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Abstract
Previous studies have shown that concurrent vowel identification improves with increasing

temporal onset asynchrony of the vowels, even if the vowels have the same fundamental

frequency. The current study investigated the possible underlying neural processing

involved in concurrent vowel perception. The individual vowel stimuli from a previously pub-

lished study were used as inputs for a phenomenological auditory-nerve (AN) model. Spec-

trotemporal representations of simulated neural excitation patterns were constructed (i.e.,

neurograms) and then matched quantitatively with the neurograms of the single vowels

using the Neurogram Similarity Index Measure (NSIM). A novel computational decision

model was used to predict concurrent vowel identification. To facilitate optimummatches

between the model predictions and the behavioral human data, internal noise was added at

either neurogram generation or neurogram matching using the NSIM procedure. The best

fit to the behavioral data was achieved with a signal-to-noise ratio (SNR) of 8 dB for internal

noise added at the neurogram but with a much smaller amount of internal noise (SNR of 60

dB) for internal noise added at the level of the NSIM computations. The results suggest that

accurate modeling of concurrent vowel data from listeners with normal hearing may partly

depend on internal noise and where internal noise is hypothesized to occur during the con-

current vowel identification process.

Introduction
Human listeners often engage in conversation in an acoustic environment where the surround-
ing voices interfere with understanding the speech produced by the talker of interest. To
address the “cocktail party problem” without visual cues, the auditory system has to identify,
segregate, and group individual speech signals on the basis of the single temporal waveform
that is formed as a result of the summation of concurrent speech signals (for review, see [1, 2]).
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To understand the potential psychoacoustic and neural mechanisms for speech understanding
in background noise, the concurrent vowel identification paradigm has been widely used par-
ticularly with reference to competing talkers [3, 4, 5, 6]. Because vowels may be separated by
differences in fundamental frequency (F0), models to explain identification of concurrent vow-
els have frequently focused on F0 segregation. There are, however, other cues which may be
used to separate concurrent vowels. One such cue is temporal onsets/offsets [7, 8]. Previous
research has shown that temporal asynchronous onsets can be efficiently used by listeners to
separate and identify concurrent vowel stimuli [9, 10, 11, 12], even if both vowels have the
same F0.

Many of the models that have been posited to explain concurrent vowel perception have
focused either on comparison of cochlear excitation patterns [3, 11, 13, 14, 15], autocorrelation
of auditory filter/inner hair cell channels [4], frequency and temporal resolution [14], or audi-
tory-nerve discharge timing involving harmonic cancellation [6, 16, 17]. Other studies have
posited that the sound source segregation needed to identify concurrent vowels likely involves
multistage processing in both primary and association auditory cortices [18]. While it may be
that primitive processing of acoustic cues such as F0 may provide robust cues for younger lis-
teners with normal-hearing (NH) sensitivity [19, 20], it may be that other processes play an
important role, particularly if F0 cues are unavailable [21]. Recent work to explain vowel confu-
sion patterns using full F0-based segregation algorithms has shown inconsistencies in the abil-
ity of these algorithms to predict and mimic the behavioral data [22]. Thus, other factors
besides F0 differences could potentially influence listeners’ identification of concurrent vowels;
one or more of these factors may involve non-primitive sound segregation processes [12].

To help determine what other factors influence identification of concurrent vowels, and to
test whether source segregation processes affect concurrent vowel identification, we selected a
data set of concurrent vowel identification lacking in F0 cues but including a source segregation
cue—that of temporal onset asynchrony [12]. We sought to determine the efficacy of computa-
tional modeling in simulating this data set from human NH listeners. Because previous models
of concurrent vowel identification have suggested multistage processing including cochlear
nerve function and sound source segregation [2, 18], our preliminary computational modeling
included more than one scheme: a phenomenological auditory-nerve (AN) model [23] and a
procedure for comparing simulated neural excitation patterns of the AN model to predict con-
current vowel identification performance. It was hypothesized that (1) simulated concurrent
vowel identification scores would increase as a function of temporal onset asynchrony; and (2)
further restriction of model computation may be needed to best match the human data.

