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Abstract

Determining the total number of charged residues corresponding to a given value of net charge for peptides and proteins
in gas phase is crucial for the interpretation of mass-spectrometry data, yet it is far from being understood. Here we show
that a novel computational protocol based on force field and massive density functional calculations is able to reproduce
the experimental facets of well investigated systems, such as angiotensin II, bradykinin, and tryptophan-cage. The protocol
takes into account all of the possible protomers compatible with a given charge state. Our calculations predict that the low
charge states are zwitterions, because the stabilization due to intramolecular hydrogen bonding and salt-bridges can
compensate for the thermodynamic penalty deriving from deprotonation of acid residues. In contrast, high charge states
may or may not be zwitterions because internal solvation might not compensate for the energy cost of charge separation.
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Introduction

Predicting the structural properties of proteins in the gas phase

is crucial to interpret mass spectrometry data, yet this is far from

being understood [1–10]. So far, it has been established that (i)

compact structures acquire smaller net charges than unfolded ones

[11–13], (ii) secondary and tertiary structure elements play a

crucial role for protein fragmentation [14–23], and (iii) hydrogen

bonds (H-bonds) and salt-bridges [3,24,25] may stabilize the

structures. However, how desolvation impacts on structural facets

of proteins [2,3,8,26–30], peptides [3,31–35] and even single

amino acids [36–45] is matter of a vivid debate.

A key point is the presence of charge separation. Whilst amino

acids exist mostly in their zwitterionic form in the aqueous solution

[31,36,40,46], conflicting assumptions and conclusions have been

drawn for the same molecules in vacuo [47–50]. For peptides and

proteins, the key issue of the charge state of ionizable groups,

presumably different from that in solution, is even less clear

[2,51–53]. One line of thought assumes neutral acidic functions for

proteins analyzed in positive-ion mode (i.e., generating and

detecting positively charged ions) and neutral basic sites in

negative-ion mode. In other words, the number of ionized groups

is generally assumed to be equal to the net charge of the protein

ion [54–56]. Electrostatic energy calculations based on this

supposition fail to reproduce experimental values of apparent

gas-phase basicity (GPB) for folded protein ions [57]. The GPB of

a basic species B is defined as the negative of the free-energy

change, DG, for the gas-phase protonation reaction

BzHz?BHz, GPB~{DG:

If B is the conjugate base of an acid AH, then GPB~{GA,

where GA is the gas-phase acidity of AH. Analogously, the proton

affinity is defined as the negative of the protonation enthalpy,

PA = 2DH .

In contrast, an increasing number of experimental

[16,24,25,58–61] and theoretical [62,63] investigations carried

out on peptides and small proteins indicate that zwitterionic states

may survive in the absence of solvent if the structural features

allow for adequate intramolecular solvation [64–67]. Recent

ultraviolet photo-dissociation [16] and fluorescence [25,61]

experiments indicate the presence of stabilizing salt-bridge motifs

in small biomolecules. Salt bridges exist also in protonated, gas-

phase serine dimers [24] and have been predicted for arginine

dimers [63,68,69]. These interactions add to other stabilizing

contributions such as hydrogen bonds [3,24,25]. Molecular

dynamics (MD) simulations on a minimalistic lattice model of a

zwitterionic system [1] turned out to reproduce the experimental

observation that compact structures acquire smaller net charges

than unfolded ones [11–13]. On the basis of these simulations, it

has been also proposed that steric and electrostatic shielding of

charged residues in compact conformations are the major factors

responsible for this structural facet. Energy calculations [2,7,52]

and measurements [51,70] on several well characterized proteins

in their experimentally observed, most populated charge state

suggest that the presence of zwitterions depends on the specific

protein structure [2,51]. Deprotonated aspartic and glutamic

residues persist in the most abundant, positively charged

protomer of insulin, the C-terminal domain of the ribosomal

protein L7/L12 and ubiquitin, but not in tryptophan-cage and

lysozyme [2].
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Prompted by the current lack of understanding of the charge

state of protein ions in vacuo, here we have carried out an

exhaustive energy analysis on three systems largely studied in the

gas phase both experimentally [16,25,59,60,71–77] and theoret-

ically [52,62,63,72]. These are the 8-residue peptide angiotensin II

(AN) [74–76] and the 9-residue peptide bradykinin (BK)

[16,59,62,63,71–73], as well as the tryptophan-cage (Trp-cage)

[16,25,52,60,77] protein. The latter is a 20-residue mini-protein

with a well defined secondary and tertiary structure in aqueous

solution at ambient conditions. It consists of an a-helix and a

compact hydrophobic core formed by a Trp side chain from the a-

helix, surrounded by several hydrophobic residues (two prolines

and one tyrosine) [78].

A complete exploration of the protomer space (i.e., all of the

possible charge configurations compatible with a given charge

state) of these biomolecules is performed coupling force field–

based molecular dynamics and density functional theory (DFT)

calculations. In contrast to previous computational studies

[25,31,52,62,63,79,80], all of the charge states generated by

ionized and/or neutral basic (R, K, H, Q, N-terminus) and acidic

groups (E, D, C-terminus), featuring more than one protomer, are

taken into account.

A computational protocol apt to this task has been developed,

allowing for an exhaustive exploration of the conformational space

of each protomer. Based on such protocol, we suggest that low-

charge states are likely zwitterions. In those cases, H-bonds and

salt-bridges stabilize largely zwitterionic states, considerably

reducing the differences in the apparent GPB between basic

residues and the conjugated base of acidic residues. At high net

charge, instead, non-zwitterion states are most likely.

