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Abstract

Significant losses can occur for various smart grid stake holders due to the Power Quality Dis-

turbances (PQDs). Therefore, it is necessary to correctly recognize and timely mitigate the

PQDs. In this context, an emerging trend is the development of machine learning assisted

PQDs management. Based on the conventional processing theory, the existing PQDs identifi-

cation is time-invariant. It can result in a huge amount of unnecessary information being col-

lected, processed, and transmitted. Consequently, needless processing activities, power

consumption and latency can occur. In this paper, a novel combination of signal-piloted acquisi-

tion, adaptive-rate segmentation and time-domain features extraction with machine learning

tools is suggested. The signal-piloted acquisition and processing brings real-time compression.

Therefore, a remarkable reduction can be secured in the data storage, processing and trans-

mission requirement towards the post classifier. Additionally, a reduced computational cost and

latency of classifier is promised. The classification is accomplished by using robust machine

learning algorithms. A comparison is made among the k-Nearest Neighbor, Naïve Bayes, Artifi-

cial Neural Network and Support Vector Machine. Multiple metrics are used to test the success

of classification. It permits to avoid any biasness of findings. The applicability of the suggested

approach is studied for automated recognition of the power signal’s major voltage and transient

disturbances. Results show that the system attains a 6.75-fold reduction in the collected infor-

mation and the processing load and secures the 98.05% accuracy of classification.

1. Introduction

1.1. Background and problem statement

Several problems are raised in the conventional and smart grids due to the PQDs [1]. Such

irregular events can significantly affect the output of power networks. The PQ events mainly

influence one or more attributes of the supply such as frequency and voltage [2]. They can

appear after an accidental fuse of circuit breaker, problems with capacitor switching, use of non-

linear loads, electrical equipment abnormal functioning and overheating of transformers [3, 4].
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The power consumption is globally increasing and an increased power generation by using

conventional approaches could harm the environment. Therefore, in the aim of attaining the

green supply, the trend is to integrate renewable energy sources in smart grids. However, inte-

gration of various energy sources is challenging and also originate the PQDs [5, 6].

The economy of any society can suffer from failures which occur due to the PQDs. It is par-

ticularly unbearable for sensitive facilities such as hospitals, data centres and nuclear reactors.

Therefore, such customers are inclined to install the automated on-site PQDs recognition and

mitigation equipment [5]. Such systems use the smart sensors, controllers and actuators for

PQDs automated management. The recent advancements in the domain of machine learning

have evolved a variety of automated solutions [7–14]. The same trend is followed by the auto-

mated PQDs mitigation techniques [15–17]. The PQDs identification should be carried out

with precision and minimum possible latency. A timely assessment of PQDs permits to protect

the critical and expensive power generation and distribution equipments and loads connected

to the network. This could prevent the massive economical losses [4, 18].

PQDs are of non-stationary and sporadic nature. The monitoring mechanism characterizes

these PQDs, their corresponding instance of occurrence and location. The findings can be

used to pilot the appropriate actuators in order to mitigate the recognized PQDs in a quasi-

real-time manner. To effectively mitigate PQDs, an uninterrupted monitoring of the power

signals must be performed. It is a tiresome job and cannot be performed manually. Moreover,

due to fatigue and lack of concentration mistakes can be made by the onsite power engineers.

In this context, for the recognition and mitigation of PQDs, automatic approaches have been

suggested [15, 16, 19–23].

1.2. Related works

In any automatic PQDs identification scheme, the power signals mainly goes through three

steps namely conditioning, features extraction and classification [24, 25]. In [19] Borges et al.

have used the time-domain and frequency-domain methods for the statistical features extrac-

tion. Onward, these extracted features are processed by the Artificial Neural Network (ANN)

classifier for the PQDs identification. In [15] Hussain et al. have used the singular spectrum

analysis and Curvelet transform methods for the features extraction. Onward, these extracted

features are processed by the deep Convolutional Neural Network (CNN) classifier for the

PQDs identification. In [20] Agüera-Pérez et al. have used the higher-order statistical analysis

method for the features extraction. The categorization is achieved by using a higher-order sta-

tistical estimator. In [16] Manikandan et al. have used the sparse signal decomposition with

hybrid dictionary for the features extraction. The categorization is achieved by using the hier-

archical decision tree algorithm. In [21] Decanini et al. have used the discrete wavelet trans-

form and entropy norm for the features extraction. The categorization is achieved by using the

ANN. In [22] Singh et al. have used the non-dominated sorting genetic algorithm based on S-

transform and time-time transform for the features extraction. Decision Tree (DT) is used for

the classification purpose. In [23] Ferreira et al. have used the Independent Component Analy-

sis (ICA) for the features extraction. Onward, the categorization is achieved by using the Multi

Layer Perceptron (MLP).

