected populations and achieving a cure for people living
with HIV-1. The currently prevailing view of the vaccine field is to introduce protective antibodies,
nevertheless, a vaccine to be effective may need to harness protective T cells. We postulated
that focusing a T-cell response on the most vulnerable regions of the HIV-1 proteome while
maximizing a perfect match between the vaccine and circulating viruses will control HIV-1 replication.
We currently use a combination of replication-deficient simian (chimpanzee) adenovirus and poxvirus
modified vaccinia virus Ankara to deliver bivalent conserved-mosaic immunogens to human
volunteers. Here, we exploit the mRNA platform by designing tetravalent immunogens designated
as HIVconsvM, and demonstrate that mRNA formulated in lipid nanoparticles induces potent,
broad and polyfunctional T-cell responses in a pre-clinical model. These results support optimization
and further development of this vaccine strategy in experimental medicine trials in humans.
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1. Introduction

HIV-1 vaccine is needed as ever. Given the accumulating data on clinical benefits of HIV-1-positive
individuals with T-cell responses targeting protective epitopes [1–6], selective pressure by T cells on
the virus during acute and chronic HIV-1 infection [7,8], and several additional lines of evidence [9,10],
vaccines to be effective may have to harness protective T-cell responses, if only to complement
Env-induced antibody. To this end, we demonstrated in a series of phase 1 and 2 clinical trials
induction of broadly specific T cells targeting conserved regions of HIV-1. These T cells inhibited
viruses representative of four major clades and provided a signal of a durable virus control after
stopping antiretroviral treatment (ART) in patients treated during primary HIV-1 infection [11–14].
Upgraded second-generation vaccine immunogens collectively called HIVconsvX with optimized
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conserved regions and increased match to global HIV-1 variants by a bivalent mosaic design [5] entered
clinical evaluations in 2019. A strong correlation of high CD4 cell count and low plasma virus load with
CD8+ T cells targeting the six regions of the HIVconsvX immunogen were observed in treatment-naïve
naturally infected (not vaccinated) patients [4,6]. While in human studies, the HIVconsvX vaccines
utilize a heterologous regimen of simian adenovirus prime-modified vaccinia virus Ankara (MVA)
boost [5,15,16], we are relentlessly searching for alternative modalities of delivery to increase options
for vaccine deployment [17,18]. Nascent mRNA technology is currently perhaps the most attractive
novel platform. With a strong safety profile and potent efficacy demonstrated in animal models,
mRNA has the potential to transform the field of human vaccines due to its numerous advantages
including streamlined manufacturing, which in turn provides a possibility of greatly expedited
iterative design optimization in humans [19,20]. In the present work, we evaluate preclinically a
mosaic/epigraph mRNA vaccine delivering the second-generation tetravalent conserved regions of
HIV-1 and demonstrate robust T-cell immunogenicity.

2. Materials and Methods

2.1. mRNA Synthesis and Lipid Nanoparticle Formulation

For each vaccine component, T7 RNA polymerase-mediated transcription was used in vitro to
synthesize the mRNA from a linearized DNA template, which flanked the immunogen open-reading
frames with the 5’ and 3’ untranslated regions and a poly-A tail, as described previously [21].
mRNA was then purified, diluted in citrate buffer to the desired concentration and encapsulated into
lipid nanoparticles (LNP) by ethanol drop nanoprecipitation. At molar ratio of 50:10:38.5:1.5 (ionizable
lipid:DSPC:cholesterol:PEG-lipid), lipids were dissolved in ethanol and combined with a 6.25-mM
sodium acetate buffer (pH 5) containing mRNA at a ratio of 3:1 (aqueous:ethanol). Formulations
were dialyzed against phosphate-buffered saline (pH 7.4) for at least 18 h, concentrated using Amicon
ultracentrifugal filters (EMD Millipore, Temecula, CA, USA), passed through a 0.22-µm filter and stored
at −20 ◦C until use. All formulations underwent quality control for particle size, RNA encapsulation,
and endotoxin. LNP were between 80 and 100 nm in size, with >90% encapsulation of mRNA and
<10 EU/mL of endotoxin.

