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Prediction and characterization of 
human ageing-related proteins by 
using machine learning
Csaba Kerepesi1, Bálint Daróczy1, Ádám Sturm2,3, Tibor Vellai2,3 & András Benczúr1

Ageing has a huge impact on human health and economy, but its molecular basis – regulation and 
mechanism – is still poorly understood. By today, more than three hundred genes (almost all of them 
function as protein-coding genes) have been related to human ageing. Although individual ageing-
related genes or some small subsets of these genes have been intensively studied, their analysis as 
a whole has been highly limited. To fill this gap, for each human protein we extracted 21000 protein 
features from various databases, and using these data as an input to state-of-the-art machine 
learning methods, we classified human proteins as ageing-related or non-ageing-related. We found a 
simple classification model based on only 36 protein features, such as the “number of ageing-related 
interaction partners”, “response to oxidative stress”, “damaged DNA binding”, “rhythmic process” 
and “extracellular region”. Predicted values of the model quantify the relevance of a given protein in 
the regulation or mechanisms of the human ageing process. Furthermore, we identified new candidate 
proteins having strong computational evidence of their important role in ageing. Some of them, like 
Cytochrome b-245 light chain (CY24A) and Endoribonuclease ZC3H12A (ZC12A) have no previous 
ageing-associated annotations.

Genetic analysis of mortality rate has clearly revealed that ageing has strong genetic components1–4. Previously 
identified ageing-related genes are summarized in GenAge, a high quality, manually curated database5. The 
human section of GenAge (version 18) consists of 305 ageing-related genes. This set of genes includes a few 
members that are directly linked to human ageing, as well as the best candidate genes are supported by evidence 
from model organisms, using cellular experiments and functional analyses (see http://genomics.senescence.info/
help.html#genage).

Features that distinguish ageing-related genes from the set of remaining human genes (hereafter referred to 
as “non-ageing-related” genes) may help us better understand the mechanism and regulation of the human age-
ing process as a whole. It was shown that ageing-related proteins, compared to non-ageing-related ones, tend to 
have (i) more protein-protein interaction (PPI) partners, (ii) higher K-core values (K-core is a network centrality 
measure defined in the Methods section), (iii) more ageing-related protein-protein interaction partners, and (iv) 
higher co-expression coefficients with other genes6.

In the present study, we analyzed not only the co-expression and protein-protein interaction features but 
also thousands of other protein features. Moreover, we searched not only one-variable differences between 
ageing-related proteins and non-ageing-related proteins but, using machine learning, we found a multi-variable 
model that explains what makes a protein ageing-related.

Machine learning is a rapidly growing field of computer science, in which we construct algorithms that can 
learn from and make predictions on data. Machine learning has many applications for science and technology7, 
including genetics and genomics8. Here, we applied supervised machine learning to fit a classification model 
of the protein features to the set of known ageing-related and non-ageing-related proteins, in order to predict 
ageing-related proteins and, at the same time, to understand ageing-related properties of the proteins.

A few dozen ageing studies have applied supervised machine learning methods9, some of them based on the 
GenAge database (as in the present study). Support-vector machine (SVM), k-nearest neighbour (KNN), and 
decision tree classifiers were used for predicting ageing-related genes of the nematode (Caenorhabditis elegans), 
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fruit fly (Drosophila melanogaster), and mouse (Mus musculus) genomes10–12. Furthermore, a new feature selec-
tion method was constructed for the Bayesian network classifier and applied for predicting pro- or anti-longevity 
effects of genes of the most important model organisms13.

For human genes, naïve Bayes classifier and J48 decision tree were used to classify human DNA repair genes 
as ageing-related or non-ageing-related14. To our knowledge, only one study applied supervised machine learn-
ing using the whole set of human protein-coding genes6. Here we made several improvements on the methods 
of that pioneering study. For example, as databases have been extended in the last 7 years, we could use 304 
ageing-related genes (from GenAge) instead of 140. We extracted not only 5 but 21000 protein features, and 
applied not only 280 but all of the 20183 proteins for every single training. Hence, our improved methodology has 
yielded new insights for ageing-related proteins.

We applied three state-of-the-art machine learning tools, XGBoost (a scalable tree boosting system15), logistic 
regression (a regression analysis of binary sequences16), and support-vector machine (a binary classifier for train-
ing data that are linearly non-separable17), to classify human proteins as ageing-related or non-ageing-related. The 
models are built based on 21000 protein features extracted from different databases (UniProt18, Gene Ontology19 
and GeneFriends20), and fit to known ageing-related human proteins (extracted from GenAge5). The models 
are built from the full set of human proteins in Swiss-Prot, using the proteins included in the GenAge data-
base as instances of the ageing-related class and all other human proteins in Swiss-Prot as the instances of the 
non-ageing-related class. Through this process, we uncovered the characteristic ageing-related features of human 
ageing-related proteins and quantified the relevance of a given protein in the regulation of the human ageing 
process as well as we predicted new ageing-related protein candidates.

We trained and tested our predictive methods as follows. First, we labelled every protein as an aging-related 
or non-aging-related protein on the basis of existing annotation in GenAge. Second, we selected a machine learn-
ing algorithm along with a fixed parameter setting. We then applied a 5-fold cross-validation, in which we split 
the data into 5 random parts and in each fold (round), used 4 parts to train the machine learning method and 
evaluated the prediction on the fifth one. Prediction for a protein is a real number between 0 and 1. At the end of 
the 5 fold-cross-validation, we have predicted values for the entire set of proteins, which ranks the proteins from 
weakest to strongest expected aging-relatedness. Then we compared the predicted values to the labels to assess 
prediction accuracy. Based on statistical accuracy measurements, we may compare the combination of algorithms 
and parameters to select the best performing method. The final prediction used to quantify the relevance of a 
given protein in the regulation of the human ageing process as well as to identify new ageing-related protein can-
didates. For more details of our method see the Methods section.