1.3. Research gap and contribution

In the aim of achieving a precise identification and mitigation of the power quality issues, a

fine grained power signal recording and processing is necessary [26]. Almost all existing auto-

matic power signal processing systems operate at fixed-rate regardless of the rate of informa-

tion in the incoming signal. It can cause a useless processing, storage and transmission of
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information [26]. In this framework, compressed sensing and analog–to–information conver-

sion solutions have been devised [27].

In continuation of works presented in [24, 28, 29], this research enhances the existing fix-rate

automated PQ events identifiers. Shortfalls of the classical fixed-rate power signal processing sys-

tems are compensated by using the signal-piloted power signals recording and analysis. It records

the necessary details of the intended power signal while noticeably diminishing the amount of

collected information. It brings a remarkable real-time compression along a computational load

diminishing of the suggested adaptive-rate PQ events identifiers in comparison with the fix-rate

counterparts [15, 16, 19–23]. The following are the key contributions of this paper.

• Suggesting an efficient and precise solution for major power voltage and transient distur-

bances recognition. It processes the power signal in an efficient adaptive-rate manner and

extracts the classifiable features directly in time-domain without using any computationally

complex transformation based approach.

• Intelligently combining the signal-piloted Analog to Digital Converters (SPADCs), Activity

Selection Algorithm (ASA), time-domain features extraction and machine learning algo-

rithms for an efficient classification of PQ events:

i) Power signals are acquired at adaptive-rates by using the SPADCs.

ii) The segmentation is achieved by using the MASA

iii) A novel features extractor directly analyzes each segment in time-domain to deter-

mine its discriminating attributes.

iv) The PQDs categorization is realized by using the forehand time-domain extracted

features by using robust machine learning algorithms.

1.4. Paper organization

The proposed signal-piloted and adaptive-rate power signal processing scheme is described in

Section 2. The power quality disturbances model, novel time-domain features extraction and

robust machine learning based classification algorithms are also described in Section 2. More-

over, Section 2 also presents the system performance evaluation measures. Section 3 presents

an experimental evaluation of the devised method. Section 4 discusses the main findings and

features of the suggested approach. It also presents a performance comparison with contempo-

rary PQDs classification methods. Finally the conclusion is made in Section 5.

2. Materials and methods

The different stages of proposed system are displayed in Fig 1. Modules enclosed by the solid

black colour line ‘______’ are modelling scenarios for testing the suggested solution. Modules

enclosed by the dashed green colour line ‘- - -’represent stages, proposed to be embedded in

the frontend processing chain. The dashed blue colour line ‘- - -’encloses the classification

stage, which could be realized via a cloud or server based application. Implementing the opti-

mized processing modules in frontend processor and keeping the classification operation on

the cloud allows realizing an effective and configurable solution [30].

2.1. Power Quality Disturbances (PQDs) model

The collection of PQDs is not straightforward. Therefore, a common tendency is to generate

the real-like signals by utilizing the mathematical models [2, 31]. The synthetic PQDs have
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been used in previous studies for the evaluation of proposed features extraction and recogni-

tion approaches [15–17, 20–22]. In this study four major categories of power signals namely

pure signal, sag, interruption and swell are generated by using MATLAB R2019b [32]. The

employed PQDs generation model is based on the IEEE recommended standard for PQDs

and it generates PQDs waveforms in a random fashion [33, 34]. Concretely, the voltages and

occurrence timings, of intended PQDs, are randomly changed. It is performed within the lim-

its of their corresponding bounds, presented in [34]. In order to approach the realistic case,

random noise is added in these signals in order to attain a Signal to Noise Ratio (SNR) of 40

dB [19].

A description of these power signals is provided in the following. For equal representation,

200 instances are considered from each category. It results in 800 instances in total. Each

instance is produced for a half-second period, equal to the 25 cycles of pure power signal of fre-

quency 50Hz. By following the process, presented in [19], it is sampled at a rate of 6.4 kHz.

Each instance is composed of 3200 samples. It results in the dataset dimensionality of

800x3200.

