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A B S T R A C T   

Pesticides play an important role in modern agriculture by protecting crops from pests and dis-
eases. However, the negative consequences of pesticides, such as environmental contamination 
and adverse effects on human and ecological health, underscore the importance of accurate 
toxicity predictions. To address this issue, artificial intelligence models have emerged as valuable 
methods for predicting the toxicity of organic compounds. In this review article, we explore the 
application of machine learning (ML) for pesticide toxicity prediction. This review provides a 
detailed summary of recent developments, prediction models, and datasets used for pesticide 
toxicity prediction. In this analysis, we compared the results of several algorithms that predict the 
harmfulness of various classes of pesticides. Furthermore, this review article identified emerging 
trends and areas for future direction, showcasing the transformative potential of machine learning 
in promoting safer pesticide usage and sustainable agriculture.   

1. Introduction 

Over hundreds of years, agriculture has been vital to the growth and prosperity of every civilization. Agricultural operations affect 
people’s ability to meet their dietary needs for healthy energy sources. The agricultural applications are shown in Fig. 1 [1–3]. Plant 
protection focuses [4,5] on promoting integrated pest management, ensuring that high-quality pesticides are readily available to 
protect crops from pests and diseases [6], and simplifying quarantine procedures so that innovative, high-yielding processes can be 
implemented more quickly. Furthermore, pesticide use may have unintended consequences on human health and the environment. 
Acute intoxication can occur owing to the incorrect use of certain pesticides; in certain circumstances, serious health effects can result 
from prolonged to minimal risk [7–12]. 

In agriculture, pesticides are chemical substances used to eradicate, remove, or suppress parasites and bacteria [13–16]. Pesticides 
are frequently classified according to the organisms in which they act [17]. Pesticides are classified into three major categories: 
herbicides, insecticides, and fungicides Fig. 2 [14]. There are also multiple subdivisions for each class, each with significantly different 
toxicological [18–20] and chemical characteristics from the others [14]. 

Pesticides are the most commonly used pesticides in agriculture, accounting for 75% of total pesticide use [21–25]. Some 
commonly used commercial pesticides are shown in Fig. 3. 

However, pesticides are highly beneficial to plant growth and protection. However, pesticides can have adverse effects on the 
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environment because of their toxicity [26–29]. Humans are usually exposed to pesticides and their residues in food and drinking water. 
Constant exposure to pesticides poses a threat to human health, as these chemicals have been found to be toxic. Exposure to pesticides 
can lead to various health issues in the reproductive system, fetal development, and an increased risk of cancer and asthma [7,11,25, 
30]. Moreover, the accumulation and persistence of pesticides in the environment makes them a chronic threat to human health 
[30–32]. 

Modern computer science has prioritized the development of artificial intelligence (AI). AI is growing rapidly because it can address 
problems that humans and conventional computing systems cannot [33–36]. Approximately 30.7% of the world’s agricultural land is 
used for farming [37]. There are several challenges from planting to harvesting. Pest and disease infestation, inadequate chemical 
application, poor drainage and irrigation, weed management, and yield estimation are major issues [1,35]. From 2020 to 2026, 
agricultural AI spending is expected to increase by 25.5% [38]. AI may change how agri-firms compete in the food supply chain [39, 
40]. Planned initiatives to promote technology and inspire businesses and farmers to exploit the benefits of AI will anticipate greater 
production levels, reduced pesticide use, and lower environmental impact [1,37]. AI will solve society’s biggest issues [41], such as the 
need to generate more while reducing environmental damage and the labor crisis. Precision agriculture and smart farming can employ 
AI to help farmers produce more food and advance their industries [33]. 

ML can be used to predict the toxicity of pesticides and assess their potential risk to human health [28,42–44]. These methods can 
analyze a wide range of data, such as chemical properties and molecular structures, to identify the patterns and relationships between 
pesticides and their toxicity levels. Using ML, researchers can create predictive models to accurate pesticide toxicity and identify 
high-risk chemicals [45–48]. In this review, we investigated the ML approach for predicting pesticide toxicity. 

2. Methods 

2.1. Screening of articles using search engine 

We searched the literature describing pesticide predictions. We used the Scopus search engine. To mitigate redundancy, we 
conducted a comprehensive search of systematic reviews and meta-analyses of pesticide toxicity. To gain insight into the present extent 
of the issue, a comprehensive examination of papers published from 2014 to 2023 was conducted. The search terms employed to locate 
relevant studies were “pesticide toxicity predictions ". The primary author, Anandhi, and the corresponding author, Iyapparaja, 
conducted individual searches for relevant papers. Any discrepancies in their findings were handled through conversation, and data 
extraction was performed using Microsoft Excel. 

2.2. Query for study  

➢ To what extent is pesticide toxic?  
➢ How can pesticide toxicity be predicted?  
➢ Which algorithm is best for predicting pesticide toxicity? 

Fig. 1. Agriculture application in the field developments [1].  
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2.3. Research objectives  

➢ To determine the potential health effects of pesticide exposure and how the incorporation of ML could be used to make these 
predictions.  

➢ Use ML models to determine which pesticides are safe to use and which ones need to be limited. 

2.4. Criteria for inclusion and exclusion 

We framed three criteria for this review. They are us follows. 

1.We concentrated on peer-reviewed publications between 2014 and 2023. 
2.All articles related to pesticide toxicity were considered.  

3. In addition, papers related to machine learning were included. 

Apart from all three criteria, the remaining criteria were excluded. 

3. Results and discussion 

3.1. Exploration of articles 

A total of 418 publications were examined, it was found that ninety of them were focused on insecticides related research. Among 
them, 157 articles were dedicated to herbicide studies, 47 articles were centered on fungicide investigations, and the remaining 124 
articles covered diverse chemicals. The collection of 124 publications pertains to a wide range of topics, including pesticides, binary 
pesticides, biocides, agrochemical hazardous components, polycyclic aromatic hydrocarbons, and endocrine-disrupting compounds. 
Moreover, an extensive search was conducted within these papers utilizing the phrase “machine learning.” A total of sixty-eight articles 
were identified, with 24 classified as insecticides, 21 as herbicides, and 12 as fungicides. Data extraction was performed using 
Microsoft Excel. The method for selecting articles is outlined in the flow diagram in Fig. 4. 

3.2. Pesticides in agriculture 

Pesticides play a crucial role in agriculture owing to their unique ability to kill pests [2,33,49]. Pesticide use on farmland has 
resulted in higher crop yields, which help in one-third of global food productivity, making them extremely important. Pesticide use on 
farmlands results in higher crop yields. Pesticides usually penetrate plants through three routes: surface penetration, root absorption, 
and tuber diffusion. This results in the detection of pesticides in the plants after harvest [25,48,50]. This leads to pesticide residues in 
soils, grasses, microorganisms, and crops that may persist in farm products, contributing to overall pesticide consumption through the 
diet [17]. Because of these contaminants, pesticide metabolites in farmed dairy products such as beef and milk have increased 
dramatically. Pesticide residue levels in high-fat livestock products can be biomagnified, resulting in greater health risks to humans 
and other living things [9,51]. These pesticides also affect non-target organisms such as rats, mice [52,53], honeybees [54,55], fish 
[24,56], earthworms [57,58], and other insects and worms [59]. Hence, there is growing concern about the potential risks of pesticides 
to consumers, and public safety has grown in recent years. Hence, ecological engineers, on the other hand, need to look for harmful 
toxins in the environment and produce new ways to break down toxic and dangerous pesticide waste into harmless, non-hazardous 
metabolites or compounds so that the former does not harm the environment [60]. In addition, researchers have targeted pesticide 

Fig. 2. – Classifications of pesticides [14].  
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residues in the environment, particularly in dietary products. 