Results
A simple model to classify human proteins into ageing-related or non-ageing-related 
classes.  One of our main results is a simple model with a high prediction performance that applies only 36 
protein features (listed in Table 1). The model was built by using gradient boosted trees15,21, for feature selection 
and training, as described in the Methods section. This simple model shows the most important features of the 
classification and provides an insight into the role of the individual protein features in the regulation of the ageing 
process.

The model (Table 1) contains only binary (true or false) features. For each human protein, we can compute 
the predicted relevance of ageing as follows: for each row of the table, we check whether the given feature is true 
for the protein, and then we add up the corresponding scores. The larger the final sum, the more important the 
protein is in the human ageing process by the model. Only the features that are listed in Table 1 can increase or 
decrease the ageing relevance score, hence these are the most important features in the human ageing-process by 
the model.

The results of Table 1 can be interpreted as follows. In general, the most important types of features are the 
features representing information about the number of ageing-related neighbours in the PPI network, which is 
consistent with earlier findings demonstrating that human ageing-related proteins tend to interact with other 
ageing-related proteins6. We note that degree (number of neighbours, regardless of whether or not they are 
ageing-related) is not among the most important features of Table 1, because in our machine learning predictions, 
degree had no additional prediction power when used together with the number of ageing-related neighbours.

There are twenty-one important Gene Ontology features of the biological process (BP) category (e.g. “regula-
tion of insulin-like growth factor receptor signaling pathway” or “response to oxidative stress”), four important 
Gene Ontology features of the cellular component (CC) category, “extracellular region”, “chromosomal part”, 
“mitochondrion” and “nucleoplasm”, and six important Gene Ontology features of the molecular function cat-
egory, “damaged DNA binding”, “organic cyclic compound binding”, “enzyme binding, “growth factor binding”, 
“protein binding” and “chromatin binding”. The fact that all of the molecular function features are binding type is 
consistent with the importance of the number of ageing-related neighbours.

Table 1 also shows that most of the features (32 of the 36) have a positive score, hence their existence in pro-
teins indicates ageing-relatedness. Contrary, the existence for other features (4 of the 36 with negative scores: 
“ageing_n_0”, “ageing_n_1”, “ageing_n_2”, “ageing_n_3_4”) is an indicator of the non-ageing-related class.

Human proteins with the highest predicted relevance in ageing.  Sorting human proteins by pre-
dicted relevance in the regulation of the ageing process can help find the most promising targets for pharmaco-
logical or other interventions to extend human healthy lifespan. Table 2 shows the 20 most relevant ageing-related 
proteins we obtained by performing 20 predictions for each, by applying three different methods (XGBoost, SVM 
and logistic regression – see the Methods section) on the final feature set that was selected by XGBoost and sorted 
by the average of the predicted scores. The process is described in detail in the Methods section. Supplementary 
Table S1 displays a more detailed list of the predicted ageing relevance of all human proteins.
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17 out of the 20 proteins in Table 2 have a record in the GenAge database with a detailed evidence of why it 
is selected in the database as an ageing-related member. For example, there are experimental evidence for the 
ageing-association of the homologues of human “forkhead box protein O1” (FOXO1) in worms22, fruit flies23, and 
mice24. Another example is the serine/threonine protein kinase (MTOR_HUMAN), the role of which in the age-
ing process was demonstrated in each of the main ageing models (C. elegans25, Drosophila26, yeast27 and mouse28), 

feature ID description of the feature category score
relative frequency in 
ageing/non-ageing

ageing_n_0 number of ageing-related neighbours = 0 Net −2.896 38.8/92.1

ageing_n_1 number of ageing-related neighbours = 1 Net −2.275 15.8/5.6

ageing_n_2 number of ageing-related neighbours = 2 Net −1.168 15.1/1.4

ageing_n_3_4 number of ageing-related neighbours = 3,4 Net −0.744 12.8/0.6

GO:0043567 regulation of insulin-like growth factor 
receptor signaling pathway BP 1.327 2.6/0.1

GO:0006979 response to oxidative stress BP 0.9 21.7/1.4

GO:0003684 damaged DNA binding MF 0.837 8.6/0.2

GO:0009987 cellular process BP 0.805 99.3/70.0

GO:0005576 extracellular region CC 0.636 21.7/8.8

GO:0065008 regulation of biological quality BP 0.563 60.2/14.9

GO:0051276 chromosome organization BP 0.515 14.5/1.6

GO:0032502 developmental process BP 0.497 69.4/22.5

GO:0043066 negative regulation of apoptotic process BP 0.474 32.9/3.5

GO:0009628 response to abiotic stimulus BP 0.441 38.2/4.4

GO:0007169 transmembrane receptor protein tyrosine 
kinase signaling pathway BP 0.413 19.1/2.1

