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ABSTRACT
Light is the most important environmental cue to entrain the circadian clock in most animals. In the
fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been well-
studied. The Drosophila brain contains approximately 150 neurons that rhythmically express
circadian clock genes. These neurons are called “clock neurons” and control behavioral activity
rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and
blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to
the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian
light-input pathways. Recent studies have provided new insights into the mechanisms that
integrate these light inputs into the circadian network of the brain. In this review, we will summarize
the current knowledge on the light entrainment pathways in the Drosophila circadian clock.
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Circadian pacemaker neurons in the Drosophila
brain

Most animals possess circadian clocks that measure
the time of day and allow the organism to adapt to
daily environmental changes. The clock generates cir-
cadian rhythms of approximately 24 hours in many
biological processes, such as behavior, metabolism,
and physiology, enabling animals to anticipate and
adapt to environmental changes. The oscillatory
mechanism of the clock is self-sustained but must be
synchronized to external time cues in order to allow
adaption to changing environmental conditions. In
most cases, light is the most critical entrainment cue
and must be integrated into circadian clock circuits
in the brain.

The brain of most animals contains a central clock. In
the fruit fly Drosophila melanogaster, approximately 150
neurons in the brain have been identified as clock neu-
rons based on the cyclic expression of the genes and pro-
teins that play central roles in the circadian clock. These
molecules are referred to as clock genes or proteins.
Clock neurons are located in distinct clusters in the Dro-
sophila central brain. Each cluster is named according to
its location and the size of individual neurons, as shown
in Figure 1. It remains unclear whether all clusters of
clock neurons are important for controlling behavioral

rhythms; however, several studies have suggested that
they are not all of equal importance.2

The best-studied clock neurons are the large and small
lateral ventral neurons (l-LNvs and s-LNvs). These neu-
rons express Pigment-dispersing factor (PDF), a neuro-
peptide that acts as a circadian neuromodulator.3 PDF
plays an important role in the circadian network as an
intercellular messenger, synchronizing daily rhythms
between PDF neurons and other clock neurons.4-8 Pdf-
null flies display weak circadian activity rhythms with a
shortened period of approximately 22 hours when kept
in constant darkness (DD) and a phase-advanced even-
ing activity peak in the presence of a 12-hour:12-hour
light-dark cycle (LD).9 Interestingly, flies lacking the l-
LNv and s-LNv neuron clusters show identical behavioral
phenotypes, suggesting that PDF is the principal output
of these neurons. Thus, PDF-expressing clock neurons as
well as PDF itself strongly influence activity rhythms.

The Gal4/UAS system is a genetic tool commonly used
for tissue-specific manipulation of gene expression in
Drosophila.10 Several useful Gal4 lines have been available
since the year 2000 that target subsets of clock neurons,
allowing us to study their function. Pioneering studies
using the Gal4/UAS system were performed by Grima
et al. and Stoleru et al. in 2004.11,12 These studies investi-
gated different subsets of clock neurons by restoring clock
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function to specific neuron clusters in the clock-impaired
period (per) mutant or by ablating clusters expressing the
apoptosis-inducing head involution defective gene. The
flies without functional PDF neurons lost anticipatory
morning (M) activity, whereas the flies without functional
lateral dorsal (LNd) and dorsal neuron (DN) clusters lost
anticipatory evening (E) activity under LD conditions.
Thus, both studies concluded that the PDF-positive clock
neurons are important for morning activity, and LNd and
DN clusters are important for evening activity. In 2006,
the 5th s-LNv was identified as a non-PDF-expressing
clock neuron that was located in close proximity to the l-
LNv cluster and was classified as an E clock neuron.13

CRY function in clock neurons

The structure of the CRY protein is very similar to that of
the bacterial 6–4 photolyase. The CRY protein was first
identified in Arabidopsis thaliana,14 suggesting that it is
highly conserved. Cryb mutant flies display failures in
light entrainment.15-17 Whereas wild-type flies are able
to synchronize their circadian rhythms to a new LD con-
dition within one day, cry mutant flies require approxi-
mately 7 d to adapt. The circadian clock responds to a
light pulse during the night by advancing or delaying
activity rhythms, depending on the time at which the
light-pulse is given. These responses can be described by

a phase-response curve. Compared to wild-type flies,
cry0 mutants are significantly less sensitive to light pulses
and display reduced phase responses.18

CRY is expressed in many clock neurons, including M
and E neurons.19,20 Upon light exposure, CRY binds to
the Timeless (TIM) protein, an essential clock compo-
nent, and leads to its ubiquitination by the Jetlag protein
and subsequent degradation.21,22 The light-induced deg-
radation of TIM destabilizes the Period (PER) protein,
another core clock component and a binding partner of
TIM, and thus pauses the circadian oscillation of PER
and TIM levels.