3.3. Toxicity of pesticides 

Pesticides have complex chemistry and the potential to create medical consequences. This has led researchers to conduct 
comprehensive studies to uncover the intricate mechanisms underlying toxicity, which lead to acute and chronic effects, bio-
accumulation, and persistence in the environment. Much research has been carried out on pesticides worldwide owing to their 
interaction with the environment in complicated ways. Hence, scientists and environmentalists have been checking pesticide usage 
and regulatory aspects. Depending on the pesticide or a combination of pesticides to which a person or nation is exposed and the level 
of exposure, this type of impact can affect virtually every organ in the human body. Pesticides can cause both immediate and delayed 
toxicity as well as chronic toxicity [30]. In addition, some pesticides are developmentally toxic, whereas others are carcinogens or 
reproductively toxic when used at high concentrations. All pesticides interfere with the neural circuits of insects, which appear 

Fig. 3. Common pesticides.  

Fig. 4. Study selection process workflow.  
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structurally and functionally similar to those of vertebrates. As a result, pesticide toxicity is not species-specific, and humans are 
particularly vulnerable to the hazards of pesticide exposure. WHO analytical data have identified and listed 150 pesticides as haz-
ardous and poisonous. These 150 pesticides were retained in the soil, sediment, and water. As a result, it becomes bioaccumulative and 
toxic to aquatic organisms. The WHO also stated that these pesticides are toxic to bees and affect ecosystem services. Atrazine, flu-
pyrifurone, hexachlorobenzene, glyphosate, methomyl, and rotenone are the most well-known pesticides listed by WHO. Paraquat is 
another hazardous pesticide that has been banned in 60 countries. Paraquat affects muscles and the nervous system and leads to 
pathogenic diseases, movement control, and emotional limbic activity. Flupyradifurone, hexachlorobenzene, pirimicarb, imidaclo-
prid, tebuconazole, epoxiconazole, isoproturon, and 1,3-dichloropropene are the most toxic to humans. Inhaling these chemicals leads 
to heart failure and lung scarring may even be fatal. Another pesticide commonly called is used on grasses, fruits, and vegetables. These 
pesticides attack the leaves and roots of weeds and affect the growth of the plants, causing cancer and killing them [95,96]. To 
overcome these drawbacks, researchers are currently developing new pesticides. Modern pesticides are more selective than older 
pesticides because of their selectivity for bugs, which have different metabolic rates. 

In recent years, biopesticides or pesticides derived from biological sources such as plants, bacteria, and fungi have received 
increased attention [61]. Biopesticides, which are increasingly used in successful integrated pest management programs, have 
generally acceptable ecological and biological profiles. The most widely used microbial pesticides are the Bacillus thuringiensis sub-
species and strains that act as insecticides. Although allergic reactions have been reported in humans, insecticides contain specific 
chemicals that are mostly found in animals. As a result, new ways to make safe pesticides and break down commercial pesticides are 
important [14]. 

Subsequently, ML became attractive in the field of agrotechnology [62]. ML algorithms can process large amounts of data and 
detect results and patterns based on the data. As the forecasting model improves over time, no external manipulation is required. 
Instead of direct human involvement, machines learn from the input about the characteristics that create a mathematical framework 
for estimates. 

There are only a very few studies on the use of ML in the field of agricultural pesticide toxicity prediction, in Fig. 5, according to the 
most recent Scopus data base search term, “machine learning toxicity of pesticide prediction.” The benefit of utilizing ML in this field is 
that there is a lack of research in this area. ML algorithms would make it feasible to anticipate pesticide toxicity more precisely and 
effectively, which would result in a decrease in the use of hazardous chemicals in agriculture. Moreover, ML can be used to identify 
novel pesticides that are less hazardous and more effective. Despite this, there are challenges in applying ML in this area, such as the 
requirement for enormous amounts of data and the difficulty of deciphering intricate models. Besides these difficulties, it is obvious 
that greater study on the use of ML in agricultural pesticide toxicity prediction is required. By doing so, we can develop an agriculture 
sector that is safer and more eco-friendly. 

Here, we discuss the potential health effects of pesticide exposure and how ML can be used to make these predictions. Researchers 
and scientists can use these models to decide which pesticides are safe and which are limited. New compounds that may be detrimental 
to human health can be identified using ML, allowing preventive measures to be taken before exposure occurs. ML is an invaluable 
asset to safeguard both humans and ecosystems from the harmful effects of pesticides. 

Fig. 5. Total number of publications related to the ML approach in pesticide toxicity prediction as per the Scopus database on October 31, 2023.  
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Table 1 
Various methods of algorithms-based pesticides predictions.  

S⋅NO Year Methods 
useda 

Accuracy Data sets Features Best 
model 

Reference 

1 2022 DT, DF, RF, 
k-NN, SVM, 
LDA, and LR 

45%– 
61% 

They take 29 chemicals chosen from a 
list of 275 chemicals data. They reported 
alternative approach to evaluate the 
potential reproductive toxicity of 
chemicals 

They are using 500 iterations for the data 
sets to derive 5-fold cross and external 
validations for the data sets. To predict 
the toxicity 

DT [42] 

2 2022 LVQ; RF, and 
SVML 

95.7% 22 toxic organic compounds which 
includes herbicides, pesticides, and 
industrial chemicals 

This approach allows them to thoroughly 
evaluate the performance of each family 
and reduce the chances of bias or 
overfitting. Additionally, by repeating 
the cross-validation process three times, 
they can ensure the robustness and 
reliability of their results 

RF [44] 

3 2023 RF, ANN, and 
SVR 

– 7858 compounds were chosen from a 
pool of 9403 chemicals. ToxCast 
Database of the US EPA 

The study selected the chemical bonds 
(CBs) of 216 compounds using RF, 
outperforming ANN and SVF models. 
Human CBs of 7858 ToxCast chemicals 
were predicted, with food additives and 
pesticides being most active 

RF [81] 

4 2014 PNN and 
GRNN 

PNN – 
96.65% 
GRNN – 
95.57 

The data set consists of 303 registered 
pesticides 

PNN and regression GRNN-QSTR models 
predict pesticide toxicity classes on land, 
demonstrating high predictive power 
and reliability in noisy environments 
with large training data sets 

PNN 
and 
GRNN 

[82] 

5 2014 DT, RF, NB, 
SL, LibSVM, 
and SMV 

79.7% 105 chemicals and vehicle controls, 
representing 14 compound classes 

These studies suggested that using 
microarrays and supervised ML for 
chemical toxicant prediction is practical 
and efficient, but selecting the right 
feature and classification algorithms is 
crucial 

SVM [83] 

6 2021 ANN, DT, k- 
NN, NB, RF, 
and SVM 

– Dataset included 144 compounds with 
high toxicity, 32 compounds with 
moderate toxicity, 
and 500 compounds with nontoxicity, 
total (676) data 

The study used nine molecular 
fingerprints to create 54 binary 
classification models for honeybee acute 
contact toxicity prediction, with the SVM 
algorithm and CDK extended fingerprint 
being the best models 

SVM [84] 

7 2018 DL, RF, and 
SVM 

0.76 Three different datasets were used: the 
HESS dataset, which included 503 data 
points, the combined dataset, which 
included 810 data points, and the ORAD 
dataset, which included 346 data points 

The Hazard Evaluation Support System 
Integrated Platform dataset predicts 214 
test chemicals with an accuracy of 0.76, 
sensitivity of 0.90, and AUC of 0.81, 
potentially aiding in toxicity prediction 

SVM [85] 

8 2020 MLR, PLS, k- 
NN, DT, and 
RF 

0.90 The dataset for classification-based 
models consists of 413 chemicals. Model 
based on regression: 113 chemicals. 

Two models, a k-NN classification-based 
model and a k-NN regression-based 
model, were used as integrated tools for 
hierarchical workflows, providing the 
best predictions based on statistical 
parameters and demonstrating 
reliability and robustness 

k-NN [86] 

9 2021 GA-MLR and 
BPANN 

– 57 types of organophosphates data sets The LD50 of organophosphates is 
predicted using ALOGP2, RDF030u, 
RDF065p, and GATS5m descriptors, 
with the BPANN approach providing the 
best results and good agreement with 
experimental data 

BPANN [87] 

10 2018 k-NN, SVM, 
and LDA 

90% Pesticides, hydrocarbons, alkanes which 
includes 79 various aquatic data 

With an RMSE of 0.793 for reference 
MoA labels, it was confirmed that the 
classification model was good at 
predicting MoA and figuring out toxicity 
using the Target Site Model 

k-NN [88] 

11 2023 MLR, SVR, 
GA, and SVR 

– 664 different pesticide was evaluated 
with regression based (QSAR) models. 