Materials and Methods

Subjects
The concurrent vowel identification data for 14 normal-hearing listeners (mean age = 24
years; 12 females and 2 males) were adopted from previous work [12]. All listeners had
audiometric thresholds� 15 dB HL for the octave frequencies between 500 and 8000 Hz in
each ear. All listeners were native speakers of American English. The study and the written
informed consent procedure were approved by the University of Tennessee Institutional
Review Board (IORG0000051).

Stimuli
The vowel stimuli used in the current study were from a previous study [12]. The American
English vowels /i ɑ uӕɝ/ (S1–S5 Files) with a duration of 200 ms were synthesized using the
cascade option of a software formant synthesizer [24] at a 10 kHz sampling rate. To test the
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effects of onset asynchrony without any contributing effects of F0, all five vowels had identical
F0 of 120 Hz. The vowels were shaped using 10 ms cosine ramps to avoid production of tran-
sients. All five vowels were equalized to the same root-mean-square (RMS) level. Seven vowel
pairs were then created: /u i/, /ӕ ɑ/, /ɝ ɑ/, /ɝӕ/, /ӕ i/, /ɝ i/, and /ɝ u/. These combinations
were chosen because they showed the largest effect of onset asynchrony in the pilot study for
previous work [12]. These vowel pairs were presented with temporal onset asynchronies of 0,
25, 50, 75, 100, 125, and 150 ms. Whenever a cardinal vowel (/i ɑ u/) was paired with another
vowel, the cardinal vowel began after the other vowel. The vowel pairs were low-pass filtered at
4.8 kHz and routed to Sennheiser HD headphones located inside a double-walled IAC sound
attenuating booth. The pair of concurrent vowels was presented to the listeners monaurally at
60 dB SPL. The same set of vowel stimuli was used for the current modeling study. Details of
stimuli are described in [12], and the formant values of the stimuli are shown in Table 1.

Human concurrent vowel identification test procedure
In previous work [12], the seven vowel pairs combined with the seven onset asynchrony values
yielded a total of 49 stimuli. The list of 49 stimuli comprised one block. During each block, 49
stimuli were presented in random order. After hearing a mixture of concurrent vowels, listen-
ers indicated the two individual vowels that they heard. For each testing block, an identification
score was calculated after 49 concurrent vowel presentations as the percent of both vowels
correctly identified. Each listener performed five blocks of identification tests and the mean
identification scores averaged across the five testing blocks are reported as a function of onset
asynchrony.

Computational model of peripheral auditory processing
A phenomenological model of the AN [23] was used to simulate neural responses to the identi-
cal stimuli used in the human concurrent vowel identification task. The basic framework of
this model has been tested extensively against animal physiological data and psychophysical
data in response to both simple and complex stimuli, such as tones, broadband noise, and
speech-like signals [25, 26, 27]. This model was chosen for the current study because it incor-
porates diverse nonlinear physiological properties of the cochlea, including compression, sup-
pression, broadened tuning, and best-frequency shifts with increases in sound level. Inputs for
the AN model were five single vowels or seven mixtures of concurrent vowels. The neural
response at each characteristic frequency (CF) was created from the post stimulus time histo-
gram (PSTH) of 50 simulated AN fibers. The PSTH at 30 CFs, spaced logarithmically between
100 and 5000 Hz, were then obtained. The outputs of the AN model were smoothed by
convolving them with a 50% overlap, 128 sample Hamming window. In accordance with the
neuroanatomical data observed in cats [28], 60% of the AN fibers were set to have a high sponta-
neous rate (> 18 spikes/sec), 20%medium (0.5–18 spikes/sec), and 20% low (< 0.5 spikes/sec).

Table 1. Formant frequency values for vowel stimuli.

Vowel /e/ /a/ /u/ /ae/ /er/
IPA /i/ /ɑ/ /u/ /æ/ /ɝ/

Supporting File S1 File S2 File S3 File S4 File S5 File

F1 250 750 250 750 450

F2 2250 1050 850 1450 1150

F3 3350 2950 2250 2450 1250

F4 3350 3350 3350 3350 3350

doi:10.1371/journal.pone.0149128.t001
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All model simulations were obtained with the intact functionality of inner and outer hair cells
by setting the model to be the normal-hearing mode (i.e., CIHC and COHC = 1.0). The input stim-
ulus level was scaled to 60 dB SPL prior to presentation to the model, consistent with the human
testing.