2.1.1. The Pure Signal (PUS). It is the faultless power signal which represents a desired

supply. Eq (1) introduces this phenomenon mathematically [33, 34]. Where, A and f are

respectively the power signal amplitude and frequency. The f = 50 Hz is selected [33, 34]. tn
and φ are the instants of sampling and phase.

y1ðtnÞ ¼ A sinð2pf tn � φÞ: ð1Þ

2.1.2. The sag. It causes the Root Mean Square (RMS) voltage to decrease briefly between

0.1–0.9 per unit (pu). It is a PQD that might last between half cycle to 1-minute [33, 34]. Sags

can occur due to momentary short circuits or by turning on heavy loads such as big motors. It

can also be caused by overloading transformers or due to the deployment of undersized con-

ductors. Eq (2) introduces this phenomenon mathematically. tn and φ are the instants of sam-

pling and phase.

y2ðtnÞ ¼ A
�
1 � a uðtn � t1Þ � uðtn � t2Þ

� ��
sinð2pftn � φÞ: ð2Þ

In Eq (2), 0.1� α�0.9, T� t2 –t1� 49T and T ¼ 1

f¼50
Sec.

Fig 1. The suggested system block diagram.

https://doi.org/10.1371/journal.pone.0252104.g001
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2.1.3. The Interruption (Intr.). It takes place due to defects in the power grid, equipment

malfunction and controller shortfalls [31]. This causes loss of supply voltage for a limited

period, usually less than a minute. It temporarily reduces the RMS voltage supply below 0.1 pu

[33, 34]. Eq (3) introduces this phenomenon mathematically. Where, tn and φ are the instants

of sampling and phase.

y3ðtnÞ ¼ A 1 � r uðtn � t1Þ � uðtn � t2Þ
� �� �

sinð2pftn � φÞ: ð3Þ

In Eq (3), 0.9� ρ� 1, T� t2 –t1� 49T and T ¼ 1

f¼50
Sec.

2.1.4. The swell. It can be originated by turning off a heavy load or by energizing a large

network of condensers [31]. It causes a momentarily rise in the power line voltage. When

renewable energy sources such as solar panels are linked to the network, they can also originate

swells. It causes the RMS voltage to increase briefly between 1.1–1.8 pu. It is a PQD that might

last between half cycle to 1-minute. Eq (4) introduces this phenomenon mathematically [33,

34]. Where, tn and φ are the instants of sampling and phase.

y4ðtnÞ ¼ A
�
1þ βðu

�
tn� t1Þ � uðtn� t2Þ

��
sinð2πftn � ;Þ: ð4Þ

In Eq (4), 0.1� β� 0.8, T� t2 –t1� 9T and T ¼ 1

f¼50
Sec.

2.2. Reconstruction and signal-piloted acquisition

The considered instances of power signals are reconstructed. It allows evaluating the SPADC

[35]. Up-sampling is realized by using a combination four cascaded cubic-spline interpolators

[36]. It transforms the incoming signal y(tn) in its quasi analog version ~y ðtÞ. The relationship

between ~y ðtÞ and y(tn) is given by Eq (5). Onward, the noise ~n ðtÞ is added in ~y ðtÞ to obtain

the noisy signal, given by Eq (6). The probability density function of ~nðtÞ is given by Eq (7).

Where, μ is mean and σ is the standard deviation.

~yðtÞ ¼ yðtn
U
Þ: ð5Þ

~xðtÞ ¼ ~yðtÞ þ ~nðtÞ: ð6Þ

pð~xÞ ¼
1

s
ffiffiffiffiffi
2π
p e

� ð~x � μÞ2

2s2 : ð7Þ

The contemporary automated PQDs identifiers are frequently using the ADCs. The acquisi-

tion of signals is typically founded on the time-invariant and fix-rate concept [36]. The imple-

mentation of these systems is thus realized for the extreme scenarios [36]. However, such

solutions are not efficient in the case of unpredictable PQDs [37]. To compensate these limita-

tions, the SPADCs are used. Based on the Level-Crossing Sensing (LCS), a real-time self-orga-

nization capability is available in SPADCs [37]. It permits to change their rate of acquisition as

per changes in the incoming signal, ~xðtÞ[37]. The process of sampling is triggered by the pre-

defined thresholds crossings, made by ~xðtÞ. Consequently, samples are non-uniformly

arranged in time. The process is given by Eq (8). Where dtn is the time elapse among the cur-

rent instant of sampling, tn, and the prior one, tn-1.

tn ¼ tn� 1 þ dtn: ð8Þ

For SPADC, the amplitude of a sample is equivalent to one of the preconfigured thresholds

and the instant of that sample is recorded with the help of an appropriate timer circuit [35]. A

4-Bit resolution uniform quantization based SPADC is used for acquiring the power signals.