These findings highlight the importance 
of considering multiple factors when 
assessing pesticide toxicity. 
Additionally, further research is needed 
to fully understand the mechanisms by 
which electronegativity, lipophilicity, 
and polarity influence pesticide toxicity 

MLP [89] 

12 2020 LRMP and 
LDA 

70% 207 pharmaceuticals and pesticides 
which were identified as steatotic or 

The QSAR model predicts steatosis for 
1600 food and feed-relevant substances 

LDA [90] 

(continued on next page) 
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3.4. ML application of Pesticide prediction 

Water contamination is a major concern in the manufacturing of pesticides. Sub-structural alarms were investigated, and predictive 
models that could be extremely useful in determining chemical aquatic toxicity were developed (Table 1). The author investigated 
pesticide aquatic toxicity using nine cellular handprints to describe pesticides [9] and used six machine learning algorithms to create 
two- and three-level classification models that could guess the harmful effects of pesticides on water. The algorithms used were 
Random Forest (RF), k-Nearest Neighbour (k-NN), Nave Bayes (NB), Classification Tree (CT), Artificial Neural Network (ANN), and 
Support Vector Machine (SVM). The binary models involved the development of local models encompassing 829 pesticides in rainbow 
trout (RT) and 151 pesticides in lepomis (LP). Additionally, global models were constructed using a broader dataset consisting of 1258 
pesticides on RT, LP, and 278 distinct fish species. After studying fish species, the authors discovered that they influenced the accuracy 
of the local binary models. A total of 1258 pesticides were utilized to create robust ternary models based on their prediction abilities. 
ANN for RT and SVM for LP were the most accurate binary models, with fittings of 0.90 and 0.90, respectively. The SVM was the most 
efficient binary model, with a fitting of 0.89 and an efficiency of 0.81, which was slightly lower than that of the best comprehensive 
binary model. Many underlying alarms have also been discovered, including chloroalkenes, nitrobenzenes, and nitriles, which may 
have a significant relationship with the toxicity of pesticides. This research shows a simple way to determine how harmful pesticides 
are to aquatic life early in the hazard identification process. 

In addition, ALogP and molecular weight (MW) were used to determine the distribution of the chemical space. The chemical spatial 
distribution diagrams for all pesticide training sets and the external validation set are shown by the LP and external validation sets, 
respectively, while the RT training samples are the external validation set in this plot. This information was obtained from chemical 
space analysis, which showed that the training set and the external validation set were formed in the same chemical space, indicating 
that this model is adequate [9]. 

The aim of this study was to determine whether training sets for toxic elements and relevant substances can improve the accuracy of 
the prediction results for toxic elements. In an earlier study on the minimum effective dosage (oral rat LD50), local class-based models 
were found to be more consistent than more complex models [63]. To improve the forecast accuracy, it has been discovered that 
information should be divided into pesticidal processes. An approach based on linear discriminant analysis (LDA) was used to assign 
indications for pesticides based on their mode of action, target species, or target organisms’ mechanisms of activity arrangement, 
among other things. According to this study, LDA was able to forecast these signs with a fit of approximately 0.87. The toxicity of the 
compounds was determined using the QSAR model. Toxicities can be found using a global hierarchical clustering (HC) or unsupervised 
learning method that sorts data into groups based on molecular similarities. When comparing the global HC technique to LDA (R2 =

0.47) at the same level of accuracy (0.94), it showed a significant improvement in prediction performance (R2 = 0.50). The worst 
results were obtained using a linear model on the entire training sample (R2 = 0.38), which suggests that grouping information to find 
toxicities might be a good idea in this case. Fig. 6 depicts the steps involved in creating the training and prediction sets. It is also true 
that clustering the dataset into subsets improves the prediction accuracy. The method used to divide the dataset into subgroups did not 

Table 1 (continued ) 

S⋅NO Year Methods 
useda 

Accuracy Data sets Features Best 
model 

Reference 

non-steatotic from existing data from in 
vivo human and animal studies 

in the EuroMix project, providing data 
for risk assessment calculations in the 
EuroMix Inventory 

13 2023 PLS, RR, 
SVM, and 
non-linear 
SVM 

0.85 13 sets of duplicate mixtures correspond 
to 44 data points and respective 44 
observed toxicity values. 

By utilizing q-RASAR modelling, 
researchers can effectively assess the 
potential harm caused by binary 
mixtures on honeybees. This approach 
not only provides reliable predictions 
but also offers an accurate understanding 
of the toxicity risks associated with 
pesticide combinations 

PLS [91] 

14 2014 PNN and 
GRNN 

96.62% Experimental toxicity data of 237 
structurally diverse pesticides 

These models can aid in the evaluation 
and risk assessment of new chemical 
pesticides, providing valuable 
information for decision-making 
processes. Additionally, their accuracy 
and reliability make them valuable tools 
for researchers and policymakers in the 
field of pesticide regulation 

PNN 
and 
GRNN 

[82]  

a ML- Machine Learning; DT - Decision Tree; DF - Decision Forest; RF - Random Forest, k-NN - K-Nearest Neighbors; SVM - Support vector machine; 
LDA - Linear Discriminant Analysis; Linear regression; LVQ - Learning Vector Quantization; SVML - Support Vector Machines with a Linear kernel; 
ANN - Artificial Neural Network; SVR - Support Vector Regression; PNN - Probabilistic neural network; GRNN - Generalized Regression Neural 
Network; NB - Naïve Bayes; SL - Simple Logistic; LibSVM - two Support vector machine methods; DL - Deep learning; MLR - Multiple linear regression; 
PLS - Partial least squares; GA-MLR - Genetic algorithm multiple linear regression; BPANN – Back Propagation Artificial Neural Network; MLR - 
Multiple linear regression; GA - Genetic algorithm; LRMP - Logistic regression Multilayer perceptron; PLS - Partial Least Squares; RR - Ridge 
Regression; LSVM – Linear Support Vector Machine; PLS - Partial Least Squares; RR - Ridge Regression. 
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influence the accuracy of the dataset prediction. 
Considering the results of a study on the frontier of deep learning, viewpoints formed over three years of ML research and 

development were considered, as was the outcome of an agrochemical research and development period. How ‘deep learning’ is 
enabling rapid technological innovation in several scientific disciplines and how speculations about its ability to influence people’s 
work and personal lives are a source of on-going debate were discussed [64]. However, using it as a “black box” tool without un-
derstanding its limitations is far too simple, especially when the data being used are not of high quality. In this article, the author 
attempts to place a subset of AI (deep learning) from a wide-ranging mechanical and cultural perspective by demonstrating how it 
connects to earlier types of AI, giving a comprehensive description of how it works, and examining some of the implementation 
challenges that have been encountered. Initially, it appears that digitalizing difficult work aimed at evaluating agribusiness effec-
tiveness will have the greatest impact on agribusiness growth. However, to achieve this, significant contributions are required in both 
the generation of large, well-organized datasets to deal with the skills required for analyzing the forecast accuracy in natural settings. 
Deep learning is used to adapt existing ML techniques for pesticide exploration and design, but it is not yet possible to replace these 
techniques completely. 

Fig. 7 depicts a straightforward example of how an expert system can be used to diagnose fungal illnesses in red chilli peppers. The 
identification label (for example, “probably Fusirium” or “probably Antraknosa”) will be made as soon as sufficient data are available 
to make an accurate classification decision. This is how the system operates. 