These interactions between the PER, TIM, and
CRY proteins provide a simple and clear-cut explana-
tion of how the Drosophila clock is reset by light.
However, not all clock neurons express CRY, and lev-
els of CRY expression differ among clock neurons.20

Furthermore, not all clock neurons show similar
responses to light-pulses given during the night.23 For
example, Tang et al. (2010) demonstrated that a light
pulse early in the night induces degradation of TIM
in E neurons, but not in M neurons, suggesting that
the phase resetting of the clock by a light pulse is not
the same in all clock neurons and depends on the
time of day.23 More interestingly, CRY-dependent
light input to M neurons can cause CRY-independent
TIM degradation in E neurons.24 Thus, M neurons

Figure 1. The circadian clock network in the Drosophila brain. The left hemisphere shows the distribution of the Cryptochrome (CRY)-
positive (blue) and CRY-negative (white) clock neurons. The right hemisphere shows the compound eye and the Hofbauer-Buchner (HB)
eyelet. The ocelli are located on top of the brain. The small and large lateral neuron (s-LNv and l-LNv) clusters express the Pigment-dis-
persing factor (PDF) protein and are regarded as the clock neurons controlling the morning (M) activity peak. The lateral dorsal neurons
(LNd) and the 5th s-LNv are the evening (E) clock neurons. The dorsal neuron (DN) clusters are not well characterized. The HB eyelet is
directly connected to the s-LNv neurons through projections to the surrounding area. In contrast, the connections between the com-
pound eyes and the clock neurons have not yet been elucidated.
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can direct the light response of E neurons through
neuronal communication.

A bright light pulse lasting for several minutes during
the night is sufficient to induce TIM degradation in all
clock neurons.25,26 In response to a light pulse of reduced
intensity and increased duration, the 5th s-LNv neuron
shows the most efficient TIM degradation compared to
other clock neurons,27 suggesting that individual clock
neurons differ in CRY-dependent light sensitivity. These
studies used light pulses to examine light responses,
revealing fine temporal properties of the clock in
response to a short light-pulse. However, responses to
light pulses differ from entrainment to LD conditions
that consist of distinct periods of day and night.

When CRY is re-expressed in E neurons using the
Gal4/UAS system in the cry mutant background, these
flies show responses similar to those of wild-type flies to
an 8-hour phase delay of the LD cycle, re-entraining
nearly within one day.26 In contrast, cry0 mutants require
nearly a week to completely synchronize to the phase-
delayed LD cycle. Interestingly, E neurons in cry0

mutants show rapid re-entrainment of molecular cycling
of the clock protein Par Domain Protein (PDP1). How-
ever, re-entrainment of clock protein cycling in other
clock neurons occurs slowly, similar to re-entrainment
of behavioral rhythms.26 Thus, E neurons are the first to
reset in response to light input from the visual system,
followed by other clock neurons.

Light-activated CRY also influences the neural activity
of l-LNv neurons by increasing action potential fir-
ing.28,29 This effect is independent of the CRY-TIM
interaction and opsin-based photoreception. The role of
these CRY-induced increases in neuronal activity is thus
far unknown, but a possible involvement in light entrain-
ment should be considered.