PLOS ONE SP processing & ML based PQDs recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0252104 May 28, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0252104


The choice of resolution is made while achieving a favourable compromise among the system

implementation and computational complexities and precision in the detection of PQDs.

In contrast to conventional ADCs, the signal-to-noise-ratio (SNR) of SPADCs is indepen-

dent of the quantizer resolution. It solely depends on the operating frequency, FTimer, of the

timer circuit and is given by Eq (9). Where, Ttimer is the timer step and is equal to 1

FTimer
[35]. fsig

= 50Hz is the desired frequency of power supply. In this study, FTimer = 1MHz is selected. It

renders an ideal SPADC SNR of more than 12-Bit, which is a suitable resolution for the auto-

mated PQDs recognition methods [15, 16, 19–23].

SNRdB ¼ � 11:19 � 20logðfsig:TtimerÞ: ð9Þ

2.3. Adaptive-rate segmentation

To efficiently segment the SPADC outcome, a modified version of the Activity Selection Algo-

rithm is used [35, 37]. It is named as MASA and is realized by the use of implicit information,

available in the employed sampling process non-uniformity. It permits to segment the SPADC

output in a real-time and self organised manner. The functioning of MASA is depicted with

the help of a flow chart, shown in Fig 2.

In Fig 2, Ci is the count of samples and Li is the length in seconds of the ith selected segment

Wi. In the beginning, Ci and Li are reset to zero. Onward, keep adding samples in Wi. For each

added sample, xn, the Ci and Li are updated and are respectively given by Eqs (10) and (11).

The process continues unless Li� Lref. Once, the condition Li� Lref violates, i is incremented

and the processing of new segment begins. In this case, Lref = 100-mSec is the selected upper

bound on the length of segments [35]. This choice of Lref is made in an incremental manner

while taking in account the statistical characteristics of the intended PQ events [33, 34]. This

decision is made as a function of attaining the best compromise among the system perfor-

mance and processing complexity. Consequently, for this choice of Lref, for each instance of

0.5-Second duration, the MASA delivers 5 selected segments. Due to the adaptive-rate and sig-

nal-piloted acquisition approach, the samples count for each selected segment could vary. It

Fig 2. Flow chart of the MASA.

https://doi.org/10.1371/journal.pone.0252104.g002
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adapts in accordance with the ~xðtÞ variations.

Ci ¼ Ci� 1 þ 1: ð10Þ

Li ¼ Li� 1 þ dtn: ð11Þ

2.4. Features extraction

The Thanks to the SPADC and the ASA processes, the time domain data possesses significant

information about the signal frequency content [35]. Thus, compared to alternative methods

which are based on frequency or time-frequency representation, the designed method does not

require any computationally complex transformation [15–17, 21–24, 26]. In the time-domain, the

signal-piloted acquisition based data is immediately used to mine the relevant classifiable features.

The ASA delivers 5 selected segments per instance. Eleven different features, in time-

domain, are mined for each segment. In this way 55 features are used to present each instance.

The mechanism is also shown in Fig 3. It presents that for Wi the mined attributes are: the

count of samples, Ci, the positive peak, Ai
P, the energy, Ei, the negative peak, Ai

N , the peak-to-

peak amplitude, ΔAi, the skewness SKi, the average sampling step, dtimean, the entropy, Enti, the

minimum sampling step, dtimin, the kurtosis, Ki and the maximum sampling step, dtimax.

2.5. Classification methods

After features extraction each intended instance is represented by 55 features. The employed

dataset has four power signals classes. 800 instances are considered for all classes, resulting in a

selected features dataset, P, with a dimension of 800x55. The well-known robust methods, k-

Nearest Neighbor (KNN), Support Vector Machine (SVM), ANN and Naïve Bias (NB), are

used for classification. Because of the small data collection, the classification’s accuracy could

Fig 3. The features extraction principle.

https://doi.org/10.1371/journal.pone.0252104.g003
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be biased. The cross-validation scheme is frequently used to compensate this impact of bias-

ness and to avoid over fitting [38]. Accordingly, this analysis uses 10-fold cross-validation. The

MATLAB program is used to carry out the classification [32].