Methods

Systems
The sequences of BK, AN and Trp-cage are RPPGFSPFR,

DRVYIHPF, NLYIQWLKDGGPSSGRPPPS, respectively. For

each system, the following protonation sites were considered:

Arg1, Arg9, N- and C-term for BK; Asp1, Arg2, His6, N- and C-

term for AN (His6 in the neutral state can be protonated either in

d or e, both tautomers were considered); Gln5, Lys8, Asp9, Arg16,

and N- and C-term for Trp-cage. In the latter, protonation of

Gln5 was considered for the q~2z and q~3z charge states on

the basis of experimental evidences [19].

BK and AN have no determined secondary structure and all of

the calculations started with an all-trans backbone and side-chain

conformation. Instead, the Trp-cage initial structure was obtained

by a 20-ns MD simulation in aqueous solution at ambient

conditions based on the NMR structure number 1 deposited in the

protein data bank (PDB code: 1L2Y) [78] (see Text S1). The most

probable protonation state in water [78] was chosen.

For the chosen set of protonation sites, all of the charge states

which feature more than one protomer were taken into account.

For these charge states, all of the possible protomers were

considered, for a total of 100 protomers (see Tables 1, 2, and 3).

Force field-based MD calculations
OPLS/AA force field-based [81,82], constant-temperature MD

calculations and geometry optimizations were carried out. The

cutoff of electrostatics and van der Waals interactions was fixed at

0.7nm. In the MD simulations, the equations of motion were

numerically integrated with a time step of 1.5 fs. All the hydrogen-

bond lengths were kept fixed using the LINCS [83] algorithm.

The temperature was controlled by the Nosé-Hoover thermostat

[84]. The results of force field based MD simulations depend

critically on the charge state used. Therefore, we performed a

simulation for each protonation state. Specifically 8-ns MD

simulations at high-temperature (700K for AN and BK, 350K

for Trp-cage) were performed for each protonation state. The

Author Summary

In the last two decades mass spectrometry has given an
impressive contribution to biochemistry, protein science,
proteomics and structural biology. This technique offers
powerful insights into protein structure and dynamics
along with useful information on the role of solvent in
protein stability as it is able to preserve non-covalent
interactions and globular structures during the proteins’
flight inside the mass spectrometer. Unfortunately, the key
issue of the charge state of ionizable groups, presumably
different from that in solution, has not been elucidated yet.
So far conflicting assumptions and conclusions have been
drawn by several groups. In the present work a very
accurate structural and energetic analysis of the proton-
ation state of two peptides and a small protein in the gas
phase was performed. Results suggest that internal
solvation can stabilize charge separation with the forma-
tion of zwitterionic states.

Table 1. Energetics and structural parameters for the lowest-
energy conformers of bradykinin protomers.

N-ter R1 R9 C-ter DE {DDU DPA DGB IR SB sHB iHB HB

q = 0

0 + 0 2 0 380 409 368 2 1 2 5 1

0 0 + 2 10 380 409 368 2 1 2 4 3

+ 0 0 2 49 542 535 540 2 1 1 5 0

0 0 0 0 57 0 0 0 0 0 0 0 4

q = 1+

0 + + 2 0 380 409 368 3 2 3 2 0

0 + 0 0 46 0 0 0 1 0 0 3 4

0 0 + 0 63 0 0 0 1 0 0 4 1

+ 0 + 2 67 542 535 540 3 2 2 2 3

+ + 0 2 112 542 535 540 3 1 2 4 0

+ 0 0 0 152 162 126 172 1 0 0 3 3

q = 2+

+ + + 2 0 542 535 540 4 3 4 3 1

0 + + 0 77 0 0 0 2 0 0 6 1

+ + 0 0 85 162 126 172 2 0 0 5 1

+ 0 + 0 93 162 126 172 2 0 0 5 2

In each row the following information is reported: protonation pattern (first
column); energy difference with respect to the most stable protomer (DE in kJ/
mol); (intrinsic) internal energy variation (DDU ), proton affinity (DPA) and gas-
phase basicity (DGPB) relative to the most favourable protomer (see text for a
definition of these quantities; all values are in kJ/mol); ionized residues (IR); salt-
bridges (SB); hydrogen bonds between salt-bridged residues (sHB); ionized
hydrogen bonds where either the donor or the acceptor is ionized, Dz � � �A or
D� � �A{ H-bonds (iHB); neutral hydrogen bonds (HB). Hydrogen bonds are
identified according to the donor-acceptor (A � � �D) distance and the donor-
acceptor H-bond angle (D{H � � �A). The following geometric criterion was
adopted: d(A � � �D)~3:5 Å and v(D{H � � �A)~1500 . A salt-bridge is formed
if the distance between any oxygen atom of the acidic residue and any
protonable nitrogen atom of the basic residue is less than 4.0 Å.
doi:10.1371/journal.pcbi.1000775.t001

Gas-Phase Peptides and Protein Ions
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chosen temperatures were selected after several careful tests. In

particular, for Trp-cage, a temperature of 350K turns out to allow

for an exhaustive sampling of the side chains conformations

without disrupting, in the relatively short simulation time, the

secondary structure. The resulting trajectories were split into 5-ps,

non overlapping time windows. For each window, the geometry of

the lowest-energy MD conformation was optimized by a

conjugated gradient scheme up to 0.1 kJ/molÅ residual force on

any atom. This simulated annealing-like procedure yielded for

each protomer a large set of conformations. The geometry of

structures within 100 kJ/mol (60 kJ/mol for Trp-cage) from the

lowest-energy force field conformer were refined at the ab initio

level (see Section ‘‘Identifying relevant protomers of a given charge

state’’). With this criterion, 60 conformers (35 for Trp-cage), were

randomly selected from equally spaced energy windows, one from

each window, and re-optimized at DFT/BLYP level of theory.

The GROMACS [85] software package was used for all MD

calculations.