2.2. Mice, Immunizations and Preparation of Splenocytes

Six-week-old female BALB/cJ mice were purchased from Charles River (Harlow, UK) and housed
at the Functional Genomics Facility, University of Oxford. Groups of 6 mice were immunized
intramuscularly with 3 µg for each vaccine component, delivering between 3 µg for monovalent and
12 µg for tetravalent vaccinations at weeks 0 and 4. Mice were bled at 1 week and culled at 5 weeks post
boost. On the day of sacrifice, spleens were harvested and splenocytes were isolated individually by
pressing organs through a 70 µm sterile nylon-mesh cell strainer (Fisher Scientific, Waltham, MA, USA)
using a 5 mL syringe rubber plunger. Following the removal of red blood cells (RBC) with RBC
Lysing Buffer Hybri-Max (Sigma-Aldrich, Pool, UK), splenocytes were washed and resuspended in
R10 (RPMI 1640 supplemented with 10% fetal calf serum (FCS), penicillin and streptomycin, and
β-mercaptoethanol for ELISPOT and intracellular cytokine staining (ICS) assays. All animal procedures
and care were approved by the local Clinical Medicine Ethical Review Committee, University of Oxford
and conformed strictly to the United Kingdom Home Office Guidelines under the Animals (Scientific
Procedures) Act 1986. Experiments were conducted under project license 30/3387 held by T.H.

2.3. Peptides and Peptide Pools

The seven strongest H-2d class I-restricted epitopes, previously well-defined in the BALB/cJ
mice [17] and their variants present in the vaccine (Table 1), were used for immunological analyses.
All peptides were >90% pure by mass spectrometry (Synpeptide, Shanghai, China) and were dissolved
in DMSO (Sigma-Aldrich, Pool, UK) to yield a stock of 10 mg/mL and were stored at −80 ◦C.
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Table 1. H-2d epitopes and their frequent variants used for response detection.

Peptide Pools Peptides Vaccine Component

P1

VLVGPTPVNI Mosaic 1
VLIGPTPVNI Mosaic 2
VLVGPTPINI Epigraph III
VLVGPTPANI Epigraph IV

P2

AMQMLKDTI Mosaic 1
AMQMLKETI Mosaic 2
AMQILKDTI Epigraph III
AMQILKETI Epigraph IV

P3

IFQSSMTKI Mosaic 1
IFQCSMTKI Mosaic 2
IFQSSMTRI Epigraph III
IFQASMTKI Epigraph IV

P4

SPAIFQSSM Mosaic 1
SPAIFQCSM Mosaic 2
SPAIFQASM Epigraph III
SPSIFQSSM Epigraph IV

P5

REHLLKWGF Mosaic 1
RQHLLRWGF Mosaic 2
RAHLLSWGF Epigraph III
RQHLLKWGF Epigraph IV

P6

ITKIQNFRVYY Mosaic 1
IIKIQNFRVYY Mosaic 2
IIKVQNFRVYF Epigraph III
ITKLQNFRVYY Epigraph IV

P7

VYYRDSRDPI Mosaic 1
VYYRDSRDPL Mosaic 2
VYYRDNRDPL Epigraph III
VYFRDSRDPV Epigraph IV

2.4. INF-γ ELISPOT Assay

The ELISPOT assay was performed using the Mouse Interferon (IFN)-γ ELISpot kit (Mabtech,
Nacka Strand, Sweden) according to the manufacturer’s instructions and as described previously [17].
Immune splenocytes were collected and tested separately from individual mice in triplicate wells.
Peptides were used at 2 µg/mL each, and splenocytes at 2 × 105 cells/well were added to 96-well
high-protein-binding Immobilon-P membrane plates (Millipore) that had been precoated with 5 µg/mL
anti-IFN-γ monoclonal antibody (mAb) AN18 (Mabtech, Stockholm, Sweden). The plates were
incubated at 37 ◦C in 5% CO2 for 18 h and washed with phosphate-buffered saline (PBS) before the
addition of 1 µg/mL biotinylated anti-IFN-γ mAb (Mabtech) at room temperature for 2 h. The plates
were then washed with PBS, incubated with 1 µg/mL streptavidin-conjugated alkaline phosphatase
(Mabtech) at room temperature for 1 h, washed with PBS, and individual spot-producing units (SFU)
were detected as dark spots after a 10-min reaction with 5-bromo-4-chloro-3-idolyl phosphate and
nitro blue tetrazolium using an alkaline–phosphatase–conjugate substrate (Bio-Rad, Richmond, CA,
USA). SFUs were counted using the AID ELISpot Reader System (Autoimmun Diagnostika, Strassberg,
Germany). The frequencies of responding cells were expressed as a number of SFU/106 splenocytes
after subtracting the no-peptide background frequencies.