2.5.1. k-Nearest Neighbor (KNN). The KNN is regarded as computationally effective but

powerful classifier [38]. It employs features’ distance to label the test samples. A sample, z, is

classified by majority voting of its K neighbours, determine the maximum probability [38].

The process is given by Eq (12). Where, C is the features set of total number of classes and y is

the output label.

pðy ¼ jjC ¼ zÞ ¼
1

K

X

i2A
Iðyi ¼ jÞ ð12Þ

The Euclidian distance measure is used. The choice of K should be appropriately made. In a

step-by-step fashion, various K values are evaluated and the value with the least classification

error is chosen. The best results are obtained for K = 5 in this study.

2.5.2. Naïve Bayes (NB). One of the most common machine-learning techniques is the

Naïve Bayes classifier. Its "naive" presumption sets the conditions for all characteristics to be

independent. Parameters are separately studied with each attribute and this greatly simplifies

the learning. Consequently, because of its independence presumption that simplifies the algo-

rithm [39], the Naïve Bayes algorithm is often used for classification of a high-dimensionality

features vector. It predicts its own probability for each class when classifying a sample [38].

The process is given by Eq (13). Where z represent a sample under test and y is the predicted

label. C is the features set of total number of classes. p is the probability and argmax outcomes

the maximum value for the targeted function.

y ¼ argmaxz pðzjCÞ �
Yn

i¼1
pðyijzÞ

h i
ð13Þ

In this study, the Gaussian Naïve Bayes classifier is used with a batch size of 100.

2.5.3. Support Vector Machine (SVM). The support vector machine locates a hyperplane

in an N- spacer that classifies the test samples distinctly [40]. The aim is to find a plane with

the greatest range. Maximizing the gap from the margins gives sufficient clarification. There-

fore, potential test samples can be identified with better assurance [40]. Eq (14), mathemati-

cally described the process of separating hyperplane. Where, X is the sample vector X = [x1,

x2. . .xq] having q attributes, W = [w1,w2. . .wq] is the weights vector, and b is a scalar bias. SVM

is particularly good for solving two class problems. Various methods can be employed while

dealing with multiple classes. In this case, the One-vs-All strategy is used with Sequential Mini-

mal Optimization (SMO) to train the classifier. In a step-by-step manner, the best suitable

value of the regularisation parameter is found to be 100 while using the polynomial kernel.

hðXÞ ¼ signðW � XT þ bÞ ð14Þ

2.5.4. Artificial Neural Network (ANN). The ANN follows the principle of biological neu-

ral networks [41]. The fundamental building block of an ANN is an artificial neuron. Multiplica-

tion, summation, and activation are the three fundamental stages of an ANN. It is a network of

the input and output units, interlinked via hidden layers. The weight of each interlinking node is

tuned during the training process. It permits the development of non-linear and complicated

input-output relations. Onward, this knowledge is used for labelling the test data. The major

drawback of an ANN is the unknown behaviour of neural networks that may result in unexplain-

able classification output. Furthermore, as the number of hidden layers grows, ANN necessitates

a significant volume of data for proper training. The principle of labelling a sample z as y is given
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by Eq (15). Where f is a nonlinear activation function. X is the features vector X = [x1, x2. . .xq]
having q attributes and W = [w1,w2. . .wq] is the weights vector. b is a scalar bias.

y ¼ f ðX �W þ bÞ ð15Þ

The multilayer perceptron (MLP) technique is used in this study. The best precision is secured

while using three hidden layers, each containing 50 nodes for the reduced setting and 90 nodes

for the full setting.

2.6. Performance measures

2.6.1. The samples ratio (SR). It presents the ratio between the counts of power signal

samples, collected in the traditional case and the proposed case for a given time length. Let SRi

be the samples ratio for Wi then it is given by Eq (16). Where, Nr and Ci are respectively the

number of samples exist in Wi for the classical and the devised approaches.

SRi ¼
Nr

Ci
: ð16Þ

2.6.2. The compression ratio (RCOMP). This tests the success of suggested method in

reducing the amount of information to be transmitted to the classifier. The comparison is

made with traditional methods which, without any reduction in the dimension, conveys the

captured power signals to the classifier [2]. In the conventional and proposed cases, let Nr and

P present datasets that must be transmitted and classified, respectively. In this case, each ele-

ment of Nr and P is presented with 12-Bit resolution [2, 33, 34]. Therefore, the compression

ratio in bits, RCOMP, can be computed by using Eq (17).