GO:0010332 response to gamma radiation BP 0.411 8.6/0.1

GO:0019838 growth factor binding MF 0.405 5.3/0.4

GO:0040008 regulation of growth BP 0.398 22.0/2.8

GO:0044710 single-organism metabolic process BP 0.388 42.1/15.4

GO:0031325 positive regulation of cellular metabolic 
proc BP 0.331 64.8/12.8

GO:0050896 response to stimulus BP 0.288 77.3/22.8

GO:0031667 response to nutrient levels BP 0.285 16.8/1.5

GO:0005515 protein binding MF 0.271 75.7/24.4

GO:2000377 regulation of reactive oxygen species 
metabolic process BP 0.259 13.8/0.6

GO:0051716 cellular response to stimulus BP 0.257 62.2/11.1

GO:0005654 nucleoplasm CC 0.235 49.7/14.1

GO:0080135 regulation of cellular response to stress BP 0.225 27.3/2.6

GO:0048511 rhythmic process BP 0.224 15.1/1.2

GO:0044427 chromosomal part CC 0.197 24.0/3.4

ageing_n_5+ number of ageing-related neighbours ≥ 5 Net 0.192 17.4/0.2

GO:0003682 chromatin binding MF 0.171 17.1/2.1

GO:0006974 cellular response to DNA damage stimulus BP 0.167 27.6/3.1

GO:0097159 organic cyclic compound binding MF 0.166 62.8/28.8

GO:0005739 mitochondrion CC 0.16 20.4/6.1

GO:0019899 enzyme binding MF 0.128 39.8/6.8

GO:0009894 regulation of catabolic process BP 0.125 25.7/3.4

Table 1.  A simple model, produced by tree boosting (XGBoost), to classify human proteins as ageing-related or 
non-ageing-related. Features are listed by ID and description. Feature category can take values “Net” (Network), 
“MF” (Molecular Function), “CC” (Cellular Component), or “BP” (Biological Process). The table consists of only 
binary (true or false) features. For each protein we can compute the predicted relevance of ageing as follows: 
for each row of the table, we check whether the given feature is true for the protein and then we add up the 
corresponding scores. The larger the final sum, the more important role of a protein is predicted in the human 
ageing process. For example, suppose that a protein has 3 ageing-related neighbours and their UniProt record 
contains only two GO terms, “response to oxidative stress”, and “regulation of growth”. Then the predicted 
ageing relevance of that protein is − 0.744 + 0.9 + 0.398 = 0.554. Predicted scores produced by the above 
summation method are presented in the “Table1_pred” column of Supplementary Table S1. Scores obtained 
by summation are not necessarily bounded by 1. The actual output of XGBoost, which we used in the rest of 
the paper, was normalized to take values in [0…1]. In fact, we use the average of normalized predicted values 
made by several models (see the Methods). The relative frequency of features in the ageing-related and the non-
ageing-related sets of proteins, a value independent of our particular model, is displayed in the last column.
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first shown by one of the authors of this paper. Finally, we note that “Werner syndrome ATP-dependent helicase” 
(WRN_HUMAN) is one of the strongest candidates for proteins influencing human ageing with direct evidence 
as mutation of WRN gene leads to Werner syndrome, which is characterized by premature ageing (progeria)29.

Whether or not a gene is annotated with the GO term “aging” (GO:0007568) is also displayed in Table 2; 
however, this term and its descendant terms are not used for modelling, we just display it as extra information. 
Interestingly, some proteins with a relatively high predicted score are not assigned to the GO term “aging”, show-
ing the difference between the set of ageing-related proteins of GenAge and the set of proteins annotated with 
GO term “aging”.

New candidates of ageing-related human proteins predicted by machine learning.  Models we 
found here predict new candidates of ageing-related proteins that were previously not annotated as ageing-related 
in GenAge database. The 20 most promising new ageing-related candidates are listed in Table 3, and sorted by 
their average predicted values. The list was obtained from Supplementary Table S1 by selecting the 20 highest 
scored (average predicted value) proteins with no GenAge annotation. They can be considered as proteins hav-
ing strong computational evidence of their regulator role in the human ageing process. Proteins highlighted in 
the following part of this section can be good candidates to expand GenAge database with them in the future. 
Table 3 contains some proteins whose counterparts have experimental evidence for regulating the ageing process 
in genetic model organism (BECN-1_HUMAN30, HS90B_HUMAN31).

SIR2_HUMAN is an NAD+ (nicotinamide adenine dinucleotide)-dependent deacetylase. SIR2 overexpres-
sion has been reported to increase lifespan in Caenorhabditis elegans and Drosophila melanogaster32,33. Later these 
findings were refuted and previous, encouraging results of SIR2’s lifespan extending effect were attributed to a 
background mutation in the tested strains because of outcrossing of the lines with the wild type abrogated the 
longevity increase of SIR2 overexpression34. However, it was found later that the out-crossed strains are still 
maintained a 10–25% lifespan extension, though it was less than previously described in the original finding35. 
While the role of SIR2 in lifespan determination is still debated experimentally, our machine learning algorithms 
reinforced the important role of SIR2 in the ageing process (Table 3).