2.5. Intracellular Cytokine Staining (ICS) Assay

Splenocytes or peripheral blood mononuclear cells (PBMC) were stimulated with peptide at
2 µg/mL; ionomycin and phorbol myristate acetate (PMA) at 2.0 mg/mL and 0.5 mg/mL, respectively,
as positive assay controls; tissue culture medium with 1% DMSO was used as a negative control
and processed as previously described [17]. The following mAb reagents were used: anti-CD107a
phycoerythrin (PE)-conjugated mAb, anti-CD3 PerCP-eFluor710, anti-CD8a eFluor 450, anti-IFN-γ
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PE-Cy7, anti-IL-2 APC, and anti-tumor necrosis factor (TNF)-α fluorescein isothiocyanate (FITC)
(all from eBioscience, San Diego, CA, USA) and anti-CD4 allophycocyanin (APC)/Cy7 (BioLegend,
San Diego, CA, USA). Fixed cells were acquired on an LSRII flow cytometer (Becton Dickinson,
Wokingham, UK). All mice were assayed in triplicates.

2.6. Statistical Analysis

Statistical analyses were performed using Graph Pad Prism version 7.0 (GraphPad Software,
San Diego, CA, USA). For ELISPOT and ICS data, non-parametric tests were used and median (range)
is shown. Multiple comparisons were performed using the Kruskal–Wallis test with Dunn’s multiple
comparison post-test. Groups treated with the same in vitro stimuli were compared using two-tailed
Mann–Whitney U tests. Two-tailed p values were used and p values of less than 0.05 were considered to
be statistically significant.

3. Results

3.1. Tetravalent mRNA Vaccine HIVconsvM

Previously, two Gag and four Pol protein regions totaling 872 amino acids, or 28% of the HIV-1
proteome, were selected for their high conservation among the HIV-1 group M isolates and inclusion
of beneficial regions [2]. These were computed into two complementing mosaics, which together
achieved over 80% match of potential 9-mer T-cell epitopes over most of the six HIVconsvX regions [5].
Here, using a novel epigraph algorithm [22], two versions of the same six regions were sequentially
designed (Figure 1a) to cover additional common variants of potential 9-mer epitopes and make further
improvements over the previous vaccine in matching the global HIV-1 isolates (Figure 1b). Using the
mRNA platform, the human tissue plasminogen activator leader sequence was coupled to the start of
the immunogen, which was shown to improve T-cell induction following intramuscular delivery of
nucleic acid vaccines [23]. Four corresponding synthetic DNA fragments coding for the conserved
regions attached to 5’ and 3’ untranslated regions and a poly-A tail were converted into mRNA using
T7 RNA polymerase-mediated transcription, the cap structure was added at the 5’ end and the fully
synthetic mRNAs designated R1, R2, RIII and RIV, and collectively called HIVconsvM (Figure 1a),
were encapsulated into LNP as previously described [24].

Vaccines 2020, 8, x 4 of 10 

 

PE-Cy7, anti-IL-2 APC, and anti-tumor necrosis factor (TNF)-α fluorescein isothiocyanate (FITC) (all 
from eBioscience, San Diego, CA, USA) and anti-CD4 allophycocyanin (APC)/Cy7 (BioLegend, San 
Diego, CA, USA). Fixed cells were acquired on an LSRII flow cytometer (Becton Dickinson, 
Wokingham, UK). All mice were assayed in triplicates. 

2.6. Statistical Analysis 

Statistical analyses were performed using Graph Pad Prism version 7.0 (GraphPad Software, San 
Diego, CA, USA). For ELISPOT and ICS data, non-parametric tests were used and median (range) is 
shown. Multiple comparisons were performed using the Kruskal–Wallis test with Dunn’s multiple 
comparison post-test. Groups treated with the same in vitro stimuli were compared using two-tailed 
Mann–Whitney U tests. Two-tailed p values were used and p values of less than 0.05 were considered 
to be statistically significant. 