RCOMP ¼
Nr

P
: ð17Þ

2.6.3. The classification accuracy (Acc). The proposed solution is beneficial because of

its signal-piloted nature. It can bring real-time reduction in the count of samples, compression

and processing effectiveness [37]. However, its classification performance can be compro-

mised compared to the traditional fixed-rate equals.

The accuracy score tests the success of suggested method in categorizing the PQDs. It is the

percentage of correctly identified labels. The process is given by Eq (18). Where, true positive,

true negative, false positive and false negative are respectively denoted by TP, TN, FP and FN.

In the studied case it provides an appropriate evaluation of the classification performance

because all the considered class sizes are equal.

Acc ¼
TPþ TN

TPþ TNþ FPþ FN
� 100: ð18Þ

2.6.4. The F-measure (F1). The F1seeks to find a balance between values of recall and pre-

cision. In the analyzed scenario, all groups have the same data size, so we simply use the F-

measure macro given by Eq (19), where precision = TP
ðTPþFPÞ and recall = TP

ðTPþFPÞ.

F ¼
2 � precision � recall
precisionþ recall

: ð19Þ
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2.6.5. The area under the ROC curve (AUC). The ROC curves, on the horizontal axis,

map the TN rate against the TP rate on the vertical axis. The ROC curve is closely based on the

specifics of the particular test data set. This dependency can be reduced by using the cross-vali-

dation technique. It supposes that the probability estimates of the predictors which are con-

structed from the various training sets are all built on random data samples of the same size.

The larger the area underneath the ROC curves, the better is the classifier, and vice versa [42].

2.6.6. The kappa index. It statistically measures the agreement between two clustering.

The Cohen’s kappa measure is used. It is popularly employed for evaluating clustering results

and is expressed by using Eq (20). Where, the likelihood of agreement between the expected

and target labels is denoted by po, while pe is the probability of such an agreement happening

by chance.

kappa ¼ 1 �
1 � p0

1 � pe
: ð20Þ

3. Results

The In this study four major categories of power signals are considered namely PUS, sag, swell

and intr. Fig 4 displays examples of the normalized waveforms of the intended power signals.

In order to show the impact of noise, the zoom of waveforms for the case of typical sag and

intr. Instances are respectively shown in Fig 5A and 5B.

The considered power signal instances are generated at a sampling rate of 6.4 kHz. Each

instance subsequently undergoes through the up-sampling by a factor of 100. Examples of

zooms of typical instances, digitized with a 4-bit resolution SPADC, of sag and intr. are shown

in Fig 6.

Fig 6 indicates gains of using SPADC. It supports that it updates its sampling frequency, for

a given resolution, based on variations in the incoming signal [35].

In this study, the ASA is used to segment the output of SPADC [35]. For each incoming

power instance, 5 selected segments are delivered by the ASA. However, the count of

Fig 4. The instances for pure signal, sag, swell and intr.

https://doi.org/10.1371/journal.pone.0252104.g004

PLOS ONE SP processing & ML based PQDs recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0252104 May 28, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0252104.g004
https://doi.org/10.1371/journal.pone.0252104


thresholds, Ci, changes according to the time variations in the pattern of incoming instance.

The phenomenon is clear from Fig 7, which shows the total number of samples, collected for

each considered instance of sag and swell. It also confirms the random nature of studied

dataset.

Conventionally, ~xðtÞ is continuously acquired at 6.4 kHz regardless of its variations. There-

fore, an augmented collection and processing of redundant samples happen. 640 samples per

segment are collected for Lref = 100mSec. Consequently, the post-processing modules analyse

redundant data which results in an increased processing load, transmission and power con-

sumption overhead.

The overall sample ratios, for 200 instances of each class, are calculated by using Eq (7).

Findings are outlined in Table 1. This reveals that the designed approach reaches an overall

average samples count reduction, obtained for all intended classes, of 6.75-fold.

Each intended power instance is presented by 55 features, after application of the proposed

features extraction technique. On the other hand, each power instance is originally composed

of 3200 samples. It results in a RCOMP = 58.18. This promises the same reduction factor in data

transmission operation, bandwidth usage, and power consumption plus classifier’s computa-

tional efficiency.