Quantum-chemical geometry optimizations
Quantum-chemical geometry optimizations were performed

within the framework of DFT. The Becke exchange [86] and Lee-

Yang-Parr [87] correlation functionals (BLYP) were used in a

hybrid Gaussian and plane wave approach [88]. The wave

function was optimized by using an orbital transformation

technique [89] and analytic Goedecker-Teter-Hutter [90,91]

pseudopotentials (PP). The TZV2P Gaussian basis set was used

for valence electrons of all atoms, while the auxiliary electron

density was expanded in plane waves up to a cutoff of 280 Ry.

The interaction between periodic images in the reciprocal space

was removed according to the decoupling scheme presented in

[92]. The calculations were carried out with the CP2K code

[89,93,94], which has been shown to be very efficient for these

systems.

The adopted DFT scheme was validated against more accurate

(and more expensive) quantum chemistry methods. First, the

relative energy of canonical and zwitterionic arginine conformers

calculated with the present scheme agrees well with that obtained

from all-electrons B3LYP, MP2, and CCSD calculations (see

Table 2 in Text S1). Second, all of the 14 protomers of AN with

total charge q~1z underwent all-electrons, single-point energy

evaluations at DFT/B3LYP level with the 6–311++G(d,p) basis set

using the Gaussian03 code [95] (Angiotensin II was chosen

because it is the smallest of the three molecules studied and, in

particular, the charge state q~1z was considered because it

presents the largest set of protomers, and it is, therefore, a good

benchmark case).These and the previous calculations provided the

same energy ranking (see Table 3 in Text S1).

Table 2. Energetics and structural parameters for the lowest-
energy conformers of angiotensin II protomers.

N-ter D1 R2 H6 C-ter DE {DDU DPA DGB IR SB sHB iHB HB

q = 12

0 2 + e 2 0 380 409 368 3 2 4 2 1

0 2 + d 2 43 380 409 368 3 2 4 2 1

0 2 0 + 2 51 447 452 423 3 2 2 2 1

0 0 0 d 2 54 0 0 0 1 0 0 6 2

0 2 0 d 0 73 95 105 66 1 0 0 5 2

+ 2 0 d 2 84 542 535 540 3 2 1 6 0

0 2 0 e 0 86 95 105 66 1 0 0 4 1

0 0 0 e 2 91 0 0 0 1 0 0 3 4

+ 2 0 e 2 100 542 535 540 3 2 1 5 0

q = 0

0 2 + + 2 0 732 756 725 4 4 5 0 0

0 0 + d 2 17 380 409 368 2 1 1 3 2

0 0 + e 2 21 380 409 368 2 1 2 1 2

0 0 0 + 2 32 447 452 423 2 0 1 4 0

0 2 + d 0 37 285 304 302 2 1 2 3 1

+ 2 + e 2 39 827 839 842 4 4 5 2 4

+ 2 + d 2 39 827 839 842 4 4 4 1 2

0 2 + e 0 42 285 304 302 2 1 2 3 4

+ 0 0 d 2 64 542 535 540 2 1 1 2 0

0 0 0 d 0 69 0 0 0 0 0 0 0 7

+ 0 0 e 2 73 542 535 540 2 1 1 3 4

0 2 0 + 0 80 352 347 357 2 1 1 3 3

+ 2 0 + 2 100 894 882 897 4 4 3 2 0

+ 2 0 e 0 104 447 430 474 2 1 0 4 2

0 0 0 e 0 105 0 0 0 0 0 0 0 8

+ 2 0 d 0 106 447 430 474 2 1 1 2 2

q = 1+

0 0 + + 2 0 447 452 423 3 2 3 3 1

+ 2 + + 2 1 894 882 897 5 4 5 2 0

0 2 + + 0 2 352 347 357 3 2 3 3 0

0 0 + d 0 11 0 0 0 1 0 0 4 4

0 0 + e 0 25 0 0 0 1 0 0 4 2

+ 2 + d 0 41 447 430 474 3 2 2 3 0

0 0 0 + 0 42 67 43 55 1 0 0 2 3

+ 0 + e 2 48 534 542 585 3 2 2 4 1

+ 2 + e 0 48 542 535 540 3 2 2 2 1

+ 0 + d 2 62 542 535 540 3 2 2 2 1

+ 0 0 + 2 81 447 430 474 3 2 2 3 1

+ 0 0 d 0 85 162 126 172 1 0 0 3 1

+ 2 0 + 0 117 514 473 529 3 2 2 1 2

+ 0 0 e 0 122 162 126 172 1 0 0 2 3

q = 2+

0 0 + + 0 0 0 0 0 2 0 0 4 1

+ 0 + + 2 15 542 535 540 4 3 3 4 1

+ 0 + d 0 19 95 83 117 2 0 0 2 3

+ 2 + + 0 43 447 430 474 4 3 3 2 0

+ 0 0 + 0 64 162 126 172 2 0 0 2 1

+ 0 + e 0 95 95 83 117 2 0 0 2 2

In each row the following information is reported: protonation pattern (first
column); energy difference with respect to the most stable protomer (DE in kJ/
mol); (intrinsic) internal energy variation (DDU ), proton affinity (DPA) and gas-
phase basicity (DGPB) relative to the most favourable protomer (see text for a
definition of these quantities; all values are in kJ/mol); ionized residues (IR); salt-
bridges (SB); hydrogen bonds between salt-bridged residues (sHB); ionized
hydrogen bonds where either the donor or the acceptor is ionized, Dz � � �A or
D� � �A{ H-bonds (iHB); neutral hydrogen bonds (HB). Hydrogen bonds are
identified according to the donor-acceptor (A � � �D) distance and the donor-
acceptor H-bond angle (D{H � � �A). The following geometric criterion was
adopted: d(A � � �D)~3:5 Å and v(D{H � � �A)~1500 . A salt-bridge is formed
if the distance between any oxygen atom of the acidic residue and any
protonable nitrogen atom of the basic residue is less than 4.0 Å.
doi:10.1371/journal.pcbi.1000775.t002

Table 2. Cont.