3. Results 

3.1. Tetravalent mRNA Vaccine HIVconsvM 

Previously, two Gag and four Pol protein regions totaling 872 amino acids, or 28% of the HIV-1 
proteome, were selected for their high conservation among the HIV-1 group M isolates and inclusion 
of beneficial regions [2]. These were computed into two complementing mosaics, which together 
achieved over 80% match of potential 9-mer T-cell epitopes over most of the six HIVconsvX regions 
[5]. Here, using a novel epigraph algorithm [22], two versions of the same six regions were 
sequentially designed (Figure 1a) to cover additional common variants of potential 9-mer epitopes 
and make further improvements over the previous vaccine in matching the global HIV-1 isolates 
(Figure 1b). Using the mRNA platform, the human tissue plasminogen activator leader sequence was 
coupled to the start of the immunogen, which was shown to improve T-cell induction following 
intramuscular delivery of nucleic acid vaccines [23]. Four corresponding synthetic DNA fragments 
coding for the conserved regions attached to 5’ and 3’ untranslated regions and a poly-A tail were 
converted into mRNA using T7 RNA polymerase-mediated transcription, the cap structure was 
added at the 5’ end and the fully synthetic mRNAs designated R1, R2, RIII and RIV, and collectively 
called HIVconsvM (Figure 1a), were encapsulated into LNP as previously described [24]. 

 
(a) 

Figure 1. Cont.



Vaccines 2020, 8, 360 5 of 10

Vaccines 2020, 8, x 5 of 10 

 

 
(b) 

Figure 1. The HIVconsvM vaccine design. (a) Curated full-length-protein amino acid sequences of 
HIV-1 present in the Los Alamos National Laboratory HIV Molecular Immunology Database (LANL-
HMID) were used to compute first two mosaics (September 2013) and then sequentially two 
complementing epigraphs (September 2017; 4925 Gag and 2703 Pol sequences) [22,25]. The same 
dataset as used for mosaics was used to select 6 highly conserved regions of the HIV-1 proteome, 
which were reshuffled into unique orders to minimize the chance of inducing strong T-cell responses 
to potential non-HIV-1 neoepitopes irrelevant for protection [5], which might have been generated by 
two juxtaposed regions [11]. Mosaics 1 and 2, and epigraphs III and IV (color-coded) differ in 
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into to the cocktail are also shown. Finally, the thin red line shows the fraction of 9-mers in each 9-
mer window that matches 8/9 amino acids. Additionally, see Figure S1. 
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of sampling were based on our previous experience with mRNA vaccines [17,21]. Responses to seven 
known well-defined CD8+ T-cell epitopes were readily detected in the IFN-γ ELISPOT assay 5 weeks 
after vaccination. Four variants of each epitope as present in the vaccine components were assembled 
into small pools P1 to P7 (Figure 1a, Table 1) and used for stimulation. While significant differences 
between groups were only rarely reached, there was an overall trend of a direct correlation between 
the magnitude of vaccine responses and valency of the vaccine cocktail both for individual epitopes 
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increased (Figure 2d), which is likely contributed to by both the recognition of more epitope variants 
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Figure 1. The HIVconsvM vaccine design. (a) Curated full-length-protein amino acid sequences
of HIV-1 present in the Los Alamos National Laboratory HIV Molecular Immunology Database
(LANL-HMID) were used to compute first two mosaics (September 2013) and then sequentially two
complementing epigraphs (September 2017; 4925 Gag and 2703 Pol sequences) [22,25]. The same
dataset as used for mosaics was used to select 6 highly conserved regions of the HIV-1 proteome,
which were reshuffled into unique orders to minimize the chance of inducing strong T-cell responses
to potential non-HIV-1 neoepitopes irrelevant for protection [5], which might have been generated
by two juxtaposed regions [11]. Mosaics 1 and 2, and epigraphs III and IV (color-coded) differ in
approximately 1 amino acid per epitope and together maximize the match of the vaccines to globally
circulating HIV-1 isolates of group M. Small ‘t’ in front of the name indicates the presence of the human
tissue plasminogen activator leader sequence [23]. The tetravalent immunogens were collectively called
HIVconsvM and consisted of 4 mRNA molecules designated R1, R2, RIII or RIV. Pools P1 to P7 depicted
under the regions indicate the approximate positions of the studied epitopes. (b) The 9-mer potential
T-cell epitope coverage provided by the 6 vaccine regions is based on sliding window of 9 amino acids
across the immunogen. Mosaics 1 and 2, being designed together, alternate the most common variants
between themselves and the coverages of one (pale yellow) and both mosaics together (gold) are shown.
The gain by adding epigraph III (red) and epigraphs IV (brown) into to the cocktail are also shown.
Finally, the thin red line shows the fraction of 9-mers in each 9-mer window that matches 8/9 amino
acids. Additionally, see Figure S1.