This study makes a significant contribution by demonstrating one of the most notable benefits of using in silico analysis to 
determine the bioactive ability of substances: it minimizes the amount of time and cost spent on experimental investigation as well as 
the associated expenses. According to the author, the rapid use of ML algorithms in the study and synthesis of chemicals with precise 
physicochemical properties for application is possible using ML algorithms [7]. According to the findings of this report, the ML al-
gorithm assisted us in the production of three dihydroquinoline (DQ) compounds that can be used as pesticides. In this study, it was 
discovered that the tobacco mosaic virus (90% effective) and Fusarium oxysporum were effective against the developed compounds 
(78%). We determined whether there was a relationship between pesticide function and molecular structure using various spectro-
scopic techniques and single-crystal X-ray scattering to examine the proposed DQ compounds. The Orthorhombic and monoclinic 
crystals developed with supramolecular configurations were primarily supported by non-classical C–H and O–H bonds (C–HO). This 
led to the formation of dimers and chains during molecular packaging. We used density functional theory (DFT) to determine the 
frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) maps to examine the electronic features of the molecular 
conformations that were described. The established method can also be used to examine the toxicity of new pesticides that are being 
developed when there are no trial toxicity data. 

The purpose of this study was to categorize basil seedlings according to the quantity of nitrogen fertilizer they received, using an 
olfactory machine (OM) and ML algorithms. Using the findings of this study, we can better understand the uniqueness of basil plants 
and their ability to protect themselves from overgrowth. Basil (Ocimum basilicum) is an aromatic plant belonging to the Lamiaceae 
family with a variety of medicinal properties, including pain relief [65]. The application of nitrogen fertilizers has a significant impact 
on basil growth. Fertilization with a high concentration of nitrogen has an impact on plant metabolism, particularly amino acid 
compounds and other nitrogen-based metabolic functions. Additionally, the use of nitrogen fertilizers causes an increase in the amount 

Fig. 6. - Workflow for developing the training and prediction sets [63].  
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of nitrate present in plant tissues, which is harmful to humans when consumed. A machine olfaction system was used in this study, 
which allowed researchers to identify basil plants established on the diverse amounts of N fertilizer that were applied to the plants 
(e-nose machine). The amount of urea fertilizer used (0, 50, 100, and 150 kg ha− 1) was investigated at four different levels. The relative 
humidity levels of the samples were nearly identical across the board. Several techniques were used to analyze the data, including 
principal component analysis (PCA), ANN, LDA, and QDA. The TGS822 sensor provided the most accurate categorization response. 
According to the PCA results, PC1 and PC2 accounted for 90% of data variation. Using linear and quadratic discriminant analyses, the 
data were divided into classes with a normal distribution (LDA and QDA). In this study, two techniques were used to divide the samples 
into 12 groups: LDA and QDA. Basil plant classification confusion matrices were developed using the LDA and QDA methods with 
accurate ordering rates of 95% and 97.78%, respectively, for the two approaches. As shown in LDA and QDA, E-nose signals were used 
to detect 12 different types of samples. The QDA method performed better than the LDA method in terms of accuracy. The precision, 
sensitivity, and specificity were all higher than 0.9891 for QDA, and the average values of the other parameters were lower than 
0.9937 for QDA. 

The widespread use of pesticides has led to an increase in the number of pest-resistant pests worldwide. Current approaches to weed 
resistance management include the identification of new phytotoxic compounds and herbicide modifications based on modes of action 
(MoA) prediction and characterization of structure-activity correlations and underpin herbicide classification according to their ac-
tions with herbicide selectivity. Usually, step-by-step evaluation-shows a program of computer simulations and herbicide equivalence 
values using net charge, relative polar surface area, number of H bonds, acceptors and donors, logP, and topological characteristics of 
the molecules together. This study also proposes an in silico sequential screening platform that can identify herbicide-like compounds 
from chemical registries or libraries, considering the probability and selectivity of weed species, in addition to a default mechanism of 
action added to this concept, as illustrated in Fig. 8. The screening cascade was tested by using a dataset of naturally occurring 
phytotoxic compounds. These findings may have useful implications for improving diversion programs for herbicides and other coastal 
herbicides compared to synthetic chemicals. This is particularly evident when molecules with novel reaction properties, unique 
structures, and buoyancy are obtained from natural sources, as opposed to synthetic materials. 

The author developed an initial ethical system that incorporates, evaluates, and correlates the professional and procedural di-
mensions of food safety risk assessment [66]. Assessing food safety risks using MLTs and AI implementation principles identified in 
scholarly and regulatory papers is a system that can be expanded in the future. The use of vast amounts of data and ML techniques is 
changing the way food safety risk assessment (FSRA) is performed. As FSRA activities continue to be “dataficated” and probabilistic 

Fig. 7. - Putting deep learning in perspective for pest management scientists [64].  

Fig. 8. - Comprehensive ML based study of the chemical space of herbicides [43].  
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models are increasingly integrated into their procedures, it is necessary to consider the advantages and disadvantages of these ad-
vancements in a balanced manner. Emerging methods of analysis have the potential to exacerbate the low level of trust in the EU’s 
FSRA framework, which was addressed in 2019 through an EU-funded survey. The wide range of processed data raises interesting 
questions regarding how many different regulations work together with food safety laws. 

Information security and the provision of personal data are combined with regulations required for the dissemination of scientific 
findings to the public. This work aims to provide recommendations on data authority and ownership issues that have arisen in the 
technical and legal sectors of FSRA to improve food safety. Consequently, a summary of the proposed amendments to food safety 
legislation and advancements in data collection, emerging concerns regarding the implementation of cutting-edge big data, and data 
examination methods are discussed in detail. A set of principle-based references is anticipated based on the application of high-level 
concepts to the field of FSRA using AI. Security, responsibility, equality, interpretability, and clarity (SAFETY) are some of the main 
points of the proposed set of recommendations. Confidentiality and security protection are used as meta-principles to guide the 
recommendations. 

As previously reported, high-throughput phenotyping in C. elegans is an effective method for improving focused deconvolution in 
the development of anthelmintics and insecticides [67,68]. Hyperspectral imaging technology has made significant advancements in 
the field of food safety (FS). The use of hyperspectral imaging for non-destructive prediction of contamination was investigated using 
hyperspectral imaging. In this study, the application of a convolutional neural network (CNN) based on near-infrared hyperspectral 
data was proposed as a novel approach to overcome the problem of the low recognition rate of abamectin residue on the broccoli 
surface. In the convolutional neural network model, the maximum reliability was 84.9%, which was 10.1 points higher than the 
accuracy of the extreme learning machine model, which was based on a different technique. There is evidence that using a con-
volutional neural network, researchers can analyze hyperspectral data of low-concentration pesticide residues on broccoli surfaces, 
with residue concentrations ranging from 0.04 0.20 mg/kg. A specific path can be used to make pesticide residue detection and al-
gorithms more efficient. 

To achieve the goals of current therapies, new invertebrate-killing chemicals are required in the food and pharmaceutical in-
dustries. Insecticides and anthelmintics were discovered using genotyping tests [69]. However, determining the mechanism of action 
of these discoveries is critical in the discovery process and should not be omitted. To determine its mode of action, it is necessary to 
combine visible whole-organism signs with molecular and physiological information. In contrast, manual symptomology is time 
consuming and requires signs that are visible to the unaided eye to be effective. High-throughput imaging and numerical phenotyping 
were used to quantify the behavioral reactions of Caenorhabditis elegans. They then developed a classifier that accurately predicted 
the MoA for each of the typical modes of action, with an accuracy of 88% for a set of twenty-five different chemical compounds. Their 
approach was to categorize compounds within each mode of action to investigate substructures that are not represented by broad MoA 
labels. Images taken quickly and automated phenotyping could help refine mode-of-action categories and speed up finding new modes 
of action in the development of invertebrate products. 