Gas-Phase Peptides and Protein Ions
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A final concern for using DFT for non-covalent systems is the

underestimation of dispersion forces [96,97]. This flaw of the

current GGA functionals might influence the conformational

energy, especially in the case of large molecular assemblies like

those considered here. To quantify this error an estimate of the

dispersion energy was performed for the DFT optimized structures

using the OPLS/AA force field. The results of this calculation (see

Tables 4, 5 and 6 in Text S1) indicate that the dispersion energy is

not expected to change qualitatively the DFT energy ranking of

protomers.

Results

Identifying relevant protomers of a given charge state
A standard procedure to identify the relevant protomers is

currently lacking, even for peptides with more than a few amino-

acids. On the one hand, the high complexity of the conformational

space hampers an exhaustive search based on first-principle

quantum chemistry (such as DFT) of the minimum-energy

conformers. On the other hand, force field–based calculations

[62,63,98,99], or semiempirical quantum chemical methods [52],

may not be accurate enough. For instance, Merck molecular force

field [100] energies have been shown to correlate poorly with those

calculated at the DFT/B3LYP level [62,63]. In addition, the

energies calculated by force fields do not take into account higher-

order effects, which may play a role in our systems. DFT can,

instead, take such effects into account.

However, if the empirically calculated conformer is much

higher in energy than another (say with a DEc greater than few

hundreds of kJ/mol), it will be highly probable that the same

ranking holds at the ab initio level (see Figure 1 in Text S1). Here,

we seek such DEc value by performing MD simulations based on

the OPLS/AA, which offers the most complete set of base/

conjugate acid pairs. The calculations on the three systems in vacuo

provided several hundreds conformations, which then underwent

DFT/BLYP [86,87] geometry optimizations. Such quantum

chemical scheme is extremely efficient for large molecules, as

those investigated here [101,102].

We found that less than 5% of the ab initio conformers located

within 10kJ/mol from the energy minimum fall more than

DEc = 100kJ/mol (60kJ/mol for Trp-cage) above the OPLS/AA

minimum (see Figure 2 in Text S1). Exploiting this fact, we used

the ensuing protocol to identify the lowest-energy minimum for

each charge state for each peptide: (i) generation of conformers for

all possible protomers by OPLS/AA MD and simulated

annealing-like calculations; (ii) elimination of conformers whose

energy is larger than DEc from the absolute minimum; (iii) DFT/

BLYP geometry optimization of the conformers within DEc; (iv)

ranking of the conformers based on their DFT energies.

Table 3. Energetics and structural parameters for the lowest-
energy conformers of Trp-cage protomers.

N-ter Q5 K8 D9 R16 C-ter DE {DDU DPA DGB IR SB sHB iHB HB

q = 0

0 0 0 0 + 2 0 380 409 368 2 0 0 9 8

+ 0 0 2 + 2 9 827 839 842 4 4 4 8 7

0 0 + 2 0 0 20 341 345 350 2 1 1 5 12

0 0 0 0 0 0 22 0 0 0 0 0 0 0 19

0 0 + 0 0 2 25 436 450 416 2 0 0 6 11

0 0 + 2 + 2 33 721 754 718 4 2 3 10 5

0 0 0 2 + 0 47 285 304 302 2 1 1 6 7

+ 0 + 2 0 2 95 883 880 890 4 2 2 8 10

+ 0 0 0 0 2 108 542 535 540 2 1 1 3 12

+ 0 0 2 0 0 228 447 430 474 2 0 0 8 8

q = 1+

+ 0 + 2 + 2 wat - - - 5 1 1 0 5

+ 0 0 0 + 2 0 542 535 540 3 1 1 5 12

0 0 0 0 + 0 5 0 0 0 1 0 0 3 12

+ 0 0 2 + 0 18 447 430 474 3 2 3 6 6

0 0 + 2 + 0 41 341 345 450 3 2 3 3 11

+ 0 0 0 0 0 66 162 126 172 1 0 0 2 16

+ 0 + 0 0 2 66 598 576 588 3 1 1 5 8

+ 0 + 2 + 2 72 883 880 890 5 5 7 4 5

0 0 + 0 + 2 79 436 450 416 3 0 0 9 7

0 0 + 0 0 0 87 56 41 48 1 0 0 3 13

+ 0 + 2 0 0 99 503 471 522 3 1 1 8 7

q = 2+

+ 0 + 0 + 2 0 542 535 540 4 2 1 6 8

0 0 + 0 + 0 7 0 0 0 2 0 0 6 11

+ 0 0 0 + 0 57 106 85 124 2 0 0 6 14

+ + + 0 0 2 69 674 642 647 4 1 3 7 9

+ + + 2 + 2 74 959 946 949 6 4 6 7 4

+ 0 + 2 + 0 104 447 430 474 4 1 1 11 6

+ 0 + 0 0 0 105 162 126 172 2 0 0 4 9

+ + 0 0 + 2 110 618 601 599 4 2 4 5 9

0 + + 0 + 2 116 512 516 475 4 1 2 6 8

0 + 0 0 + 0 130 76 66 59 2 0 0 7 9

0 + + 2 + 0 144 417 411 409 4 2 3 9 8

+ + + 2 0 0 155 579 537 581 4 1 2 8 9

0 + + 0 0 0 132 107 107 149 2 0 0 4 11

+ + 0 0 0 0 211 238 192 231 2 0 0 6 12

+ + 0 2 + 0 264 523 496 533 4 0 0 12 7

q = 3+

+ 0 + 0 + 0 0 30 19 65 3 0 0 10 11

+ + 0 0 + 0 61 106 85 124 3 0 0 8 8

+ + + 0 + 2 62 542 535 540 5 1 1 12 9

0 + + 0 + 0 84 0 0 0 3 0 0 8 7

+ + + 2 + 0 113 447 430 474 5 2 3 9 6

+ + + 0 0 0 158 162 126 172 3 0 0 7 10

In each row the following information is reported: protonation pattern (first
column); energy difference with respect to the most stable protomer (DE in kJ/
mol); (intrinsic) internal energy variation (DDU ), proton affinity (DPA) and gas-
phase basicity (DGPB) relative to the most favourable protomer (see text for a