Neurogram Similarity Index Measure. If two completely different vowel stimuli are pre-
sented to human listeners, the auditory system would produce very different neural representa-
tions of the two vowels, resulting in different percepts of the two vowels. In order to assess
different patterns of neural representations of vowels, an objective quantification method is
required. For this purpose, we employed the “Neurogram Similarity Index Measure” (NSIM)
[29, 30] to evaluate similarity between the neural representations of two different stimuli. Here,
neurograms refer to a graphical representation of the neural discharge patterns of AN fibers,
where discharge rate information for auditory channels is plotted over the duration of the
acoustic stimulus. In this study, neurograms were constructed in the form of 30-by-38 matrices
(i.e., 30 CFs in the ordinate and 38 time bins in the abscissa) based on the PSTH information
simulated with the ANmodel [23]. In Fig 1(A), a neurogram for the vowel /ɑ/ is shown. In this
neurogram, different strengths of neural activity were depicted as a color-scale from 0 (blue) to
190 spikes/s (red) of dynamic range for each frequency channel (along the vertical axis) and
over time (along the horizontal axis). In comparison, Fig 2 shows neurograms of the vowel pair
/ӕ ɑ/ with the onset asynchrony of 0, 50, 100, and 150 ms.

The NSIM index quantified the similarity between neural responses to different vowel sti-
muli. Briefly, for two different stimuli passed through the AN model, one served as a reference
stimulus and the other served as a test stimulus. Using patches of pixels spanning the images of
neurograms, the NSIM index between reference (“R”) and test (“T”) neurograms was com-
puted as a weighted function of “luminance” (μRμT), “contrast” (σRσT), and “structure” (σRT)
statistics (in the form of 28-by-36 matrices), as follows:

NSIM ¼ ð 2mRmT þ C1

mR
2 þ mT

2 þ C1

Þa � ð 2sRsT þ C2

sR
2 þ sT

2 þ C2

Þb � ð sRT þ C3

sTsR þ C3

Þg ð1Þ

, in which μ and σ represent the mean and standard deviation of 3×3 square windows, which
moves pixel by pixel over the entire image. The weighted contributions (α, β, γ) determined a
single patch value. In accordance with [29], the optimally weighted functions were used (i.e.
α = 1, β = 0, γ = 1) to obtain the simulation data in the current study. In Eq (1), C1, C2 and C3
are constants, used to prevent instability when values are small. Previous work [31], however,
noted that C1, C2, and C3 had negligible influence on the image comparison result. An overall
NSIM index was computed by averaging the NSIM values over time and 30 CFs. An NSIM
index of 1 implies that two neurograms were perfectly correlated in neural information. Con-
versely, an NSIM index of 0 implies that two neurograms were uncorrelated, which means that
two stimuli produced uncorrelated neural information at the level of the AN.

Computational model predictions of concurrent vowel identification. To gain further
insight on how human listeners would utilize the AN neural discharge information for concur-
rent vowel identification, the concurrent vowel identification performance for human subjects
was simulated based on the AN discharge patterns. This computational model prediction of
concurrent vowel identification was performed using the exactly same testing paradigm and
stimuli as with human subjects. Fig 3 shows the diagram of the model implementation. In each
trial, the model testing program randomly selected a “target” pair of concurrent vowels out of
seven pairs, and the AN model outputs were then compared between the target pair of concur-
rent vowels and each of the five single vowels. The single vowel was provided to the AN model
one by one. Therefore, to make a single decision, five different NSIM indices were computed.
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Fig 1. Effects of internal noise at the level of neurogram generation on the representations of the vowel /ɑ/ (S2 File) in the auditory-nerve
neurograms.

doi:10.1371/journal.pone.0149128.g001

Fig 2. Neurograms for the vowel pair /ӕ ɑ/ with the onset asynchrony of 0, 50, 100, and 150ms. For these neurograms, no internal noise was used.

doi:10.1371/journal.pone.0149128.g002
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The above procedure was performed independently for all the onset asynchrony values to
compare the predicted concurrent vowel identification scores. The decision model had a two-
step process. First, 5 different NSIM indices (for 5 single vowels) were scanned to determine
the two single vowels that produced the first and second highest NSIM indices to the target

Fig 3. Diagram of the model implementation that predicts concurrent vowel identification using the
AN responses.

doi:10.1371/journal.pone.0149128.g003
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pair. Second, the model testing program compared the predicted vowels with the original target
pair. When the model correctly predicted both vowels, the testing program recorded the neu-
ral-observer’s response as correct. Per each testing run, each of the seven target vowel pairs was
presented to the model 5 times in random order and a percent correct score was thus calculated
after 35 vowel-pair presentations as the percent of both vowels correctly predicted by the
model. For each testing condition, the mean prediction score averaged across 14 model runs
was obtained.