Furthermore, the most accurate RT prediction model was developed. We compared the effectiveness of several ML-based algo-
rithms on different feature sets based on their ability to predict the response time (RT). Because of the increasing number of envi-
ronmental pollutants detected using liquid chromatography combined with mass spectrometry in data mining, computational QSAR 
models are becoming increasingly popular in survival prediction models. The improved performance of the model was attained 
through the use of ML techniques, chemical characteristics, and sample data. They tested four methods on three datasets, with the 
training and test sets consisting of 321 and 77 pesticides, respectively, for several ML-based algorithms on different feature sets based 
on their ability to predict the response time (RT). Because of the increasing number of environmental pollutants detected using liquid 
chromatography combined with mass spectrometry in data mining, computational QSAR models are becoming increasingly popular in 
survival prediction models. The improved performance of the model was attained using ML techniques, chemical characteristics, and 

Fig. 9. - One-dimensional CNN architecture [71].  
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sample data. They tested four methods on three datasets, with training and test sets consisting of 321 and 77 pesticides, respectively. 
Various combinations of algorithms applied to different feature sets produce various results. Increasing the complexity of the chemical 
characteristics and the size of the training set are effective strategies for improving the results. The XGBoost, RF, and light GBM al-
gorithms were used to generate excellent results on large-scale chemical descriptors (LSCD), whereas the Keras method was used to 
generate excellent results on fingerprints. These models produce similar results, with a DRT of 1.0 min correctly predicting at least 90% 
of the toxins in the testing dataset, among other things. According to the results of this study, the combined prediction technique based 
on the average outcomes of the four models outperformed any single model. Using this method, researchers were able to identify 
pesticides and pesticide transformation products in 120 strawberry samples collected as part of a nationwide food contamination 
survey. Standards have approved all 20 pesticides and 12 pesticide transformation products, as well as two transformation pesticide 
(bifenazate diazene and spirotetramat-enol) products, out of a total of 20 pesticides and 12 pesticide transformation products. When 
the in silico MS2 spectra were combined with other MS identification methods, they could be used for chemical identification [70]. 

The author collected 30 leaves of garlic chives (Allium tuberosum) captured in infrared hyperspectral imaging wetted with the 
detection and recognition of pesticide residues on garlic chive leaves using purified water, cyhalothrin, trichlorfon, phoxim, and 
mixtures of trichlorfon and phoxim, which are rapid, precise, and non-destructive [71]. The isolated forest approach removed outliers, 
enhanced the signal to noise ratio of hyperspectral images using modified median filtering This paper presents a DL model to be used 
for drug detection proposed killing bacterial residues in garlic chive leaves by one-dimensional (1D) CNN, outperforms spear Bayes, 
RF, and SVM. Fig. 9 shows the layered 1D CNN design. Input refers to the input level, which is responsible for receiving shortwave 
infrared signals for subsequent system processing. The character “conv” indicates the one-sided convolutional level. The goal of 1D is 
to extract features from input data. The pooling layer can compress the output data of the convolution layer, thus reducing guesswork 
and preventing overfitting. 

In this experiment, the optimal pooling strategy was determined by combining the maximum pooling and average pooling of 
pooling levels. The fattening layer converts the results from the previous layer into a vector suitable for the next layer. Two hidden 
layers are used in the fully connected layer. During the model validation phase, enabling four neurons in the output layer results in four 
different outputs. The relative accuracies of the 1D CNN in the railway, development, and experimental groups were 0.985, 0.98, and 
0.979, respectively. In the estimation of customer service characteristics, each of the four groups has an AUC above 0.99, indicating a 
better fit and variability of the DL model than the five classical classification models considered in terms of accuracy and variability for 
satisfactory prediction of pounding losses of 0.208, indicating the presence of pesticide residues The combination of hyperspectral 
imaging and DL shows great potential in detecting and identifying non-destructive pesticide residues in garlic chive leaves. 

According to the Agricultural Census of India, the agricultural sector accounts for 64.5 percent of the country’s population and 
16–17% of the nation’s GDP [25]. The agricultural sector, which is the backbone of our economy, is largely ignored, with little or no 
development occurring. For a country that is ranked as the world’s second-largest producer of rice, it is critical to change and 
concentrate on how to improve agricultural methods to make the lives of farmers easier. The application of modern technology to 
agriculture is necessary in the modern era. The application of current agricultural technologies is critical. Hungry farmers who have 
struggled to provide food for their families do not have access to high-tech devices. Pesticides and fertilizers are critical components of 
agricultural production. It is possible to use pesticides and fertilizers to aid in preventing pests from damaging crops as well as the 
provision of additional nutrients necessary for a successful crop. Pesticides and fertilizers, on the other hand, can be extremely 
dangerous if they are not handled with care and caution. GPS and Internet of Things (IoT) technologies are used to figure out what kind 
of soil it is and how many herbicides and fertilizers to use in a cost-effective way after the research is done. 

Pesticides and fertilizers, ML, and text prediction sequencing were investigated in 2021. The relationships between this approach 

Fig. 10. Workflow via ML models with the datasets [23].  
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and ML, Text Processing (TP), the Random Forest Algorithm (RFA), and the Flutter Framework (FF) are the primary emphasis of this 
study. The authors attempt to explain ML, TP, RFA, and FF for the benefit of the readers. Following training using an ML technique, 
RFA can be used to estimate the harvest of four crops: wheat, maize, tomatoes, and potatoes. Several classifications and prediction sub- 
trees were constructed with a random subset of predictors without chopping them down, and the forest was then averaged to produce a 
trained RF. The model was trained using a random sample of trees generated by bootstrapping source data. Predictor variables are 
scored based on how frequently they lead to accurate predictions, or the degree to which they reduce node contamination when used to 
make partitions. This scoring system ensured that only the most effective predictors were used in the final model, resulting in highly 
accurate predictions. Overall, the trained RF model is an essential tool for making accurate predictions based on complex data sets 
[72]. 

In 2022, ML algorithms were used to examine how long it would take for plants to recover from pesticide exposure. They used the 
1363-point, 311-pesticide, 10-plant, 4-component-class dataset of the pesticide dissipation half-lives (Fig. 10). Owing to the large 
differences in the empirical data, new estimates of the dissipation half-life interval were offered. The authors used ECFP, temperature, 
plant type, and plant component class to build models that could predict dissipation half-life intervals. These models were then tested 
using GBR, RF, SVC, and LR ML models. When compared to various other ML models, including LR-ECFP, F1-microbinary = 0.662 
0.009, and GBRT-ECFP F1-microbinary score = 0.698 0.010 had the best model performance for binary classification, with a score 
value. Correlation-based feature evaluation revealed that the molecular substructures of the aromatic rings, carbonyl groups, or-
ganophosphates, =C–H, and heterocyclic N-atoms were successful in relation to the pesticide disintegration half-lives. This research 
lends credence to the idea that ML models can be useful for determining how pesticides would behave in the natural world when 
applied to crops [23]. 

Deep learning has been used to detect pesticide usage on farms that grow crops, such as cucumbers, tomatoes, cabbage, and 
tangerines. They use readily available surveillance footage or cameras, as shown in Fig. 11. This information could provide essential 
data for encouraging the safe use of vegetables and pesticides by consumers, as well as enabling authorities to promptly analyze the 
nutritional value of agricultural goods. They designed PesViT as the primary model, which is based on end-to-end neural model 
optimization in mobile ViT employing Ghost blocks [73]. They then used momentum contrast methodology in conjunction with a 
contrastive self-supervised learning method (SSL-MoCo). 

This technique employs unmarked sets of data with the necessary modifications to the hyperparameters to achieve the most ac-
curate and fast outputs. Using the latest information collected from farms at different times of the day, the model achieved an efficiency 
of 95.36%, which was higher than the 91.25% achieved by the original Mobile ViT and 88.75% achieved by MobileNetV2. Particularly 
encouraging for the model’s potential for wide-scale implementation is the fact that the experimental construct runs well, even on 
systems with modest hardware. Overall, this model represents a significant step forward in the development of precision agriculture 
tools that can help farmers optimize their yields while minimizing waste and environmental impact. 