Light entrainment via the visual system

Drosophila have 3 different external photoreceptors:
compound eyes, ocelli, and Hofbauer-Buchner eyelets
(HB eyelets). The compound eyes are the largest photo-
receptive structure and are thought to be the most
important to light entrainment.30 Studies using eye
mutants have demonstrated that the compound eyes
play roles in measuring day length and detecting moon-
light.31-33 Flies display 2 distinct activity peaks at approx-
imately dawn and dusk in 12 hour:12 hour LD cycles,
termed the M and E peaks, respectively.34 These 2 activ-
ity peaks respond to changing photoperiod and to dim
light during the night. Under long-day conditions or
during nights with moonlight, the M and E peaks move
away from one another, thus creating a larger phase
angle between the peaks.2 Drosophila mutants lacking

compound eyes cannot adapt their M and E activity
peaks to long-day conditions.31 and do not respond to
moonlight.32,33 These findings suggest that the light
input from the visual system affects the M and E neurons
in opposite manners, namely phase-advances the M
oscillator and phase-delays the E oscillator. Moonlight
also has direct effects on activity, known as masking
effects, in that it increases nighttime activity levels.35

These masking effects are mediated by the compound
eyes but are not influenced by CRY.31,33 The compound
eyes consist of approximately 800 ommatidia, each of
which contains 8 photoreceptor cells (R1–8) expressing
different rhodopsins (Rh1–6).36 Mutant flies lacking Rh1
and Rh6, which are expressed in R1–6 and R8 cells,
respectively, do not display masking effects on activity
behavior in response to moonlight.33

Twilight, the gradual change in light intensity at
dawn and dusk, also affects activity rhythms, though
it is often neglected in laboratory experiments. Simu-
lation of twilight conditions causes shifts of the M
and E activity peaks into the dim light zones.37 The
effects of twilight on behavior exceed those of moon-
light, and activity rhythms during twilight simulation
more strongly resemble activity rhythms under natu-
ral conditions.38-41 The effects of twilight on behav-
ior are also mediated by the compound eyes,
particularly by the 2 inner photoreceptor cells R7
and R8.40 Thus, different light-sensing mechanisms
have different roles in modulating and entraining
activity rhythms.

The role of the ocelli in circadian light entrainment
has not been well studied. Comparisons between
mutants that lack all external photoreceptors or lack
only the compound eyes showed significant contribution
of the compound eyes to entrainment, compared to the
minor contribution of the ocelli.31 The same is true for
the HB eyelets, which are remnants of the larval photore-
ceptors, the Bolwig�s organs, and express the rhodopsin 5
and 6 (rh5 and rh6) genes.42,43 In both larval and adult
brains, the projections of Bolwig�s organs and HB eyelets
directly contact the PDF-positive LNvs.

30,44,45 The larval
Bolwig�s organs use acetylcholine as a neurotransmitter,
whereas the adult HB eyelets express both acetylcholine
and histamine.43,46 Application of cholinergic agonists
increases Ca2C and cyclic AMP (cAMP) levels in both
dissociated larval LNvs and in adult LNv clusters in intact
brains.47,48 Bolwig�s organs, together with CRY, are essen-
tial for light entrainment of the larval clock neurons.49

However, it remains unclear how significantly HB eyelets
contribute to light entrainment of the adult clock. Two
studies have investigated the roles of the Rh5 and Rh6
proteins that are expressed in the HB eyelets and in pho-
toreceptor cell R8 of the compound eyes.50,51 Flies with
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triple-mutation of rh5, rh6, and cry display slower light
re-entrainment than cry single mutants in following a 6-
hour phase shift of the LD cycle, suggesting that the HB
eyelets contribute to light entrainment.

The compound eyes use histamine as a neurotrans-
mitter. Flies with double-mutation of cry and the hdc
gene encoding histidine decarboxylase are unable to syn-
chronize to an LD cycle.31 Drosophila express 2 hista-
mine receptor genes: ort and hisCl1. Both receptors are
expressed in interneurons located between the lamina
and the medulla and may also be present in other brain
regions.52,53 Serotonin and dopamine may be involved in
intermediate pathways.54,55 However, it is not yet known
how histamine receptor-positive cells transmit signals to
clock neurons.