Implementation of the internal noise. Without any internal noise, the model predictions
of concurrent vowel identification showed better identification performance than human sub-
jects (see Fig 4), because the model did not take into account any effect of trial-to-trial variabil-
ity on predicted performance, which is widely observed in neural systems [32, 33]. Such trial-
to-trial variability would obscure the pattern of neural dynamics of a single-trial neural
response to an acoustic stimulus [34], thereby decreasing performance in model predictions.
In the current study, internal noise was implemented either at the level of the neurogram gen-
eration or at the neurogram comparison level. Acoustic signals present well-defined speech
information when they arrive at the listener’s ear, but the signals are then transformed into
mechanical energy in the middle ear. The cochlea transforms the original acoustic information
into the discharge patterns of the AN responses. Due to cochlear nonlinearities, the AN neural
information might be delayed, distorted, or influenced by descending efferent neural activity.
Internal noise may also be generated by the stochastic nature of neuronal firing or from differ-
ent levels of arousal or fluctuations in attention [35, 36, 37]. We sought to determine if adding
internal noise to either the neurogram generation or neurogram comparison schemes would
show the best fit to the human data.

To simulate internal noise affecting neurogram generation, a Gaussian noise matrix was
added to an original neurogram. A Gaussian noise was selected because it is simple (probability
density function equal to a normal distribution) and is frequently used in studies examining
sensory noise [38, 39]. The Gaussian noise matrix was created newly for each simulation (i.e.
fresh noise) with the same size as the original neurogram (30-by-38 matrix). The strength of
the internal noise was controlled by varying the signal-to-noise (SNR) between the RMS values
of the original neurogram matrix and the Gaussian noise matrix. In Fig 1(A), the neurogram
for the vowel /ɑ/ in the absence of any internal noise is shown, whereas Fig 1(B) and 1(C)
shows the neurograms for the same vowel with increasing levels of internal noise (20 and 0 dB
SNR, respectively). Note that the higher SNR values indicate the low intensity internal noise.
When internal noise registering a 20 dB SNR was added to the original neurogram, the neural
activities were generally well preserved (Fig 1B). However, when the strength of the internal
noise was increased to 0 dB SNR, the neural activities associated with formant frequencies were
greatly obscured (Fig 1C).

To simulate the internal noise affecting neurogram comparison procedures, Gaussian noise
matrices (size: 28-by-36) were added to the matrices of the luminance and structure statistics
in Eq 1 to introduce probabilistic decision behavior. The strength of the internal noise here was
varied by changing the SNR between the RMS values of the luminance / structure statistics and
the Gaussian noise matrix. To quantify the difference between the human data and model pre-
dictions, the mean squared error (MSE) was computed as a function of the strength of internal
noise as follows:

MSE ¼ 1

N

XN

i¼1

ðObserved scorei � Predicted scoreiÞ2 ð2Þ
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Results
Fig 4 shows mean identification scores averaged across 14 human subjects and across 14 model
runs as a function of onset asynchrony. The blue colored areas show the range of identification
performance (mean ± one standard deviation) for 14 human NH subjects from the previous
study [12]. In Fig 4, different symbols represent different model conditions. Error bars for the
model predictions were not plotted for clarity, but standard errors across 14 model runs were
generally below 3 percentage points. Identification performance increased with increasing
onset asynchrony in both human subjects and the neural-observer model.