In 2023, image processing for deep learning approaches was used to forecast insect detection for leaf diseases and to prescribe 
pesticides. Leaf condition can predict the size and quality of a harvest month in advance, making it an important factor in agricultural 
and plant science. Disease classification, pesticide suggestions, and pre-processing of leaf pictures from a plant village dataset are all 
proposed here using a Deep Neural Network (DNN) approach [6]. The dataset was extended by geometrically manipulating plant leaf 
images and then splitting them into test and training data, as shown in Fig. 12. Subsequently, Convolutional Neural Network 
(CNN)-type ResNet-50 models were trained on the massive ImageNet image dataset. Using the concept of transfer learning, this study 
applied database design rules that were previously learned to a smaller model picture dataset of plant infections. The goal is to create a 
model that can identify diseases in leaves, pests, and suggest the correct pesticides. This technique has been used to test several sick 
leaves. Experiments showed that the accuracy and efficiency of plant sprig image detection can be improved by applying a 
transfer-learning-based CNN approach. It can quickly and accurately identify agricultural illnesses, reduce pesticide and fertilizer 
application, and boost both crop quality and production. 

A portable NIR spectroscopy machine learning method was investigated for the detection of chlorpyrifos residues in pesticide- 
resistant bok choi (Brassica rapa subsp. chinensis). Vegetable pesticides and bacterial sprays pose potential health hazards to users. 
To identify chlorpyrifos residues in Bok Choi, researchers used a combination of NIR spectroscopy and ML algorithms. These 

Fig. 11. Pesticide monitoring in deep learning method using cameras [73].  
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algorithms include the sufficient component artificial neural networks (PC-ANN), partial least-squares discriminant analysis (PLS-DA), 
and support vector machines (SVM). A total of 120 bok choi samples were obtained from two small conservatories that developed 
cultivation of internal individuals [46]. Sixty samples were allocated to each of the two treatment groups: pesticide and non-pesticide 
groups. Chlorpyrifos (2 mL/L), containing 40% EC residue, was added to the vegetables before irrigation. A compact one-dimensional 
computer was connected to a commercially available handheld NIR spectrometer with a wavelength range of 908–1676 nm. Ultra-
violet light spectrophotometry was used to detect the presence of antimicrobial compounds in Bok Choi, the researchers used ultra-
violet (UV) light spectrophotometry was used. By applying SVM and PC-ANN to the raw data spectra, the model that achieved the 
highest accuracy correctly classified each model in the measurement set according to its chlorpyrifos residue concentration. In the 
analysis of an unknown dataset, 40 samples were collected, so after the sample achieved 100 % success, F1-victory. The researchers 
found that the proposed portable NIR spectrometer, combined with ML algorithms (PLS-DA, SVM, and PC-ANN), could detect 
chlorpyrifos [46]. 

The use of portable NIR spectroscopy in conjunction with an ML technique for the nondestructive detection of pesticide residues 
(chlorpyrifos) in bok choi (Brassica rapa subsp. chinensis) has been studied. Vegetables sprayed with pesticides pose health risks to 
consumers. In this study, we used a combination of NIR spectroscopy and ML algorithms to detect the chlorpyrifos residues in bok choi. 
These algorithms include Partial Least-Squares Discrimination Analysis (PLS-DA), Support Vector Machines (SVM), Artificial Neural 
Networks (ANN), and Principal Component Artificial Neural Networks (PC-ANN). 120 bok choi samples were collected from two small 
greenhouses where they were grown in isolation [46]. There were 60 samples in each of the pesticide and non-pesticide treatment 
groups. Two milliliters per litre (mL/L) of chlorpyrifos 40% EC residue was added to the vegetables before they were sprayed. They 
interfaced a compact single-board computer with a commercially available handheld NIR spectrometer covering the range 908–1676 
nm. Using ultraviolet (UV) spectrophotometry, they determined the presence of pesticides in bok choi. Using SVM and PC-ANN with 
raw data spectra, the most accurate model properly identified all the samples included in the calibration set based on their chlorpyrifos 
residue concentration. A satisfactory F1-score (100%) was obtained after testing the model on an unknown dataset consisting of 40 
samples. Researchers have found that chlorpyrifos residues on bok choi could be detected using the suggested portable NIR spec-
trometer in conjunction with ML algorithms (PLS-DA, SVM, and PC-ANN) [46]. 

Because typical agricultural pest detection methods rely on manual selection of relevant feature sets, they are limited, ineffective, 
and time-consuming. To accurately identify 102 prevalent agricultural pest species, this study provides a cutting-edge crop pest 
recognition strategy based on deep Convolutional Neural Networks (CNN), as shown in Fig. 13. To obtain better accuracy even with a 
smaller pest dataset, the pre-trained model Mobile Net was retrained to take advantage of the knowledge learned from a larger and 
more generic dataset [74]. One hundred twenty-five distinct models were trained on the IP102 pest dataset. The best model was chosen 
after careful consideration of a wide range of models, the effects of several dataset splits, and hyperparameter adjustment. The model is 
then used in a flutter-based smartphone app that can classify pests using either the device’s built-in camera or an image from the 
device’s gallery, whether the user is connected to the Internet or not. 

Toxicological predictions [75–77] based on ML algorithms use simulation tools to assess the potential dangers of substances and 
chemicals [78–80]. These models use the power of ML algorithms to analyze large datasets and identify patterns that might predict the 
toxicity of novel compounds. These algorithms can estimate the probable toxicity of a new chemical with high accuracy by training on 
past data. This method has the potential to significantly reduce the time and cost of traditional toxicological testing methods. 
Moreover, ML-based toxicity predictions can aid in identifying the possible dangers associated with chemical exposure in a variety of 
scenarios, including occupational and environmental exposure. Various reports are presented in Table 1. However, it should be noted 
that these models are not ideal and should be used in conjunction with traditional testing procedures to provide accurate and 
dependable results. As technology advances, ML-based toxicity predictions are anticipated to become an increasingly significant tool 
for ensuring the safety of chemicals and substances in various industries. 

Fig. 12. - Proposed block diagram for Convolutional Neural Network (CNN) [74].  
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4. Conclusions and future prospective 

In conclusion, the incorporation of ML algorithms into the field of pesticide toxicity prediction is a significant step towards 
addressing the complex difficulties associated with pesticide use in agriculture [92–94]. ML has emerged as a powerful ally that 
enables researchers, regulators, and stakeholders to make more informed decisions. Detecting and foreseeing pesticide toxicity in 
agricultural areas can greatly benefit from statistical insights and methods made available by ML. For toxicity prediction, it is rec-
ommended to use an SVM, k-NN, ANN, CNN, LDA, DQA, and RF, all of which are based on regression models. In the future, ML will be 
able to facilitate intermediate connections using mathematical techniques, such as the learning and optimization of moderating 
components based on input and output data alone. This will enable more precise and time-efficient pesticide toxicity predictions, 
thereby protecting both individuals and ecosystems from potential harm. ML can also help determine the most efficient and long-term 
strategies for pest management, thus decreasing the use of potentially dangerous pesticides. To ensure safe and responsible practices, it 
is essential to consider the ethical and social implications and consult specialists in the subject. As we progress, it is imperative to strike 
a balance between agricultural productivity and environmental preservation. ML models offer a valuable tool for achieving this 
equilibrium by guiding the judicious use of pesticides, minimizing risks to ecosystems and human health, and contributing to a more 
sustainable and responsible agricultural future. 
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[3] P.C. Agyeman, K. John, N.M. Kebonye, S. Ofori, L. Borůvka, R. Vašát, M. Kočárek, Ecological risk source distribution, uncertainty analysis, and application of 
geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils, Process Saf. Environ. Protect. 164 (2022) 
729–746, https://doi.org/10.1016/j.psep.2022.06.051. 

[4] R.K. Mukherjee, V. Kumar, K. Roy, Chemometric modeling of plant protection products (PPPs) for the prediction of acute contact toxicity against honey bees (A. 
mellifera): a 2D-QSAR approach, J. Hazard Mater. 423 (2022) 127230, https://doi.org/10.1016/j.jhazmat.2021.127230. 