CRY is also expressed in the compound eyes. A recent
study demonstrated that CRY interacts with the photo-
transduction complex through the Inactivation No
Afterpotential D protein in the compound eyes.56 Cry
mutant flies show reduced nocturnal light sensitivity in
electroretinograms and a weaker optomotor response
compared to wild-type flies. However, CRY expressed in
the eyes may have a minor contribution to light entrain-
ment, since flies expressing cry only in the eyes do not
show significant improvement in entrainment compared
to crymutants.26,57

PDF neurons and light entrainment

PDF is a circadian neuropeptide specifically expressed in
the l-LNv and s-LNv clusters and serves as an intercellu-
lar communication signal between clock neurons.3,6 The
PDF receptor (PDFR) is expressed in many clock neu-
rons including the s-LNvs.

58 Pdf mutants or flies lacking
PDF-expressing neurons show a phase-advanced E activ-
ity peak under LD conditions.9 They are also incapable of
shifting M and E peaks under long-day conditions.7

These phenotypes are similar to those observed in eye
mutants.31 Furthermore, ablation of the l-LNv cluster
attenuates the response to a light-pulse late in the
night.59 These results suggest that PDF and the PDF neu-
rons are important for light entrainment.

Flies with double-mutation of Pdf and cry show an
intriguing phenotype, completely lacking the E peak
under LD conditions.60,61 This phenotype suggests a
model in which CRY and the visual system entrain the
M and E neurons by either direct or indirect mecha-
nisms; furthermore, PDF-expressing neurons transduce
light input from the visual system to E neurons, such
that E neurons in Pdf-cry double mutants are unable to
receive light input. Im and Taghert (2011) additionally
demonstrates that the M peak in the double mutants is a
masking effect but is not driven by the circadian clock,

indicating that PDF and CRY are essential for light
entrainment.62

Thermogenetics is a suitable genetic tool for themanipula-
tion of clock neuron activity because the effect of temperature
on the clock is relatively moderate compared to that of light,
which is used for optogenetics. TrpA1 is a temperature-sensi-
tive cation channel that induces neuronal depolarization in
response to increasing temperature.63 Interestingly, it appears
that phase-response curves in response to temperature pulses
applied to flies overexpressing trpA1 in PDF neurons mimic
phase-response curves in response to light pulses.64 Thus,
light inputs, likely from the visual system, may normally
excite PDF neurons, consequently resetting downstreamneu-
rons such as the E neurons and leading to behavioral phase
shifts. This pathway may be mediated by specific adenylate
cyclases, cAMP, and the protein kinase A signaling cascade
that promotes TIM degradation in E neurons.64-67 The neu-
ronal circuits linking the visual system to the clock neurons
have not yet been described, with the exception of the direct
connection between HB eyelets and PDF neurons described
above. It has not yet been demonstrated that light inputs
from all visual organs converge on the PDF neurons, not on
the E neurons, which would support the hypothesis that PDF
neurons provide the only pathway for light inputs to the clock
that are not mediated by CRY. This has already been shown
for the larval brain, which has simpler circadian circuits
involving only 18 clock neurons and only 2 light-input path-
ways: Bolwig�s organs and the CRY protein.49

Conclusions

Previous studies have revealed the astonishing complex-
ity of light entrainment in the circadian system of the fly,
which has otherwise been considered a rather simple
organism. The compound eyes convey light signals to
the PDF neurons via histaminergic signaling through
interneurons, leading to the resetting of the molecular
clock in the PDF neurons. Bolwig�s organs and HB eyelets
use both acetylcholine and histamine to signal to PDF
neurons; this pathway seems to consist of a direct con-
nection between the visual organs and clock neurons.
Both pathways first reset PDF-expressing neurons, which
in turn reset the PDF-negative clock neurons. CRY is
expressed in the clock neurons and directly interacts
with TIM to reset the molecular clock. Interestingly, light
entrainment of the E neurons is especially important for
behavioral rhythms. Although more detailed studies are
required for an exhaustive understanding of the com-
plete mechanism, including unknown light-input path-
ways,68,69 the relentless efforts of many researchers in
our field have been steadily revealing new details on how
the Drosophila light-input systems entrain the neuronal
clock network (Fig. 2).
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Abbreviations

CRY Cryptochrome
cyclic AMP cAMP
DD constant darkness
DN dorsal neuron
E evening
HB eyelets Hofbauer-Buchner eyelets
LD light-dark
LN lateral neuron
M morning
PDF Pigment-dispersing factor
PDP1 Par Domain Protein 1
PER Period
TIM Timeless
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