Caveolin-1 (CAV1_HUMAN) is a structural, scaffolding protein component of caveolae, which is an invag-
ination of the plasma membrane enriched in cholesterol and glycosphingolipids36. Since it has been found that 
Caveolin-1 expression increases during ageing of the human prostate37, and the knockdown of Caveolin-1 gene 

Uniprot ID recommended name in UniProt ageing neighbours “aging” GO GenAge average predicted value

BCL2_HUMAN Apoptosis regulator Bcl-2 4 yes yes 0.981

FOXO1_HUMAN Forkhead box protein O1 4 no yes 0.96

ERCC1_HUMAN DNA excision repair protein ERCC-1 3 yes yes 0.944

PCNA_HUMAN Proliferating cell nuclear antigen 4 no yes 0.936

FOXO3_HUMAN Forkhead box protein O3 {ECO:0000305} 5 yes yes 0.929

SIR2_HUMAN NAD-dependent protein deacetylase sirtuin-2 2 no no 0.909

PTEN_HUMAN Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase 
and dual-specificity protein phosphatase 5 yes yes 0.882

APEX1_HUMAN DNA-(apurinic or apyrimidinic site) lyase 2 yes yes 0.857

HDAC2_HUMAN Histone deacetylase 2 3 no yes 0.849

MTOR_HUMAN Serine/threonine-protein kinase mTOR 3 yes yes 0.832

BECN1_HUMAN Beclin-1 3 yes no 0.827

AKT1_HUMAN RAC-alpha serine/threonine-protein kinase 10 yes yes 0.827

KPCD_HUMAN Protein kinase C delta type 3 yes yes 0.808

CDK1_HUMAN Cyclin-dependent kinase 1 2 yes yes 0.804

SYUA_HUMAN Alpha-synuclein 2 yes no 0.801

P73_HUMAN Tumor protein p73 2 no yes 0.8

PARP1_HUMAN Poly [ADP-ribose] polymerase 1 6 no yes 0.798

PRKDC_HUMAN DNA-dependent protein kinase catalytic subunit 4 no yes 0.791

ABL1_HUMAN Tyrosine-protein kinase ABL1 6 no yes 0.782

WRN_HUMAN Werner syndrome ATP-dependent helicase 9 yes yes 0.782

Table 2.  Human proteins with the highest predicted relevances in ageing. The 20 highest scored proteins 
considered the entire set of human proteins (regardless of whether or not the protein is included in the GenAge 
database), sorted by decreasing predicted relevance in ageing (average predicted value). Each row consists of an 
ID of the given protein (“Uniprot ID”), a description (“recommended name in UniProt”), the number of ageing-
related protein neighbours of the given protein in the protein-protein interaction network (“ageing neighbours”), 
a statement about its assignment to the GO term “aging” (“aging GO”), a statement about its inclusion in 
GenAge (“GenAge”), and the average predicted value of 20 predictions of three machine learning methods 
each (XGBoost, SVM and LR) by using the final feature set selected by XGBoost (“average predicted value”). 
Average predicted values close to one indicate very strong predicted relevance for the human ageing process. 
Supplementary Table S1 is a more detailed list with all of the human proteins.
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accelerates the ageing process in mice38, it can be assumed that Caveolin-1 may have a cell protective, anti-ageing 
function.

LRRK2_HUMAN is a member of the leucine-rich repeat kinase family. Mutations in LRKK2 gene are 
implicated in the development of Parkinson’s disease39. While loss-of-function mutations in LRRK2 cause 
age-dependent neurodegeneration in Drosophila40, gain-of-function mutations in the gene confer resistance to 
age-related motor decline in mice, possibly via enhancement of LRRK2 kinase activity41. So, it can be assumed 
that LRRK2 may also have a potential neuroprotective, anti-ageing function.

Histone deacetylases (HDACs) are primarily involved in the deacetylation of histones but some HDACs, such 
as HDAC6_HUMAN, can also affect the function of cytoplasmic non-histone proteins. HDAC6 overexpression 
correlates with tumorigenesis, and improves the survival of cancer cells, which presupposes a cell protective 
function42. Indeed, the reduced expression of HDAC6 contributes to a decline in stem cell numbers43 and brain 
function44 during ageing. Furthermore, HDAC6 overexpression in transgenic mice increases the reproductive 
lifespan of animals45.

Additionally, we found a few proteins that have high predicted relevance in ageing but have no ageing-related 
annotation in GenAge, nor in the whole literature. Such proteins are Cytochrome b-245 light chain (CY24A_
HUMAN) and Endoribonuclease ZC3H12A (ZC12A_HUMAN). CY24A_HUMAN is the 64th most rele-
vant protein in ageing by our predictions (Table 3, Supplementary Table S1), and ZC12A_HUMAN is the 78th 
most relevant protein in ageing by our predictions (Supplementary Table S1). Neither of these proteins have 
ageing-related neighbours but both have 16 GO features of the 31 GO features of Table 1. The 16 ageing-related 
predictor features for each of these two proteins are listed in Supplementary Table S2.

Figure 1 shows how the new candidates interact with each other and with human ageing-related proteins of 
GeneAge. To evaluate the final prediction, we plotted the receiver operating characteristic curve (ROC, Fig. 2a). 
The performance of the model was 0.9322, a result we obtained by measuring the area under the curve of the 
receiver operating characteristic curve (ROC AUC). It is shown that ROC AUC (shortly: AUC) is the probability 
that a randomly chosen positive example is predicted with a higher score than a randomly chosen negative exam-
ple46, hence AUC is independent of the class imbalance.

To compare our prediction to the ageing-related proteins of GenAge, and the set of proteins annotated with the 
GO term “aging”, we chose a threshold (0.24) for the predicted relevance in ageing (“avg pred” in Supplementary 
Table S1) (Fig. 2c); a protein is predicted as ageing-related by the models if its predicted relevance in ageing is 
at least 0.24. We selected this threshold because at this point, there is a relatively high true positive rate (0.4638) 
and, at the same time, a relatively low false positive rate (0.0081) and maximal F1 score (0.46458) and maximal 
MCC (0.45641) are reached at this point (FP = 162, TP = 141, FN = 163, TN = 19717, precision = 0.46535, recall 
= 0.46382, accuracy = 0.98390). Evaluation measures for more threshold values are available in Supplementary 
Table S3, and displayed in Fig. 2b. For definitions of the evaluation measures see the Methods section.