[5] A.F. Hernandez-Jerez, P. Adriaanse, A. Aldrich, P. Berny, T. Coja, S. Duquesne, A. Focks, M. Marinovich, M. Millet, O. Pelkonen, S. Pieper, A. Tiktak, C. 
J. Topping, A. Widenfalk, M. Wilks, G. Wolterink, U. Gundert-Remy, J. Louisse, S. Rudaz, E. Testai, A. Lostia, J. Dorne, J.M. Parra Morte, Scientific opinion of the 
scientific panel on plant protection products and their residues (PPR panel) on testing and interpretation of comparative in vitro metabolism studies, EFSA J. 19 
(2021), https://doi.org/10.2903/j.efsa.2021.6970. 

[6] V. Rajeshram, B. Rithish, S. Karthikeyan, S. Prathab, Leaf diseases prediction pest detection and pesticides recommendation using deep learning techniques, in: 
2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), IEEE, 2023, pp. 1633–1639, https://doi.org/10.1109/ 
ICSCDS56580.2023.10104652. 

[7] W.F. Vaz, G.D.C. D’Oliveira, C.N. Perez, B.J. Neves, H.B. Napolitano, Machine learning prediction of the potential pesticide applicability of three 
dihydroquinoline derivatives: syntheses, crystal structures and physical properties, J. Mol. Struct. 1206 (2020) 127732, https://doi.org/10.1016/j. 
molstruc.2020.127732. 

[8] A.K. Halder, A.S. Moura, M.N.D.S. Cordeiro, Predicting the ecotoxicity of endocrine disruptive chemicals: multitasking in silico approaches towards global 
models, Sci. Total Environ. 889 (2023) 164337, https://doi.org/10.1016/j.scitotenv.2023.164337. 

[9] F. Li, D. Fan, H. Wang, H. Yang, W. Li, Y. Tang, G. Liu, In silico prediction of pesticide aquatic toxicity with chemical category approaches, Toxicol. Res. 6 (2017) 
831–842, https://doi.org/10.1039/C7TX00144D. 

[10] C. Zhang, F. Cheng, L. Sun, S. Zhuang, W. Li, G. Liu, P.W. Lee, Y. Tang, In silico prediction of chemical toxicity on avian species using chemical category 
approaches, Chemosphere 122 (2015) 280–287, https://doi.org/10.1016/j.chemosphere.2014.12.001. 

[11] N. Basant, S. Gupta, K.P. Singh, Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches, 
Chemosphere 139 (2015) 246–255, https://doi.org/10.1016/j.chemosphere.2015.06.063. 

[12] M. Maroni, A. Fait, C. Colosio, Risk assessment and management of occupational exposure to pesticides, Toxicol. Lett. 107 (1999) 145–153, https://doi.org/ 
10.1016/S0378-4274(99)00041-7. 

[13] A.M. Dowgiallo, D.A. Guenther, Determination of the limit of detection of multiple pesticides utilizing gold nanoparticles and surface-enhanced Raman 
spectroscopy, J. Agric. Food Chem. 67 (2019) 12642–12651, https://doi.org/10.1021/acs.jafc.9b01544. 

[14] M.M. Akashe, U. V Pawade, A. V Nikam, Classification of pesticides: a review, Int. J. Res. Ayurveda Pharm. 9 (2018) 144–150, https://doi.org/10.7897/2277- 
4343.094131. 

[15] A.M. Silva, C. Martins-Gomes, T.L. Silva, T.E. Coutinho, E.B. Souto, T. Andreani, In vitro assessment of pesticides toxicity and data correlation with pesticides 
physicochemical properties for prediction of toxicity in gastrointestinal and skin contact exposure, Toxics 10 (2022) 378, https://doi.org/10.3390/ 
toxics10070378. 

[16] L. de Baan, Sensitivity analysis of the aquatic pesticide fate models in SYNOPS and their parametrization for Switzerland, Sci. Total Environ. 715 (2020) 136881, 
https://doi.org/10.1016/j.scitotenv.2020.136881. 

[17] T. Yang, B. Zhao, A.J. Kinchla, J.M. Clark, L. He, Investigation of pesticide penetration and persistence on harvested and live basil leaves using surface-enhanced 
Raman scattering mapping, J. Agric. Food Chem. 65 (2017) 3541–3550, https://doi.org/10.1021/acs.jafc.7b00548. 

[18] L.E. Gray, J.M. Conley, C.S. Lambright, J.R. Furr, In utero exposure to a mixture of the perfluoroalkyl-isopropyl pesticide pyrifluquinazon with dibutyl phthalate 
cumulatively disrupts male rat reproductive development via different mechanisms of action, Toxicol. Sci. 188 (2022) 234–247, https://doi.org/10.1093/ 
toxsci/kfac059. 

[19] A. Sellami, M. Réau, M. Montes, N. Lagarde, Review of in silico studies dedicated to the nuclear receptor family: therapeutic prospects and toxicological 
concerns, Front. Endocrinol. 13 (2022), https://doi.org/10.3389/fendo.2022.986016. 

[20] K. Mansouri, A.L. Karmaus, J. Fitzpatrick, G. Patlewicz, P. Pradeep, D. Alberga, N. Alepee, T.E.H. Allen, D. Allen, V.M. Alves, C.H. Andrade, T.R. Auernhammer, 
D. Ballabio, S. Bell, E. Benfenati, S. Bhattacharya, J.V. Bastos, S. Boyd, J.B. Brown, S.J. Capuzzi, Y. Chushak, H. Ciallella, A.M. Clark, V. Consonni, P.R. Daga, 
S. Ekins, S. Farag, M. Fedorov, D. Fourches, D. Gadaleta, F. Gao, J.M. Gearhart, G. Goh, J.M. Goodman, F. Grisoni, C.M. Grulke, T. Hartung, M. Hirn, P. Karpov, 
A. Korotcov, G.J. Lavado, M. Lawless, X. Li, T. Luechtefeld, F. Lunghini, G.F. Mangiatordi, G. Marcou, D. Marsh, T. Martin, A. Mauri, E.N. Muratov, G.J. Myatt, 
D.-T. Nguyen, O. Nicolotti, R. Note, P. Pande, A.K. Parks, T. Peryea, A.H. Polash, R. Rallo, A. Roncaglioni, C. Rowlands, P. Ruiz, D.P. Russo, A. Sayed, R. Sayre, 
T. Sheils, C. Siegel, A.C. Silva, A. Simeonov, S. Sosnin, N. Southall, J. Strickland, Y. Tang, B. Teppen, I.V. Tetko, D. Thomas, V. Tkachenko, R. Todeschini, 
C. Toma, I. Tripodi, D. Trisciuzzi, A. Tropsha, A. Varnek, K. Vukovic, Z. Wang, L. Wang, K.M. Waters, A.J. Wedlake, S.J. Wijeyesakere, D. Wilson, Z. Xiao, 
H. Yang, G. Zahoranszky-Kohalmi, A.V. Zakharov, F.F. Zhang, Z. Zhang, T. Zhao, H. Zhu, K.M. Zorn, W. Casey, N.C. Kleinstreuer, CATMoS: collaborative acute 
toxicity modeling suite, Environ. Health Perspect. 129 (2021), https://doi.org/10.1289/EHP8495. 

[21] J. Lewer, J. Huang, J. Peloquin, J. Kostal, Structure–energetics–property relationships support computational design of photodegradable pesticides, Environ. 
Sci. Technol. 55 (2021) 11713–11722, https://doi.org/10.1021/acs.est.1c02556. 

[22] T. Yang, J. Doherty, B. Zhao, A.J. Kinchla, J.M. Clark, L. He, Effectiveness of commercial and homemade washing agents in removing pesticide residues on and 
in apples, J. Agric. Food Chem. 65 (2017) 9744–9752, https://doi.org/10.1021/acs.jafc.7b03118. 

[23] Y. Shen, E. Zhao, W. Zhang, A.A. Baccarelli, F. Gao, Predicting pesticide dissipation half-life intervals in plants with machine learning models, J. Hazard Mater. 
436 (2022) 129177, https://doi.org/10.1016/j.jhazmat.2022.129177. 