3.2. mRNA Induces Strong and Broad T-Cell Responses

Groups of 6 BALB/cJ mice were vaccinated with single mRNA components (R1, R2, RIII or RIV)
or in combination (R1+R2, R1+R2+RIII or R1+R2+RIII+RIV) twice 4 weeks apart intramuscularly,
and their T-cell responses were analyzed 1 and 5 weeks later (Figure 2a). Both the RNA dose and timing
of sampling were based on our previous experience with mRNA vaccines [17,21]. Responses to seven
known well-defined CD8+ T-cell epitopes were readily detected in the IFN-γ ELISPOT assay 5 weeks
after vaccination. Four variants of each epitope as present in the vaccine components were assembled
into small pools P1 to P7 (Figure 1a, Table 1) and used for stimulation. While significant differences
between groups were only rarely reached, there was an overall trend of a direct correlation between
the magnitude of vaccine responses and valency of the vaccine cocktail both for individual epitopes
(Figure 2b) and the overall ‘global’ response, which reached median (range) 11,821 (10,268–13,506)
SFU/106 HIVconsvM-specific splenocytes (Figure 2c) keeping in mind that the absolute mRNA dose
increased with each component added. In addition, the average number of targeted epitopes increased
(Figure 2d), which is likely contributed to by both the recognition of more epitope variants and the
larger magnitude of the total response.



Vaccines 2020, 8, 360 6 of 10

Vaccines 2020, 8, x 6 of 10 

 

 
(a) 

(b) 

  
(c) (d) 

Figure 2. Frequency and breadth of CD8+ T cells induced by mRNA. (a) Groups of BALB/cJ mice 
received two intramuscular injections of mRNA as monovalent (R1, R2, RIII or RIV) and multivalent 
(R1 + R2, R1 + R2 + III or R1 + R2 + RIII + RIV) vaccines at weeks 0 and 4, and were culled at week 9 
(†). Each mRNA dose was administered intramuscularly at a 3 μg dose resulting in a total of 6-, 9- 
and 12 μg amounts for the combined R1 + R2, R1 + R2 + RIII or R1 + R2 + RIII + RIV vaccines, 
respectively. (b) Vaccine-elicited T cells in the spleen 5 weeks after the last vaccination were 
enumerated in an IFN-γ ELISPOT assay using peptide pools P1 to P7 corresponding to the 7 most 
immunodominant H-2d class I-restricted epitopes and their 4 variants present in the vaccine (Table 1). 
Data show pool-specific frequencies of responding T cells as group median (column) and individual 
mouse values (n = 6), except for naïve mice (n = 3). Groups were compared using Kruskal–Wallis test 
with Dunn’s multiple comparison correction. (c) The total magnitudes of responses were calculated 
as a sum of P1–P7 frequencies and are shown as group median ± IQR (n = 6) except for naïve mice (n 
= 3). Groups were compared using two-tailed Mann–Whitney U test. (d) Average number with range 
of recognized epitope variants for each group of vaccinated mice are depicted. (a and b) Significant 
two-tailed p values are indicated by asterisks: * p < 0.05; ** p < 0.01; *** p < 0.001 and **** p < 0.0001. 