definition of these quantities; all values are in kJ/mol); ionized residues (IR); salt-
bridges (SB); hydrogen bonds between salt-bridged residues (sHB); ionized
hydrogen bonds where either the donor or the acceptor is ionized, Dz � � �A or
D� � �A{ H-bonds (iHB); neutral hydrogen bonds (HB). Hydrogen bonds are
identified according to the donor-acceptor (A � � �D) distance and the donor-
acceptor H-bond angle (D{H � � �A). The following geometric criterion was
adopted: d(A � � �D)~3:5 Å and v(D{H � � �A)~1500 . A salt-bridge is formed
if the distance between any oxygen atom of the acidic residue and any
protonable nitrogen atom of the basic residue is less than 4.0 Å. Structural data
for the most stable protonation state in aqueous solution (q~1z) are also
reported (data in Italics).
doi:10.1371/journal.pcbi.1000775.t003

Table 3. Cont.

Gas-Phase Peptides and Protein Ions
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Errors of this protocol are associated with (i) the accuracy of the

DFT approach, (ii) limitations of sampling and ( iii) absence of

entropy contributions. This points are discussed in the following.

(i ) The accuracy of our DFT-based calculations may be

assessed by comparing the energy contributions of the key

quantities for the identification of the lowest free-energy

minimum with high-level quantum chemical calculations.

These are the gas-phase basicities (GPBs) and/or proton

affinities (PAs) of the protomers. Table 4, and Tables 1, 2

and 3 in Text S1 show that our approach agrees well with

more accurate calculations [62,103–105] (see Section

‘‘Quantum-chemical geometry optimizations’’ for further

details). Similar considerations can be evinced from a

comparison between our calculations of PA and those

recently reported in a highly accurate quantum-chemical

study on side chain interactions in proteins [99]. All of these

facts establish the accuracy of our calculated energies.

(ii ) The upper-bound estimate of the uncertainty in the energy

value due to the sampling can be obtained by performing

different searches for the lowest-energy conformer of selected

protomers. This procedure ended with either the same or

very similar structures (backbone root mean square dis-

placements less than 1.0 Å ), and all were located within

10kJ/mol from each other. Therefore, this value can be

taken as an estimate of our statistical uncertainty.

(iii ) Free energies can in principle be obtained by adding zero-

point-energy (ZPE) and entropy corrections (other than

rotational contributions). However, these calculations are

extremely expensive for large systems such as those

investigated here. Fortunately, the ranking obtained with

our energy-based protocol can be used to identify differences

in GPBs and PAs between the protomers. Table 4 reports

such data for different conformations of free amino acids.

The variations in the entropic term (DGPB-DPA) among

alternative structures are much smaller (less than 5%) than

the differences between the corresponding energy terms

(GPB and PA), similar considerations can be done based on

literature data [52]. Such differences turn out to be roughly

constant, with a dispersion (in terms of standard deviation

from the average) smaller than 6kJ/mol. This dispersion is

smaller than the error due to the conformational sampling.

Furthermore, the estimates of GPB and PA reported in

Table 4 and Table 1 in Text S1 fall nicely into the range of

experimentally determined values [105–109], and fully

support the above considerations (vibrational energy correc-

tions to enthalpy and entropy were calculated from

harmonic vibrational frequencies. The effect of losing three

translational degrees of freedom on going from BHz to B

(or from AH to A) was also taken into account [103]).

We therefore conclude that the ranking obtained with our

protocol provides a reliable identification of the most stable

protomers.

Structural features
We discuss here the salient structural data of the low-energy

protomers identified with the protocol outlined above for each

system and for every charge state that features, according to our

choice of ionizable residues, more than one protomer. More

details and additional observations can be found in Text S1.

Structural data for each protomer of the considered charge states

are reported in Tables 1, 2, and 3.

Bradykinin. Four protonation sites are possible: Arg1, Arg9,

N- and C-terminus. All of the identified lowest-energy protomers

from neutral to doubly positively charged states are zwitterions (see

Table 1). All of them feature an extensive H-bonding network, and a

b-turn-like motif formed by the residues Ser6-Pro7-Phe8-Arg9, in

agreement with Ref. [62]. However, the b-turn does not always

feature an i{iz3 H-bond. The C-term protonation site forms salt-

bridges with the others if the geometry allows to do so (see Table 1).

Neutral BK. The neutral form features two lowest-energy

protomers, with (i) deprotonated C-ter and protonated Arg9

(bk(0)½n R1Rz
9 c{�) and (ii) deprotonated C-ter and protonated

Arg1 (bk(0)½n Rz
1 R9c{�)

½BKzH�z. As for ½BKzH�z, the lowest-energy protomer,

bk(1z)½n Rz
1 Rz

9 c{�, has two Arg residues protonated and the C-

ter deprotonated (bk(1z)½n Rz
1 Rz

9 c{�). The three charged sites

cluster together forming two salt-bridges. The result is consistent

with previous ab initio calculations [62,63] and experimental

evidences [16,64].

½BKz2H�2z
. The lowest-energy protomer of ½BKz2H�2z

is

bk(2z)½nzRz
1 Rz

9 c{�. The charged residues form a three-salt–

bridge cluster where the C-ter is surrounded by the three positive

groups (N-ter, Arg1, and Arg9). A similar lowest-energy

zwitterionic structure for ½BKz2H�2z
is predicted also by other

theoretical studies [62,110]. From an experimental point of view,

no consensus is reached about the zwitterionic nature of

½BKz2H�2z
. Blackbody infrared radiative dissociation experi-

ments on bradykinin [64] could not rule out the presence of a salt-

bridge between the N-terminal arginine and the carboxylate

group. On the other hand, CO2 and COOH losses by ultra-violet

photodissociation suggest that the zwitterion might not be the

predominant species in the gas phase [16].