[24] A. Sharma, V. Kumar, S.K. Kohli, R. Kaur, T. Kaur, S. Arora, A.K. Thukral, R. Bhardwaj, Pesticide metabolism in plants, insects, soil microbes and fishes, in: 
Pesticides in Crop Production, Wiley, 2020, pp. 35–53, https://doi.org/10.1002/9781119432241.ch3. 

[25] L. Kanuru, A.K. Tyagi, A.S. U, T.F. Fernandez, N. Sreenath, S. Mishra, Prediction of pesticides and fertilizers using machine learning and Internet of things, in: 
2021 International Conference on Computer Communication and Informatics (ICCCI), IEEE, 2021, pp. 1–6, https://doi.org/10.1109/ 
ICCCI50826.2021.9402536. 

[26] T. Gunstone, T. Cornelisse, K. Klein, A. Dubey, N. Donley, Pesticides and soil invertebrates: a hazard assessment, Front. Environ. Sci. 9 (2021), https://doi.org/ 
10.3389/fenvs.2021.643847. 

G. Anandhi and M. Iyapparaja                                                                                                                                                                                     

https://doi.org/10.1016/j.ailsci.2023.100057
https://doi.org/10.1007/978-981-19-6506-7_4
https://doi.org/10.1016/j.psep.2022.06.051
https://doi.org/10.1016/j.jhazmat.2021.127230
https://doi.org/10.2903/j.efsa.2021.6970
https://doi.org/10.1109/ICSCDS56580.2023.10104652
https://doi.org/10.1109/ICSCDS56580.2023.10104652
https://doi.org/10.1016/j.molstruc.2020.127732
https://doi.org/10.1016/j.molstruc.2020.127732
https://doi.org/10.1016/j.scitotenv.2023.164337
https://doi.org/10.1039/C7TX00144D
https://doi.org/10.1016/j.chemosphere.2014.12.001
https://doi.org/10.1016/j.chemosphere.2015.06.063
https://doi.org/10.1016/S0378-4274(99)00041-7
https://doi.org/10.1016/S0378-4274(99)00041-7
https://doi.org/10.1021/acs.jafc.9b01544
https://doi.org/10.7897/2277-4343.094131
https://doi.org/10.7897/2277-4343.094131
https://doi.org/10.3390/toxics10070378
https://doi.org/10.3390/toxics10070378
https://doi.org/10.1016/j.scitotenv.2020.136881
https://doi.org/10.1021/acs.jafc.7b00548
https://doi.org/10.1093/toxsci/kfac059
https://doi.org/10.1093/toxsci/kfac059
https://doi.org/10.3389/fendo.2022.986016
https://doi.org/10.1289/EHP8495
https://doi.org/10.1021/acs.est.1c02556
https://doi.org/10.1021/acs.jafc.7b03118
https://doi.org/10.1016/j.jhazmat.2022.129177
https://doi.org/10.1002/9781119432241.ch3
https://doi.org/10.1109/ICCCI50826.2021.9402536
https://doi.org/10.1109/ICCCI50826.2021.9402536
https://doi.org/10.3389/fenvs.2021.643847
https://doi.org/10.3389/fenvs.2021.643847


Heliyon 10 (2024) e28752

16

[27] T. Gunstone, T. Cornelisse, K. Klein, A. Dubey, N. Donley, Pesticides and soil invertebrates: a hazard assessment, Front. Environ. Sci. 9 (2021), https://doi.org/ 
10.3389/fenvs.2021.643847. 

[28] P. P, et al., A survey on machine learning and text processing for pesticides and fertilizer prediction, Turkish Journal of Computer and Mathematics Education 
(TURCOMAT) 12 (2021), https://doi.org/10.17762/turcomat.v12i2.1951. 

[29] V.M. Pathak, V.K. Verma, B.S. Rawat, B. Kaur, N. Babu, A. Sharma, S. Dewali, M. Yadav, R. Kumari, S. Singh, A. Mohapatra, V. Pandey, N. Rana, J.M. Cunill, 
Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: a comprehensive review, Front. 
Microbiol. 13 (2022), https://doi.org/10.3389/fmicb.2022.962619. 

[30] I. El-Nahhal, Y. El-Nahhal, Pesticide residues in drinking water, their potential risk to human health and removal options, J Environ Manage 299 (2021) 113611, 
https://doi.org/10.1016/j.jenvman.2021.113611. 

[31] S.-H. Men, X. Xie, X. Zhao, Q. Zhou, J.-Y. Chen, C.-Y. Jiao, Z.-G. Yan, The application of reference dose prediction model to human health water quality criteria 
and risk assessment, Toxics 11 (2023) 318, https://doi.org/10.3390/toxics11040318. 

[32] F. Zhao, L. Li, P. Lin, Y. Chen, S. Xing, H. Du, Z. Wang, J. Yang, T. Huan, C. Long, L. Zhang, B. Wang, M. Fang, HExpPredict: in Vivo exposure prediction of human 
blood exposome using a random forest model and its application in chemical risk prioritization, Environ. Health Perspect. 131 (2023), https://doi.org/10.1289/ 
EHP11305. 

[33] M. Ryan, G. Isakhanyan, B. Tekinerdogan, An interdisciplinary approach to artificial intelligence in agriculture, NJAS: Impact in Agricultural and Life Sciences 
95 (2023), https://doi.org/10.1080/27685241.2023.2168568. 

[34] J.T. Moreira-Filho, R.C. Braga, J.M. Lemos, V.M. Alves, J.V.V.B. Borba, W.S. Costa, N. Kleinstreuer, E.N. Muratov, C.H. Andrade, B.J. Neves, BeeToxAI: an 
artificial intelligence-based web app to assess acute toxicity of chemicals to honey bees, Artificial Intelligence in the Life Sciences 1 (2021) 100013, https://doi. 
org/10.1016/j.ailsci.2021.100013. 

[35] Y. Fu, T. Luechtefeld, A. Karmaus, T. Hartung, The use of artificial intelligence and big data for the safety evaluation of US food-relevant chemicals, in: Present 
Knowledge in Food Safety, Elsevier, 2023, pp. 575–589, https://doi.org/10.1016/B978-0-12-819470-6.00061-5. 

[36] S.K. Jha, Z. Chishti, Z. Ahmad, K.-R. Arshad, Enterobacter sp. SWLC2 for biodegradation of chlorpyrifos in the aqueous medium: modeling of the process using 
artificial neural network approaches, Comput. Electron. Agric. 193 (2022) 106680, https://doi.org/10.1016/j.compag.2021.106680. 

[37] U.S.S.D.I.G. Gouravmoy Bannerjee#1, Artificial intelligence in agriculture: a literature survey, Int J Sci Res Comput Sci Appl Manag Stud. 7 (2018) 1–6. 
[38] https://www.globenewswire.com/news-release/2020/05/07/2029169/0/en/The-AI-in-agriculture-market-is-projected-to-grow-at-a-CAGR-of-25-5-from- 

2020-to-2026.html, ((n.d.)). 
[39] T. Talaviya, D. Shah, N. Patel, H. Yagnik, M. Shah, Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of 

pesticides and herbicides, Artificial Intelligence in Agriculture 4 (2020) 58–73, https://doi.org/10.1016/j.aiia.2020.04.002. 
[40] A. Rejeb, K. Rejeb, S. Zailani, J.G. Keogh, A. Appolloni, Examining the interplay between artificial intelligence and the agri-food industry, Artificial Intelligence 

in Agriculture 6 (2022) 111–128, https://doi.org/10.1016/j.aiia.2022.08.002. 
[41] M.-T. Tai, The impact of artificial intelligence on human society and bioethics, Tzu Chi Med. J. 32 (2020) 339, https://doi.org/10.4103/tcmj.tcmj_71_20. 
[42] J. Liu, W. Guo, F. Dong, J. Aungst, S. Fitzpatrick, T.A. Patterson, H. Hong, Machine learning models for rat multigeneration reproductive toxicity prediction, 

Front. Pharmacol. 13 (2022), https://doi.org/10.3389/fphar.2022.1018226. 
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