3.3. Kinetics and Quality of the HIVconsvM mRNA-Induced T-cell Responses 

Polyfunctionality of mRNA-elicited CD8+ and CD4+ T cells was assessed at 1 and 5 weeks post-
vaccination (Figure 2a). At 1 week after vaccination, specific peptides stimulated the expression of 
CD107a, IFN-γ, IL-2 and TNF-α in small fractions of murine PBMC populations reaching median 
0.77% (CD107a) and 0.08% (IL-2) of CD8+ and CD4+ T cells, respectively (Figure 3a). At week 5 post-
vaccination, broad, plurifunctional responses with peaks of median 19.3% (CD107a) and 0.26% (IFN-
γ) in the CD8+ and CD4+ T-cell populations, respectively, were readily detected in mouse splenocytes 
(Figure 3b). Mostly, there is an overall good correlation between PBMC and splenocyte responses, 
although minor differences might sometimes occur. For CD8+ T cells, there were similar cell fractions 
that displayed 1, 2 and 3 functions with about 2% of tetrafunctional cells. CD4+ T cells induced by the 

P1 P2 P3 P4 P5 P6 P7
0

1000

2000

3000

4000

tHIVconsvM epitope variant pool

IF
N

-γ
 S

FU
/1

06  s
pl

en
oc

yt
es

R1
R2
RIII
RIV

R1+R2+RIII+RIV

R1+R2
R1+R2+RIII

*
**
****

***
***

***

Naive

R1 R2
RIII RIV

R1+
R2 

R1+
R2+

RIII

R1+
R2+

RIII+
RIV

Naiv
e

0

5000

10000

15000

IF
N

-γ
 S

FU
/1

06  s
pl

en
oc

yt
es

**
**

R1 R2
RIII RIV

R1+
R2 

R1+
R2+

RIII

R1+
R2+

RIII+
RIV

Naiv
e

0

2

4

6

8

N
um

be
r o

f  
re

co
gn

iz
ed

 e
pi

to
pe

s

Figure 2. Frequency and breadth of CD8+ T cells induced by mRNA. (a) Groups of BALB/cJ mice
received two intramuscular injections of mRNA as monovalent (R1, R2, RIII or RIV) and multivalent
(R1 + R2, R1 + R2 + III or R1 + R2 + RIII + RIV) vaccines at weeks 0 and 4, and were culled at week 9
(†). Each mRNA dose was administered intramuscularly at a 3 µg dose resulting in a total of 6-, 9- and
12 µg amounts for the combined R1 + R2, R1 + R2 + RIII or R1 + R2 + RIII + RIV vaccines, respectively.
(b) Vaccine-elicited T cells in the spleen 5 weeks after the last vaccination were enumerated in an IFN-γ
ELISPOT assay using peptide pools P1 to P7 corresponding to the 7 most immunodominant H-2d

class I-restricted epitopes and their 4 variants present in the vaccine (Table 1). Data show pool-specific
frequencies of responding T cells as group median (column) and individual mouse values (n = 6),
except for naïve mice (n = 3). Groups were compared using Kruskal–Wallis test with Dunn’s multiple
comparison correction. (c) The total magnitudes of responses were calculated as a sum of P1–P7
frequencies and are shown as group median ± IQR (n = 6) except for naïve mice (n = 3). Groups were
compared using two-tailed Mann–Whitney U test. (d) Average number with range of recognized
epitope variants for each group of vaccinated mice are depicted. (a and b) Significant two-tailed
p values are indicated by asterisks: * p < 0.05; ** p < 0.01; *** p < 0.001 and **** p < 0.0001.