Uniprot ID recommended name ageing neighbours ageing GO GenAge average predicted value

SIR2_HUMAN NAD-dependent protein deacetylase sirtuin-2 2 no no 0.909

BECN1_HUMAN Beclin-1 3 yes no 0.827

SYUA_HUMAN Alpha-synuclein 2 yes no 0.801

CAV1_HUMAN Caveolin-1 4 no no 0.745

LRRK2_HUMAN Leucine-rich repeat serine/threonine-protein 
kinase 2 6 no no 0.734

BAD_HUMAN Bcl2-associated agonist of cell death 3 no no 0.721

PARK7_HUMAN Protein DJ-1 2 no no 0.711

HS90B_HUMAN Heat shock protein HSP 90-beta 8 no no 0.709

SMAD3_HUMAN Mothers against decapentaplegic homolog 3 2 no no 0.662

KDM1A_HUMAN Lysine-specific histone demethylase 1A 2 no no 0.66

ERBB4_HUMAN Receptor tyrosine-protein kinase erbB-4 3 no no 0.633

HDAC6_HUMAN Histone deacetylase 6 2 no no 0.606

FACD2_HUMAN Fanconi anemia group D2 protein 2 no no 0.585

RARA_HUMAN Retinoic acid receptor alpha 5 no no 0.567

XRCC1_HUMAN DNA repair protein XRCC1 4 no no 0.567

CY24A_HUMAN Cytochrome b-245 light chain 0 no no 0.562

SRC_HUMAN Proto-oncogene tyrosine-protein kinase Src 10 no no 0.562

CBL_HUMAN E3 ubiquitin-protein ligase CBL 5 no no 0.561

XBP1_HUMAN X-box-binding protein 1 0 no no 0.551

FYN_HUMAN Tyrosine-protein kinase Fyn 3 no no 0.543

Table 3.  New candidates of ageing-related human proteins predicted by machine learning. The 20 highest 
scored proteins with no ageing-related GenAge annotation, sorted by decreasing predicted relevance in ageing 
(average predicted value). The columns have the same meanings as in Table 2.
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Discussion
In this study, we ordered the human proteins on the basis how (to which extent) machine learning algorithms, 
which automatically build a classifier by learning from a set of labelled data, predict their importance in the 
regulation or mechanism of the ageing process. The results we obtained have at least two important relevancies. 
First, they may help identify the ageing-related proteins that have a particularly prominent role in the human 
ageing process (quantifying the importance of ageing-related proteins in the process). Second, the results may 
help uncover novel proteins with an ageing function (the role of these proteins in ageing has not been recognized 
previously). Furthermore, we created a simple, biologically easily interpretable model, based on only 36 protein 
features that may help to understand better the human ageing process.

Ageing is driven by the progressive accumulation of unrepaired cellular damage4,47. Such damages mainly 
include oxidized, aggregated and misfolded proteins that are generated by mutations, environmental factors (e.g. 
heat stress) and metabolic agents (e.g. reactive oxygen species produced by mitochondrial respiration), and act 

Figure 1.  The top 20 new candidates of ageing-related proteins and their known and new ageing-related 
interaction partners. Blue rectangles represent the new candidates of ageing-related proteins (also listed in 
Table 2). Yellow rectangles represent the known ageing-related proteins of GenAge. Only the edges between 
yellow rectangles and blue rectangles and the edges between two blue rectangles are displayed. Nodes without 
edges are not displayed.
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as cellular toxins often causing the loss of the affected cells48. At advanced ages, massive levels of cell death can 
lead to the development of an age-associated degenerative disease (tissue dysfunction), and eventually organis-
mal death. Prior to this life period, cellular damages are effectively degraded (i.e. eliminated) by the repair and 
maintenance processes and mechanisms including autophagy (cellular self-eating) being the most significant 
form of breaking down cytoplasmic materials49,50, the ubiquitin-proteasome system and molecular chaperons, 
also called heat-shock proteins, as well as the DNA repair pathways. These processes and mechanisms, however, 
display a gradual decline in their capacity as the organism ages. In the present study, BCL2 (antiapoptotic B cell 
lymphoma protein), FOXO1 (Fork head box O transcription factor) and ERCC1 (DNA excision repair protein) 
were identified as proteins with the highest predicted relevance in human ageing (Table 2). Indeed, BCL2 protects 
cells from undergoing apoptosis (programmed cell death), and, in both nematodes and human cells, also interacts 
with the autophagic process through binding the core autophagy protein BECN1 (Beclin – Bcl2-interacting)51. 
FOXO1 operates as a downstream component of the insulin/IGF-1 (insulin-like growth factor) signalling path-
way, which plays a pivotal role in the control of ageing in divergent eukaryotic organisms. ERCC1 primarily func-
tions in DNA repair to lower the level of mutations causing cellular damage. Among the new candidate human 
ageing-related proteins we identified here, SIR2 (sirtuin, a NAD-dependent histone deacetylase) and BECN1 
were ranked to the top of the list (Table 3). There are several lines of evidence that both proteins are implicated in 
the ageing process. For example, BEC-1 (Beclin homologue), the C. elegans orthologue of human BECN1, was 
directly implicated in lifespan determination30. Together, we conclude that novel ageing-related protein candi-
dates we identified by machine learning represent mostly true hits, which can be validated by further experimen-
tal analysis.