Angiotensin II. Five protonation sites were chosen: N-ter,

Asp1, Arg2, His6 and C-ter. Although the primary sequence of

AN is shorter that BK, the presence of an extra acidic residue

(Asp1) increases the number of possible protomers appreciably. In

addition, the existence of two tautomers for neutral His (i.e., d and

e protonated forms) further enlarges the protomer space. We

consider here charge states ranging from the monovalent anion to

the doubly positively charge cation. All but the latter turn out to be

zwitterions (see Table 2).

Lower charge states. The lowest-energy protomer of

½AN{H�{ is an({)½n D{
1 Rz

2 He
6c{�. It features the highest

number of ionized residues with a deprotonated C-ter and Asp1

Table 4. Thermodynamic data for the protonation reaction of
the side chain of some amino acids.

Folded Linear Linear-Folded

{DU PA GPB {DU PA GPB {DDU D(PA) D(GPB)

Lys 1024 985 978 961 931 925 263 254 253

Arg 1080 1026 1026 1046 1008 1015 234 218 211

His 1013 983 971 985 953 951 228 230 220

Gln 948 919 919 913 877 872 235 242 247

Asp{ 1365 1330 1328 1426 1389 1388 61 59 60

Glu{ 1368 1358 1356 1453 1412 1420 85 54 64

Internal energy change (DU ), proton affinity (PA), and gas-phase basicity (GPB)
values (in kJ/mol) are reported for two limiting situations: (i) protonated and
deprotonated species in their lowest-energy conformer (labeled as ‘‘folded’’),
and (ii) in an extended, all-trans conformer (labeled as ‘‘linear’’). Differences
between these quantities calculated for the folded and linear conformations are
also given.
doi:10.1371/journal.pcbi.1000775.t004
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and a protonated Arg2. Arg2 forms two salt-bridges, with both C-

ter and Asp1. The most stable protomer of the neutral state is

an(0)½nzD{
1 Rz

2 H6c{�, thus highly zwitterionic, with four salt-

bridges. Arg is protonated instead of N-ter and His. The most

stable structures of [AN+H]+ are an(1z)½nzD{
1 Rz

2 Hz
6 c{�, and

an(1z)½n D1Rz
2 Hz

6 c{�, whose relative energies are within 2 kJ/

mol. Considering the overall energy ranking, also for this charge

state there is a clear tendency to protonate Arg instead of N-ter

and His.

The divalent cation. In the case of ½ANz2H�2z
, the lowest-

energy protomer, an(2z)½n D1Rz
2 Hz

6 c�, is not a zwitterion

and lies 15 kJ/mol below the most stable zwitterion,

an(2z)½nzD1Rz
2 Hz

6 c{�.
Tryptophan cage. Six protonation sites are possible, N-ter,

Gln5, Lys8, Asp9, Arg16, and C-ter, which yield a large number

of possible protomers (see Table 3).

For this system, additional 40 ns MD simulations were carried

out for the lowest-energy protomers in the gas phase. Comparison

is then made with the structural features of the protein in solution.

All states considered feature a native-like compact structure (see

Table 7 in Text S1), which does not depend appreciably on the

charge state. In fact, the gyration radius (Rg) decreases slightly and

in a similar way during the dynamics of all of the charge states (see

Table 7 in Text S1). This contraction involves the solvent-exposed

side chains, which fold onto the protein surface, in agreement with

previous MD studies [2,8,14,52]. The side chain rearrangements

are such to optimize at best H-bonding and salt-bridges (see

Table 3). We remark that, in all of the gas-phase simulations, as a

consequence of the absence of water, the Trp residue tends to

move away from the hydrophobic core. This result is also

consistent with previous investigations [14,52].

The lowest-energy protomer is a zwitterion for the low charge states

(neutral Trp-cage, ½Trp{cagezH�z, and ½Trp{cagez2H�2z
).

However, the most probable state for ½Trp{cagez3H�3z
is not a

zwitterion.

Lower charge states. The lowest-energy protomers of the neutral

state are the zwitterions trp(0)½n Q5K8D9Rz
16c{� and trp(0)

½nzQ5K8D{
9 Rz

16c{� (DE~9 kJ/mol). trp(0)½n Q5K8D9Rz
16c{�

does not feature any salt-bridge, but its ionized residues form a large

number of strong H-bonds involving charged groups. In contrast,

the highly zwitterionic trp(0)½nzQ5K8D{
9 Rz

16c{� forms four salt-

bridges, arranged in a ring structure involving all the charged

residues, with a distance between heavy atoms of ionized groups of

about 2.85Å.

The lowest-energy protomers of ½Trp{cagezH�z are the

zwitterion trp(z)½nzQ5K8D9Rz
16c{�, characterized by the N-

term/C-term salt-bridge, and the non-zwitterionic species

trp(z)½n Q5K8D9Rz
16c� (DE~5 kJ/mol). The presence of a

zwitterionic state for ½TRPzH�z in the gas-phase has been

recently proposed by computational and experimental approaches

[16,52]. Patriksson and coworkers [52] identify the zwitterion

trp(z)½n Q5Kz
8 D{

9 Rz
16c� as the most stable protomer, which lies

at 41 kJ/mol above the minimum according to our calculations.

We found that the most stable protomer differs in having the N-ter

charged instead of Lys8 and the C-ter charged instead of Asp9. In

this regard, we remark that Kjeldsen et al. [16] identified the C-ter

as the most likely carboxylate of the zwitterion identified by CO2

photodissociation experiments on ½TRPzH�z.