In total 800 instances are studied, for the considered categories of power signals, in this

study. To account for the size limit of the dataset, the 10-fold cross-validation approach is used

Fig 5. Zooms of instances of sag and intr.

https://doi.org/10.1371/journal.pone.0252104.g005

Fig 6. The instances acquired with a 4–bit resolution SPADC for sag (left) and intr. (right).

https://doi.org/10.1371/journal.pone.0252104.g006
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[42]. As mentioned in Section 2.5, the parameters of each classifier are configured during the

training process. The evaluation measures namely Acc, F1, AUC and Kappa are measured

while classifying the considered dataset.

The obtained percentage accuracies of identification are listed in Table 2 respectively for

the KNN, NB, SVM and ANN classifiers.

Table 2 outlines that for KNN classifier the accuracy score of the classification of PQ signals

received is 91.55% for the sag, 99.05% for the swell, 97.71% for the pure signal and 97.72% for

the interruption. The overall average classification accuracy score of KNN is 95.26%.

The accuracy score for NB classifier is 92.46% for the sag, 98.13% for the swell, 100% for the

pure signal and 93.16% for the interruption. For all categories, the overall classification accu-

racy score of NB is 95.94%.

The accuracy score of SVM classifier is 96.25% for the sag, 99.87% for the swell, 99.48% for

the pure signal and 96.61% for the interruption. For all categories, the overall classification

accuracy score of SVM is 98.05%.

The accuracy score of ANN classifier is 94.62% for the sag, 100% for the swell, 99.34% for

the pure signal and 94.97% for the interruption. For all categories, the overall classification

accuracy score is ANN is 97.23%.

The obtained average F1, AUC and Kappa values for each considered classifier are listed in

Table 3. It reveals that, as compared to KNN and NB, the suggested signal-piloted processing

chain in combination with SVM and ANN identifies better the intended PQDs. It is because

the SVM and ANN are less likely to be biased. However, KNN and NB can be easily distracted

Fig 7. Number of samples per instance for sag (left) and swell (right).

https://doi.org/10.1371/journal.pone.0252104.g007

Table 1. Summary of the samples ratios.

Power Signal Maximum Minimum Mean Median

Sag 17.68 4.28 6.29 5.41

Swell 8.22 4.15 5.30 5.03

PUS 4.27 4.26 4.26 4.26

Intr. 71.11 4.31 11.14 7.97

https://doi.org/10.1371/journal.pone.0252104.t001
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particularly if the data contains outliers. This statement is further enforced by the findings,

average scores across F1, AUC and Kappa, which are summarized in Table 3.

We considered the detailed classification outcomes for each expected class for further

study, as shown in Tables 4 and 5. Relative to KNN, NB and ANN, the total FP and FN counts

using SVM are the lowest, thus confirms the better performance of the SVM compared to

other algorithms under consideration.

4. Discussion

The designed PQDs recognition mechanism is evaluated by using the real-like model-based

power signal instances. The PQ events are randomly generated as per the IEEE-1159 standards

[2, 33, 34]. The obtained results are appealing and are outlined in Section 3. The technique

yields an overall 16.87-fold reduction in count of collected samples over traditional equals.

This assures a major decrease in arithmetic complexity and the overhead capacity consump-

tion of the proposed solution. In addition, SPADC embedding and features selection function-

ality in PQDs elucidators greatly decreases data storage and communication operation

between frontend sensors and cloud-based classifier relative to traditional methods. The com-

pression ratio achieved is 58.18-fold for the studied case. Moreover, features are extracted in

time-domain without the application of any computationally complex transformation. This

confirms the superiority of the suggested solution over the existing ones [9, 16, 23, 43]. The

used SPADC is of much inferior, 4-Bit, resolution. Nonetheless, a 12-Bit ADC is used in the

fix-rate equals to acquire the power signals [15, 16, 19–23]. This guarantees a significant

decrease in the processing cost and complexity of the system’s hardware relative to conven-

tional equivalents.

In the fix-rate solutions, a lower sampling rate and a bigger quantization step can also be

used. However, it decreases the ADC SNR [35] and can lower the precision of automated

PQDs classification. The SNR of SPADC, does not depend on the quantum value and is based

on the timer circuit frequency which is used to measure the sampling instants [35]. Further-

more, the uniform sampling-based approach would lack in extracting the necessary informa-

tion of the PQD instances in solely time-domain. Therefore, these techniques use analysis

methods in both time and frequency domains for mining the classifiable attributes. It can

increase the complexity of computing and latency relative to the suggested method.