Supervised machine learning methods are especially effective when they are used on a large set of examples. 
Earlier machine learning studies on human proteins applied only a few hundred features of a few hundred pro-
teins for each training6,14. By using extensive computational power, here we analyzed all the human proteins, and 
performed feature selection from 21000 protein features. In 2016, a novel machine learning system was devel-
oped, XGBoost15, which allows an effective feature selection even in case of a huge number of correlating features. 
XGBoost is applied widely by data scientists for example at data mining challenges15. However, according to our 
knowledge, we are the first who apply it for ageing research. Boosted trees may be widely used in further analysis 
of this field.

We used the GenAge database5 to assign the human proteins into “ageing-related” or “non-ageing-related” 
classes in the following way: the 304 proteins of GenAge served as “ageing-related” instances and the remaining 
19879 human proteins served as “non-ageing-related” instances. These classes then served as labels for training 
the classifiers. We applied GenAge because it focuses on the ageing process when selecting genes (see http://
genomics.senescence.info/help.html#genage). Genes, however, that modulate (primarily limit) lifespan inde-
pendently of the ageing process are omitted from this database. Such genes are involved in human pathologies or 
their activity is altered in case of extreme longevity. In addition, several other related supervised machine learning 
studies also rely on GenAge6,10–14.

One may ask why the “aging” GO annotation was not used in the process of labelling the proteins for training 
the classifiers. We used only GenAge for labeling for several reasons. First, GenAge has a more detailed explanation 
and references than the “aging” GO annotations. Second, we could find no study related to machine learning based 
on “aging” GO terms. Third, it seems that the “aging” GO assignment process does not focus on the regulation of 
the ageing process. For example, “aging” GO assignments of the proteins KRA43, KRA45, KRA47, KRA48, KRA49, 
K1C14, K1C16, KRT83 and KT33B are based on the single evidence that keratin and keratin-associated proteins 
in white hair are upregulated in comparison with black hair in microarray experiments52. However, using both 
GenAge and “aging” GO annotations would give a wider perspective of ageing. So, we performed a supplemen-
tary analysis based on a labelling where a given protein was assigned to the ageing-related class if it is included in 
GenAge or annotated with the “aging GO” term or its descendants. The results, methods and discussion sections of 
the supplementary analysis can be found in Supplementary Information, Supplementary Tables S4–S6.

Figure 2.  (a) Receiver operating characteristic curve (ROC) of our final averaged prediction (see “avg pred” 
in Supplementary Table S1). (b) Several evaluation functions calculated for different threshold values. (c) The 
number of overlapping proteins among GenAge, Aging GO (proteins annotated with the GO term “aging”) and 
ML prediction (proteins that have predicted values above the threshold 0.24).

http://genomics.senescence.info/help.html#genage
http://genomics.senescence.info/help.html#genage
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It is important to emphasize that the vast majority of human ageing-related proteins, including those listed in 
GenAge, have not been validated experimentally for a regulator role in human ageing. Relevant results have been 
obtained mostly from genetic model systems and assumed that they operate in an evolutionarily conserved way. 
As an example, defects in the transmembrane receptor for insulin/IGF-1 signalling have been shown to double 
lifespan in nematodes (C. elegans)53 but there is no evidence for a gene/protein that can extend human lifespan in 
such an extreme manner. Some degree of ageing regulator evidence exists only for a few human proteins. WRN, 
for example, which encodes a RecQ helicase involved in DNA repair, when is mutated, leads to Werner syndrome, 
the pleiotropic phenotype of which is characterized by extreme progeria29. Prominent or novel ageing proteins we 
identified in this work may become promising drug targets for further efforts in order to extend healthy lifespan 
in humans, which is a central focus in current pharmacological research.

Despite its medical and social significance, our present knowledge on the biological basis of the (human) age-
ing process is rather limited. As Cynthia Kenyon wrote in one of her review articles on ageing3, genetic factors that 
primarily cause ageing (i.e. the progressive, lifelong accumulation of cellular damage) remain unexplored. Recent 
theoretical considerations have tried to identify a novel class and high copy number of genes, mobile genetic 
elements, as primary genetic determinants of ageing54,55, but a relevant direct experimental evidence is still miss-
ing to support this assumption. In the light of these facts and as databases are being improved considerably, our 
present ageing-related ordering (Supplementary Table S1) may be modified in the future.

Here we ignored an ageing-related gene, telomerase reverse transcriptase (TERT), because it does not code for 
a protein. An interesting future direction would be to predict not only ageing-related proteins but ageing-related 
non-coding RNAs. Such a work could be based on results of the computational prediction and characterization of 
disease-associated human microRNAs56–59, and long non-coding RNAs60,61.

Conclusion
Although single ageing-related proteins have been intensively studied, their analysis as a whole has been largely 
limited. To fill this gap, in the present work, we applied three state-of-the-art machine learning tools to classify 
human proteins as ageing-related or non-ageing-related. The classification models are built on all human pro-
teins and 21000 protein features, and fit to known ageing-related human proteins of the GenAge database. The 
models were built from the full set of human proteins in Swiss-Prot, using the proteins included in the GenAge 
database as instances of the ageing-related class and all other human proteins in Swiss-Prot as the instances of the 
non-ageing-related class. The final prediction was used to quantify the relevance of a given protein in the regula-
tion of the human ageing process as well as to identify new ageing-related protein candidates.