The ½TRPz2H�2z
can form 15 protomers. The zwitterion

trp(2z)½nzQ5Kz
8 D9Rz

16c{� is the lowest-energy protomer. The

C-ter forms two salt-bridges with N-ter and Lys8. N-ter and C-ter

are in very close contact (distance between heavy atoms of 2.6 Å )

and strongly interact via H-bonds, whereas Arg16 is located at

about 3.0Å from the C-ter. This species lies very close to the non-

zwitterionic protomer trp(2z)½n Q5Kz
8 D9Rz

16c� (DE~7 kJ/mol).

Zubarev and coworkers [19] suggested a prevalently non-

zwitterionic form for ½TRPz2H�2z
based on photodissociation

experiments and on fragmentation patterns by Electron-Capture

Dissociation (ECD) of the ½TRPz3H�3z
ion. According to these

authors, ½TRPz2H�2z
has one positive charge on Arg16 and a

second positive charge distributed between the N-ter and Gln5.

The N-term was found to be the least basic site by ECD [17,19].

In our results, the protomer with neutral N-term is found only

7 kJ/mol above the lowest-energy protomer with protonated N-

term, indicating that this group is likely only partially protonated.

Gln5 would be unfavorable. Indeed, the lowest-energy species with

Gln5 protonated, the zwitterion trp(2z)½nzQz
5 Kz

8 D9R16c{�, is

located at 69 kJ/mol. It will be shown in the next paragraph how

our results can provide an alternative explanation of the ECD

results.

The trivalent cation. The most probable state for ½Trp{cagez
3H�3z

is the non-zwitterion trp(3z)½nzQ5Kz
8 D9Rz

16c�. This result

is consistent with fluorescence experiments combined with MD

calculations carried out by Iavarone et al. [25] that led to the

identification of the same protomer as the most probable for

this charge state. However, our results contrast with the inter-

pretation of recent ECD experiments [19], which points to

trp(3z)½nzQz
5 K8D9Rz

16c� as the most probable protomer. Proton-

ation of Gln5 leads to high-energy protomers. The lowest-energy

protomer with ionized Gln5, trp(3z)½nzQz
5 K8D9Rz

16c�, lies at

61 kJ/mol above the minimum.This interpretation was based on

the fact that both c{ and z{ions generated by ECD show that the

z16 fragment (Ile4-Gln5 cleavage) exists in two charge states (q~2z
and q~1z, the q~2z being predominant), whereas the z15

fragment (Gln5-Trp6 cleavage) is present in the q~1z charge state

and the z5 fragment (Gly15-Arg16 cleavage) in the q~0 state. No

change of charge in the z fragments upon Leu7-Lys8 cleavage is

observed.

The differences between our and previous findings [19] can be

here reconciled considering which interactions are lost upon

fragmentation. Visual inspection of the lowest-energy protomer

reveals that the charged Lys8 side chain is H-bonded to Ile4 and

Leu7 backbone and Asp9 side chain (see Figure 1). In turn, Asp9

donates a H-bond to Gln5. Thus, Ile4, Glu5, Leu7 and Asp9 build

a H-bond network that internally solvates and, therefore, stabilizes

the positive charge on the lysine side chain. Dissociation of c4 and

c5 fragments, progressively destroys this network. Such fragmen-

tation could favor spontaneous proton transfer from Lys8 to the

departing c radical ion after the c5 fragmentation. This

explanation can also provide a rationale for the anomaly in the

charge population of fragment z16.

In conclusion, our results suggest that the observed effect of Gln

dissociation might also be explained by its role in charge

stabilization and not exclusively by its own ionization in the intact

peptide.

Key stabilizing interactions for peptides and proteins in
the gas phase

Our calculations suggest that most of the low-charge states are

zwitterions, whilst high charge states might not. We now analyze

the key factors for the stabilization of these two different states.

Zwitterionic low-charge states. Formation of charge

separation between two residues is accompanied by a penalty.

To a first approximation, this could be quantified in terms of the

intrinsic GPB of the involved residues. The GPB of carboxylates is

much higher than that of amino and guanidino groups (see Table

1 in Text S1). Therefore, charge separation between an acid, AH,

and a base, B,

Gas-Phase Peptides and Protein Ions
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AHzB?A{zBHz,

is disfavored in the gas phase by a positive free-energy change

DGPB ~(GPB)A{(GPB)B (w0), where (GPB)A and (GPB)B

stand for the intrinsic GPB of A{ and B, respectively. The larger

the DGPB, the larger the expected destabilization due to charge

separation. In solution, solvation of the charged moieties may

counterbalance this energetic penalty [36,44]. The present results

indicate that in the gas phase zwitterions can still be stabilized

[3,35,38,39,51,63,111]. Indeed, the propensity of peptides to have

a low energy correlates nicely with the number of ionized residues,

as well as with DGPB(see Figure 2, first row, see also SI).For each

charge state, DGPB values are relative to the protomer with the

lowest charge separation for which DGPB has been set to zero.

This is caused by the fact that intramolecular interactions can

counterbalance this penalty [3], stabilizing the zwitterionic forms.

In fact, such interactions, including (i) salt bridges and (ii) H-bonds,

may reduce differences in the apparent GPB between basic

residues and the conjugated base of acidic residues.

(i ) The formation of salt-bridges correlates well with the intrinsic

GPB penalty (see Figure 2, last row). A major stabilizing

contribution is therefore the formation of favorable electro-

static interactions. As an example, the formation of four

salt-bridges in the species an(z)½nzD{
1 Rz

2 Hz
6 c{� and

trp(0)½nzQ5K8D{
9 Rz

16c{� largely counterbalances a very

Figure 1. Ball-and-stick representation of the structure of the lowest-energy protomer trp(3z)½nzQ5Kz
8 D9Rz

16c� of Trp-cage at q~3z.
The H-bonding network of protonated Lys8 is shown as green lines; other H-bonds are shown as dotted lines.
doi:10.1371/journal.pcbi.1000775.g001
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high value of DGPB (897 kJ/mol and 842 kJ/mol, respec-

tively). An examination of Tables 1, 2, and 3 suggests that

also the salt-bridge geometry is relevant for stabilization.