3.3. Kinetics and Quality of the HIVconsvM mRNA-Induced T-cell Responses

Polyfunctionality of mRNA-elicited CD8+ and CD4+ T cells was assessed at 1 and 5 weeks
post-vaccination (Figure 2a). At 1 week after vaccination, specific peptides stimulated the expression
of CD107a, IFN-γ, IL-2 and TNF-α in small fractions of murine PBMC populations reaching median
0.77% (CD107a) and 0.08% (IL-2) of CD8+ and CD4+ T cells, respectively (Figure 3a). At week 5
post-vaccination, broad, plurifunctional responses with peaks of median 19.3% (CD107a) and 0.26%
(IFN-γ) in the CD8+ and CD4+ T-cell populations, respectively, were readily detected in mouse
splenocytes (Figure 3b). Mostly, there is an overall good correlation between PBMC and splenocyte
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responses, although minor differences might sometimes occur. For CD8+ T cells, there were similar
cell fractions that displayed 1, 2 and 3 functions with about 2% of tetrafunctional cells. CD4+ T cells
induced by the full set of HIVconsvM mRNAs had similar proportions of cells with 1 and 2 functions,
trifunctional cells represented about half of the population and there were no tetrafunctional cells
(Figure 3c). CD4+ T-cells evaluation was likely an underestimation of true frequencies and functions,
since optimal major histocompatibility complex (MHC) class I-restricted epitopes were used in vitro
for restimulation of these MHC class II-restricted responses.
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Figure 3. Functionality of mRNA-elicited CD4+ and CD8+ T cells. Groups of BALB/cJ mice were
immunized with monovalent R1, R2, RIII and RIV or multivalent R1 + 2, R1 + R2 + RIII and R1
+ R2 + RIII + RIV vaccines at weeks 0 and 4. Each mRNA was administered intramuscularly at a
3-µg dose resulting in a total of 6-, 9- and 12-µg amounts for the combined vaccines, respectively.
The frequencies of responding PBMCs and/or splenocytes were determined using combined pool of
28 peptides corresponding to 7 defined H-2d class I epitopes and their 4 variants present in the vaccine
(Table 1). Multicolor flow cytometry analysis was performed to assess the functional phenotypes of
vaccine-elicited CD8+ and CD4+ T cells in terms of CD107a, IFN-γ, IL-2 and TNF-α expression at 1 (a)
and 5 (b) weeks after the homologous boost. The same cytokine legend as in (a) applies to (b). Specific
T-cell frequencies are shown as group median (column) and individual animal values (n = 6). (c) Group
median (n = 6) proportions of CD8+ and CD4+ T cells expressing 1 (black), 2 (light grey), 3 (dark grey)
or 4 (white) functions are depicted using pie charts. See Figure S2 for the gating strategy. (a and b)
Groups were compared using Kruskal–Wallis test with Dunn’s multiple comparison correction and
significant two-tailed p values are indicated by an asterisk: * p < 0.05.
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4. Discussion and Conclusions

In the present work, we tested an improved design of the second-generation conserved-region
candidate T-cell HIV-1 vaccine by adding two frequent epitope variants and thus improving the coverage
of global circulating HIV-1. In a mouse model, intramuscular injection of the LNP-encapsulated
mRNA induced high frequencies of T cells, which were capable of recognizing seven out of seven
examined H-2d class I-restricted epitopes in most animals (Figure 2). All vaccine components
were immunogenic individually and when combined, T-cell responses increased over 5 weeks
post-vaccination, which concurred with our previous kinetic observations with another RNA vaccine
platform [17]. Keeping in mind some experimental differences, the summed magnitude of T-cell
responses reported here is superior to our published data for the bivalent HIVconsvX vaccine delivered
using adjuvanted Semliki Forest virus-derived self-amplifying mRNA [17]. The reported frequencies
induced by the bivalent R1 + R2 LNP vaccine were comparable to those elicited by a bivalent vaccine
delivered by a heterologous simian adenovirus ChAdOx1 prime-poxvirus MVA boost regimen (N.M.,
E.G.W., B.K. and T.H., manuscript in preparation). Both these frequencies were surpassed by tri- and
tetravalent R1+R2+RIII and R1+R2+RIII+RIV LNP immunizations (Figure 2c), which may be the
result of the tetravalent design, the mRNA LNP delivery or their combination. In the BALB/cJ mice,
we did not optimize the vaccine dose nor peak response time point. In addition, we did not test for
the recognition of individual epitope variants as present in the tetravalent vaccine and those of other
HIV-1 isolates listed in the LANL-HMID [26]. Nevertheless, our data show a great potency of this
vaccine platform for induction of T-cell responses and support evaluation of the HIVconsvM mRNA
LNPs in humans, the species in which HIV-1 evolved and for which further vaccine optimizations and
response analyses will be the most relevant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/3/360/s1,
Figure S1: Coverage of 9-mers by the six second-generation vaccine conserved regions. Gradual improvements in
the global HIV-1 coverage for the six conserved regions by increasing the valency of the vaccine cocktail form
mosaic 1 (1), mosaic 1+2 (2), mosaic 1+2 + epigraph III (3) and mosaic 1+2 + epigraph III+IV (4) indicated on
the x-axis. The fractions of 9-mers with an exact (red) and 8/9 (orange) matches are shown for each vaccine
region separately, Figure S2: The ICS gating strategy. Gating strategy for identification of CD8+ and CD4+ T-cell
functional phenotype within PBMCs and splenocytes.
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