Methods
We start this section by describing the source of known ageing-related proteins. We continue by describing the 
Gene Ontology features, the protein-protein interaction (PPI) network features and the co-expression feature. 
Then we detail how gradient boosted trees were applied for selecting the most relevant features. The main steps 
are shown in Fig. 3. We close this section by describing the best performing machine learning methods.

Ageing-related data (labels of the classification).  All the 20183 human Swiss-Prot (manually anno-
tated and reviewed UniProt) entries were downloaded from the UniProtKB protein database62 on April 6, 2017. 
In the human section of GenAge database (Build 18), we found 305 candidates of human ageing-related genes5. 
With the exception of a single gene TERT, all of these genes are included in Swiss-Prot. Hence, the target variable 
(labels) of the classification has value “1” for the 304 proteins of GenAge (“ageing-related class”) and value “0” for 
the remaining 19879 human proteins (“non-ageing-related” class).

Gene Ontology features.  We compute Gene Ontology (GO) features in a similar way as Freitas et al.14, but 
by also using the GO categories “cellular component” and “molecular function”. For each human Swiss-Prot pro-
tein entry we extract the associated GO terms, all of which are binary, being either yes or no. The difficulty of this 
task is that the GO assignments of the UniProt entries are not complete: an entry is associated with a given GO 
term but not all the ancestors containing the given GO term. For example, the ANKE1_HUMAN protein entry 
has only the GO term “calcium ion binding” (GO:0005509) but does not have the ancestor GO terms “metal ion 
binding” (GO:0046872), “cation binding” (GO:0043169), “ion binding” (GO:0043167), “binding” (GO:0043167), 
and “molecular function” (GO:0003674). To handle this problem, we downloaded the basic version of the Gene 
Ontology database (with the database filename “go-basic.obo”) and by walking upward in the GO hierarchy, we 
added all of the ancestor GO terms to the corresponding proteins. Note that “go-basic.obo” is guaranteed to be 
acyclic, and annotations can be propagated up the (directed) graph. The final feature table contains 20183 proteins 
and 21019 features. Although the notion of ageing-relatedness of the GenAge database is far from being identical 
to that of the Gene Ontology database (see Fig. 2), we removed the GO terms, along with their descendants, that 
contain “aging”, “senescence” or “age-related” as substring (these terms are also used by Chautard et al.63).

PPI network features.  Protein-protein interactions (PPIs) are included in the Swiss-Prot database. In our 
PPI network of 20183 nodes and 18784 edges, we only kept bidirectional and non-self interactions.

For each protein, we computed the following features based on the constructed network and the 
ageing-related data. In terms of interaction count statistics, we computed the number of neighbours, the num-
ber of ageing-related neighbours, and the ratio of the two. We also computed the K-core value64 of a node by 
using the “coreness” function of the R package igraph65. A K-core of a graph is a maximal subgraph in which 
each vertex has degree at least K. The K-core or coreness value of a node is the maximal value of K such that 
the node is in a K-core. We extracted further network features by Cytoscape, including “Average Shortest Path 



www.nature.com/scientificreports/

9SCIEnTIfIC RePOrTS |  (2018) 8:4094  | DOI:10.1038/s41598-018-22240-w

Length”, “Betweenness Centrality”, “Closeness Centrality”, “Clustering Coefficient”, “Eccentricity”, “Neighborhood 
Connectivity”, “Radiality”, “Stress” and “Topological Coefficient”66,67.

Co-expression feature.  For each human protein-coding gene, we computed its gene co-expression 
with the set of ageing-related genes using the GeneFriends database20. Co-expression is the number of human 
ageing-related genes of GenAge that increase or decrease in expression simultaneously in the RNAseq datasets 
processed by GeneFriends.

Feature selection with XGBoost.  Gradient boosted tree algorithms21 are capable of selecting the most 
important uncorrelated features by building small decision trees of a few of the most important features and gradu-
ally refining the small models by adding new trees. We used the XGBoost implementation15 for feature selection with 
the parameters shown in Table 4. We evaluated the generated models by 5-fold cross-validation and measured the 
area under the curve of the receiver operating characteristic curve (ROC AUC). For every feature set, we repeated 
this process 20 times. The average and standard deviation of the 20 predictions are shown in Table 4. In the first steps 
of the feature selection process we selected the most important Gene Ontology features except the GO terms related 
to ageing. Original Gene Ontology (GO) terms with the ageing-related terms produced an AUC of 0.8787 and 
16820 features. Original Gene Ontology (GO) terms without the ageing-related terms produced an AUC of 0.8729 
and 16800 features. The explanation for this surprisingly low increasing is the large difference between the set of 
ageing-related proteins of GenAge and the set of proteins annotated with GO term “aging” (as Fig. 2c showed). GO 
ancestor calculation has a considerable added value, reaching an AUC of 0.9086 and 21000 features.

We used feature selection started from this set of 21000 GO features in two passes. First, we used XGBoost for 
selecting the GO features by computing the importance of features and selecting those with value greater than 0. 
We reached an AUC of 0.9187 (improvement by 0.0101) with only 373 GO features left from the initial 21000. By 
the second filter, XGBoost selected the GO features that have feature importance values greater than 0.004. We 
reached an AUC of 0.9219 with only 65 GO features left from the initial 373.