Fig 4(A) shows model predictions with the internal noise at the level of neurogram genera-
tion for noise levels between 4 and 12 dB SNR. Likewise, Fig 4(B) shows model predictions
with the internal noise affecting neurogram comparisons, but note that different levels of inter-
nal noise was used here: 56 to 64 dB SNR. Table 2 shows the mean square error (MSE) for the
internal noise at neurogram generation or neurogram comparison as a function of the level of
internal noise. The MSE results demonstrated that, for the internal noise affecting neurogram
generation, the lowest MSE was shown for an 8 dB SNR. In contrast, for the internal noise
affecting neurogram comparison, the lowest MSE was found for a 60 dB SNR. Therefore, much
more internal noise was required to simulate the human data when the internal noise was
introduced at the level of neurogram generation.

In Fig 4 the range of human identification performance is rather large across different vowel
pairs. By collapsing data across vowel pairs, information is necessarily lost. Therefore, Fig 5(A)
and 5(B) shows model predictions for individual vowel pairs for the SNR conditions showing

Fig 4. Predicted concurrent vowel identification scores by the computational model as a function of onset asynchrony. The range of concurrent
vowel identification scores (mean ± one standard deviation) obtained from 14 human subjects in Hedrick and Madix (2009) is shown as a blue-colored area.
Model predictions in the current study are shown for the internal noise at the level of neurogram generation (A) and comparison (B). Note that a different
range of the level of internal noise was used for the left and right panels (see legends). Error bars for the model predictions are not plotted for clarity, but
standard errors across 14 model runs were generally below 3%.

doi:10.1371/journal.pone.0149128.g004
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the best match to the human data. To facilitate the comparison between the model predictions
and human data for individual vowel pairs, the human data reported in Figure 1 from Hedrick
and Madix (2009) are also plotted in Fig 5(C). Note in particular that the model predictions
with internal noise at the level of neurogram comparison show slopes similar to that of the
human data from Hedrick and Madix (2009) [12], whereas model predictions with internal
noise at the level of neurogram generation all show shallow slopes with increasing onset
asynchrony.

Discussion
This paper presents a neural computational modeling study of concurrent vowel perception.
Previous research has shown that concurrent vowel perception improves with increasing tem-
poral onset asynchrony of the vowels, even if the vowels have the same fundamental frequency.
The current study investigated possible underlying neural processing factors involved in con-
current vowel perception. The individual vowel stimuli from a previous study were used as
inputs for a phenomenological AN model. Resultant neurograms of concurrent vowel stimuli
were then matched with the neurograms of the single vowels using a quantitative comparison
metric (NSIM). To facilitate optimum matches between the model data and the behavioral

Table 2. The mean square error (MSE) between the human data andmodel predictions as a function of the level of the internal noise. The best
match between the human and model data was observed at 8 and 60 dB signal-to-noise ratio (SNR) for the internal noise simulated at the level of neurogram
generations and comparisons, respectively.

(A) Internal noise simulated at the level of neurogram generations

SNR 4 dB 6 dB 8 dB 10 dB 12 dB No noise

MSE 380.2 146.6 52.6 90.0 245.8 540.1

(B) Internal noise simulated at the level of neurogram comparisons

SNR 56 dB 58 dB 60 dB 62 dB 64 dB No noise

MSE 295.8 64.0 38.6 198.0 315.0 540.1

doi:10.1371/journal.pone.0149128.t002

Fig 5. Predicted concurrent vowel identification scores as a function of onset asynchrony, with the legend showing the seven individual vowel
pairs.Model predictions are shown for the internal noise at the level of neurogram generation (A) and comparison (B). Human data reported from Hedrick
and Madix (2009) are replotted in (C).

doi:10.1371/journal.pone.0149128.g005
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data, internal noise was added at either an early stage of processing (to the neurogram) or a late
stage of processing (to the NSIM procedure). Our results show that neurograms derived from a
phenomenological AN model are quite good at distinguishing concurrent vowels, and that
noise has to be added to help the model match data from listeners with NH. The best fit to the
behavioral data was achieved with a SNR of 8 dB for noise added at the level of neurogram gen-
eration, and with a SNR of 60 dB for noise added at neurogram comparison. Thus, a substantial
amount of noise had to be added at the level of neurogram generation to match the human
data; this result reflects the apparent robustness of encoding of acoustic information by the
peripheral auditory system. Only a small amount of noise, however, had to be added to the
neurogram comparison procedure to match the human data. Although we did not manipulate
F0 nor attempt to simulate F0 cues in the current study, our findings are in general agreement
with recent work that has shown that the accepted model for concurrent vowel perception,
relying on F0 segregation, is incomplete and that other factors are at play [22].