Table 2. Accuracy scores for power signals recognition, obtained by different classifiers.

Power Signal Acc (%age)

KNN NB SVM ANN

Sag 91.55 92.46 96.25 94.62

Swell 99.05 98.13 99.87 100

PUS 97.71 100 99.48 99.34

Intr. 92.72 93.16 96.61 94.97

https://doi.org/10.1371/journal.pone.0252104.t002

Table 3. Performance of considered classifiers using F1, AUC and Kappa metrics on the test dataset.

Classifier F1 AUC Kappa

KNN 0.910 0.970 0.880

NB 0.920 0.978 0.893

SVM 0.961 0.981 0.948

ANN 0.945 0.991 0.927

https://doi.org/10.1371/journal.pone.0252104.t003
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The accuracy score of 98.05% is secured with the SVM classifier for the studied scenario.

The ANN follows with 97.23% accuracy. The NB attains the accuracy of 95.94% and the KNN

achieves the lowest average accuracy of 95.26%. For the studied case, the SVM performs better

as compared to the ANN, NB and KNN. It is also confirmed by other evaluation scores such as

F1, AUC and Kappa statistics. It is because of the SVM ability to successfully prune the most

unnecessary possibilities when classifying an instant under test. This states that the suggested

framework, based on the SPADC, ASA, time-domain features mining and the SVM offers the

best interpretation of the intended power signals.

The idea of integrating the signal-piloted acquisition and adaptive-rate time-domain fea-

tures mining in the PQDs elucidators is new. Comparing the suggested method with the state-

of-the-art approaches is not obvious, as they are based on standard fixed-rate sampling and

processing [9, 15, 16, 20–23]. In addition, each research uses various categories of the PQDs,

processing and analysis tools and classification algorithms. However, a comparison is made

between the key preceding studies, carried out on synthetic PQDs. For all considered studies,

the best classification accuracies are outlined in Table 6. It reveals that the accuracy of PQDs

categorisation, attained by the suggested method, is similar or superior than the fix-rate

equivalents.

5. Conclusion

A novel approach of automatically identifying the primary voltage and transient-based power

quality events is proposed. It is developed by intelligently combining the signal-piloted acquisi-

tion, adaptive-rate segmentation, time-domain features extraction, and machine learning

tools. In contrast to the counterparts, this method does not employ arithmetically complex

transformations for feature extraction. It is demonstrated that signal-piloted sampling has

resulted in a 16.87-fold decrease in the amount of recorded information compared to the fix-

rate counterparts. It aptitudes an enhanced performance in terms of processing and power

consumption diminishing. Additionally, a similar reduction is promised in the information

management activity and post-classification complexity. The developed framework also offers

a simplified hardware complexity while achieving an equivalent or superior PQDs recognition

accuracy score with respect to the contemporary equals. The designed solution attains the best

Table 4. Confusion matrices for the KNN and the NB classifiers.

KNN& NB Predicted (KNN) Predicted (NB)

Sag Swell PUS Intr. Sag Swell PUS Intr.

Actual Sag 168 0 10 22 185 4 0 11

Swell 2 193 5 0 6 193 0 1

PUS 0 0 200 0 0 0 200 0

Intr. 33 0 2 165 39 3 0 158

https://doi.org/10.1371/journal.pone.0252104.t004

Table 5. Confusion matrices for the SVM and the ANN classifiers.

SVM & ANN Predicted (SVM) Predicted (ANN)

Sag Swell PUS Intr. Sag Swell PUS Intr.

Actual Sag 184 0 3 13 179 0 4 17

Swell 1 199 0 0 0 200 0 0

PUS 0 0 200 0 0 0 200 0

Intr. 13 0 1 186 22 0 1 177

https://doi.org/10.1371/journal.pone.0252104.t005
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average classification accuracy score of 98.05%. It confirms the benefit of incorporating the

suggested method in modern PQDs management solutions.

In this study a uniform quantization based SPADC is investigated while considering four

major classes of the power quality disturbances. Investigating the application of non-uniform

quantization-based SPADC with broader categories of power quality disturbances is future

work. Another prospect is to evaluate the possible integration of other robust classifiers such

as Rotation Forest, Random Forest, ensemble algorithms, and deep learning methods in the

suggested solution.
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