Figure 3.  Overview of the study methods as the main ingredients of our classification method. We utilized 
four databases (UniProt, Gene Ontology, GenAge, GeneFriends) and after ID mapping and GO ancestor 
determination, we extracted several feature sets. Then we selected the most important features in several 
steps, which considerably reduced the dimensionality of the final feature space. Finally, we used three different 
classification methods (XGBoost, support vector machine, logistic regression) trained on the selected features 
and then we averaged the predicted values of the three methods.
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Given the 65 GO features selected in two passes by XGBoost, we continued feature selection by adding net-
work and co-expression features. All these features produced an AUC of 0.9294, showing a considerable increase. 
However, we found that the filtered GO features with the addition of a single feature, the number of ageing-related 
neighbours (“ageing_n”) produced a slight increase in AUC (0.9314). Since simpler models usually generalize 
better, we kept 66 features with the 65 GO features and the number of ageing-related neighbours.

In the last step of feature selection we applied a third filter, where XGBoost (with 50 trees and maximal depth 
1) selected features with importance greater than 0. At this point, we reduced the XGBoost parameter depth of 
tree to achieve a simple, well interpretable model (at the same time we needed to increase the number of trees to 
reach the same performance).

Only 32 features left from the initial 66, and we reached a final AUC of 0.9322. This final feature set was used 
for the predictions in the results section and it is shared at https://github.com/kerepesi/aging_ml along with codes 
to reproduce the results.

Predictions via SVM and LR on the feature set selected by XGBoost.  Besides XGBoost, we per-
formed 20 predictions of 5 fold cross-validations (5 fold CV is repeated 20 times) with support vector machine 
(SVM)17 and logistic regression (LR)16 on the final 32 features selected by XGBoost. Logistic regression with the 
default parameter settings (scikit-learn, version 0.19.068), produced an average AUC of 0.9279 (std dev 0.0009). 
SVM with linear kernel function and balanced class weight on L2 normalized feature space produced an aver-
age AUC of 0.9321 (std dev 0.0015). Average predicted values of each method are presented in Supplementary 
Table S1.

Performance of various machine learning algorithms.  We compared performance of XGBoost (learn-
ing rate = 0.3, depth of trees = 6, number of trees = 20) with various machine learning algorithms (with the 
default settings of scikit-learn, version 0.19.068): k-nearest neighbour, decision tree, naïve Bayes, logistic regres-
sion, and support-vector machine with linear kernel function. Most of them appeared in related studies. We 
applied the algorithms on the whole set of features without selection (GO, UniNet, CoExp), as well as, on a feature 
set containing only the GO features that occur in at least 100 proteins (idea of occurrence threshold is inspired by 
Freitas et al.14). For each algorithm and feature set the average and standard deviation of AUC values generated by 
predictions of 5-fold cross-validation are presented in Table 5. XGBoost outperformed the remaining methods.

Evaluation measures for binary classification.  TP (true positive) is the number of positives that are 
predicted as positives. TN (true negative) is the number of negatives that are predicted as negatives. FP (false pos-
itive) is the number of negatives that are predicted as positives. FN (false negative) is the number of positives that 
are predicted as negatives. In our context “positive” means “ageing-related”, “negative” means “non-aging-related”. 
Precision, recall (or true positive rate), fall-out (or false positive rate), accuracy, F1 score and MCC (Matthew 
Correlation Coefficient) were computed as followings:
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short description of the feature set
number of 
features

depth of 
trees

number 
of trees

number of 
predictions

AUC

average std dev

GO w/o ancestors, with ageing GOs 16820 6 20 20 0.8787 0.0061

GO w/o ancestors 16800 6 20 20 0.8729 0.0050

GO 21000 6 20 20 0.9086 0.0049

GO XGBoost one pass filter 373 6 20 20 0.9187 0.0042

GO XGBoost two pass filter 65 6 20 20 0.9219 0.0033

GO XGBoost two pass filter UniNet, CoExp 79 6 20 20 0.9294 0.0034

GO XGBoost two pass filter, UniNet 78 6 20 20 0.9293 0.0036

GO XGBoost two pass filter, degree 66 6 20 20 0.9283 0.0027

GO XGBoost two pass filter, ageing_n 66 6 20 20 0.9314 0.0029

GO XGBoost three pass filter, ageing_n 32 1 50 20 0.9322 0.0011

Table 4.  Feature selection process driven by performance of XGBoost on different feature sets. Performance of 
different feature sets, from weakest down to strongest, by comparing classification performance of 20 prediction 
each. Default settings for Gene Ontology (GO) features are “without ageing GOs but with GO ancestors”; we 
marked when used otherwise. For each feature set description (row), we list the number of features, the depth 
and number of trees in the model and the average and standard deviation of AUC values generated by 20 
predictions of 5-fold cross-validation. “UniNet” means the set of network features (including degree, ageing_n, 
and the remaining network features), “CoExp” means the co-expression feature.
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We note that—in a binary classification task—there are at least one positive sample (i.e. TP + FN ≥ 1) and at least 
one negative sample (i.e. TN + FP ≥ 1), hence the denominator of the formula of recall, fall-out and accuracy can 
never be equal to zero.

ROC curve (Receiver Operating Characteristic Curve) is defined by the point pairs of true positive rates and 
false positive rates at different threshold settings. ROC AUC (shortly AUC) is calculated as the area under the ROC 
curve.

Data and code availability.  Tables and codes of the final results are available at https://github.com/kerep-
esi/aging_ml. Other intermediate data and codes of this study are available from the corresponding author upon 
reasonable request.
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