The current study presents a unique theoretical framework for concurrent vowel identifica-
tion that provides a link between the acoustic temporal waveform and its neural representation
in the AN fibers. Furthermore, the link between peripheral and central processing of concur-
rent vowel identification was modeled. The predicted concurrent vowel identification data sug-
gest that the implementation of internal noise is critical to accurately simulate the human data.
The significant role of internal noise in the current study is consistent with the findings from
other sensory systems such as the visual system [40], the somatosensory system [41], taste pro-
cessing [42], and with general cortical functions [43].

The relative difference in the effectiveness of the internal noise at the level of neurogram
generation and neurogram comparison suggests that different processes or stages in concurrent
vowel identification may thus be affected differently by internal noise effects. The use of inter-
nal noise may reflect processes that are not included in AN response neural modeling, and may
more likely arise from neural properties or from attention or arousal mechanisms. There was
no attempt in the current study to model attention or arousal, nor to model components of
working memory such as the phonological loop [44] or template matching [13]. Nevertheless,
the preliminary nature of the current study does lend itself to further explorations of these
components, as well as to explore why internal noise had such differing effects at different
modeling levels. The current study demonstrated that there was a difference in the strength of
internal noise at the levels of neurogram generations and comparisons that produced the best
account of the human data. A smaller amount of the internal noise (60 dB SNR) was required
at the level of neurogram comparisons to produce the best match with the human data, includ-
ing creating slopes similar to that of human data, whereas relatively strong internal noise was
needed at the level of neurogram generations (8 dB SNR) to simulate the human data. These
simulation data suggest the importance of the category assignment and decision-making pro-
cess for concurrent vowel identification that may occur in more central auditory system
beyond the cochlear nerve. In addition, human listeners’ psychoacoustic performance could be
substantially affected by the central “processing efficiency”, which is the listener’s ability to use
optimally the peripheral information [45, 46, 47]. We speculate that the variability in concur-
rent vowel identification performance might be partly related to differences in the central “pro-
cessing efficiency” across individual subjects. Such hypothesis warrants a future investigation.

Of particular interest is extension of the psychoacoustic and computational modeling frame-
work to other acoustic parameters (e.g., F0, stimulus levels, and larger segments of speech than
vowels) and biological parameters (e.g., effects of sensorineural hearing loss, aging). A recent
study [48] demonstrated that the neuronal populations in primary auditory cortex of monkeys
can resolve the lower harmonics of single harmonic complex tones via the rate-place code. More
importantly in relation to the current study, it was recently demonstrated that the primary
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auditory cortex represents the lower harmonics and formant information in a sufficient manner
to drive concurrent vowel identification [49]. Thus it may be plausible to speculate that the audi-
tory peripheral processing is necessary but not sufficient in terms of segregating vowels, and the
role of the central processing may be more critical for the optimum vowel identification process.

Extension of the current work to elderly listeners and to listeners with sensorineural hearing
loss could, to some degree, determine the effect size of peripheral and more central processing
in perception of concurrent vowels. Based on information processing models of speech percep-
tion [50, 51], the interaction of peripheral and more central processing may not allow for a
completely clear separation of lower and upper levels of processing, in contrast to models of a
serial, hierarchical nature [52]. There is yet insufficient information on how efferent auditory
processing might influence concurrent vowel perception [21, 53, 54]. Extensions of the current
study to include participants who have slower cognition and/or a peripheral hearing loss, or
who use cochlear implants could thus provide valuable theoretical and clinical information.

It may be that onset asynchrony benefit was realized in listeners by simply attending to por-
tions of the asynchronous pairs in which only one vowel was present. Because the current
study does not present behavioral data for different time slices of the asynchronous pairs, nor
does our model examine different time slices of the asynchronous pairs, we cannot say with
certainty that improvements in vowel identification with increasing onset asynchrony relies
solely on higher-order non-primitive mechanisms. This will remain an issue for further work.

Supporting Information
S1 File. Single vowel /e/.
(WAV)

S2 File. Single vowel /a/.
(WAV)

S3 File. Single vowel /u/.
(WAV)

S4 File. Single vowel /ae/.
(WAV)

S5 File. Single vowel /er/.
(WAV)
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