Indeed, consistently with aqueous solution analysis on

proteins [112], H-bonded salt-bridges seem to have a major

stabilizing effect.

(ii ) DGPB, instead, does not correlate either with the number of

ionized H-bonds (see Figure 2, third row), or with the total

number of H-bonds (see Figure 2, last row). This observation

could be a consequence of the relatively small energetic

contribution of H-bonds compared to salt-bridges. However,

an important role of H-bonding emerges from the analysis

of some specific protomers. For instance, the lowest-energy

protomer of neutral Trp-cage, trp(0)½n Q5K8D9Rz
16c{�,

features one charge separation, no salt-bridges and

nine ionized H-bonds. The latter therefore must

compensate a penalty in intrinsic GPB of 368 kJ/mol. Also

informative, in this regard, is the comparison between the

fourth and fifth lowest-energy protomers of neutral

Trp-cage. Both protomers are located around 25 kJ/mol

above the minimum. The former does not present

any ionized residues (DGPB = 0 kJ/mol), whereas the

latter, trp(0)½n Q5Kz
8 D9R16c{�, has two ionized residues

(DGPB = 416 kJ/mol), which form 6 ionized H-bonds but no

Figure 2. Energy/structure relationship for angiotensin II, bradykinin, and Trp-cage. The color scale refers to the average energy (kJ/mol)
of polypeptides with the given pair of parameters. DGPB stands for thermodynamic penalty to create a zwitterionic state expressed in terms of
residues intrinsic gas-phase basicities (see text for the definition). In each panel, numbers indicate the location of lowest-energy protomers.
doi:10.1371/journal.pcbi.1000775.g002
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salt-bridges. Other similar cases can be found in Tables 1, 2,

and 3.

The role of H-bonds is further elucidated by comparing the

GPB of single amino acids in their most probable (‘‘folded’’)

structure and conformations in which the inner H-bonding has

been removed, such as the extended, all-trans side chain

conformation (We remark that the latter always corresponds to

the minimum in the conformational space of alkanes in the gas

phase [113]). For basic amino acids, the former is larger than the

latter (see Table 4). This fact indicates a greater propensity to

acquire a proton when the excess charge can be internally

stabilized by H-bonding with the backbone. In acidic residues,

instead the former is smaller than the latter, because intramolec-

ular interactions stabilize the negative charge in the folded

conformer. Of course, the self-solvation capability of a single

isolated amino acid is quite limited. A higher number of H-bond

donors and acceptors in peptides and proteins will amplify this

effect. An analysis of the structures obtained in this study indicates

that each ionized group tends to satisfy at best the same first

solvation shell that characterizes the aqueous environment

[114,115] (see Tables 8, 9, and 10 in Text S1). In particular,

protonated amino moieties tend to donate three H-bonds (one for

each N–H bond) and carboxylates receive four H-bonds in

average. The key role of H-bonds is consistent with previous

hypotheses [3,36,44]. We remark that, as discussed above, H-

bonding is only one contribution. The formation of salt bridges

provides further (large) energetic stabilization.
Non-Zwitterionic high charge states. As the net charge of

the molecule increases, more and more basic residues are

protonated. Therefore, zwitterionic states imply protonation of

residues with progressively lower intrinsic GPB. Consequently, an

increasing number of compensating interactions is required. Such

compensation might fail because of (i) insufficient strength of

interactions or (ii) topological constraints. As for (i), this is clearly

the case of Trp-cage at q~3z, where for the creation of a

zwitterionic species it is necessary to protonate residues with low

basicity, e.g., Gln8, which is not counterbalanced by an adequate

internal solvation. As for (ii), we remark that the location of

protonation sites along the primary sequence considerably

influences the possibilities of internal solvation, especially in

small unstructured peptides. For instance, the two ionizable side

chains in BK (Arg1 and Arg9) are located at the N- and C-termini,

which favor the optimization of the intramolecular interactions for

every charge state, because of the flexibility of the peptide

backbone. In large proteins, these considerations might be less

relevant since the charge-solvation possibilities increase

tremendously, and because the folded structure generally offers a

favorable environment for ionized side chains.

In summary, as the net charge increases it becomes progres-

sively more difficult to overcome the thermodynamic penalty of

charge separation.

Discussion

A computational protocol aimed at identifying the most stable

species of angiotensin II, bradykinin, and tryptophan-cage has

been developed and may be easily extended to other systems of

similar size. The protocol provides results fully consistent with the

experimental data. The results suggest that most of the low-charge

states are zwitterions. Intramolecular interactions can stabilize

zwitterionic states considerably, by reducing the differences in

apparent GPB between basic residues and the conjugated base of

acidic residues Based on a combined structural and energetic

analysis, we suggest that salt-bridges provide a key energetic

stabilization, in agreement with previous findings

[3,38,51,63,116]. Indeed, the stabilization due to salt bridging

might be such to reduce enormously the GPB of the biomolecules

considered in the present study (up to 900 kJ/mol). H-bonding

also has an important role in promoting charge separation. As a

result, networks are formed where two (or more) salt bridges are

clustered together, whenever it is possible.

Thus, we further corroborate the hypothesis that deprotonated

carboxylate groups can be maintained in gas-phase peptide and

protein ions produced by electrospray in positive-ion mode (and,

vice-versa, protonated basic groups in negative-ion mode)

[1,2,30,38,39,62,63,111]. On the other hand, the formation of

zwitterionic species in high charge states requires the protonation

of residues with progressively lower GPB, which is accompanied

by a large thermodynamic penalty that might not be compensated

by internal solvation.

Supporting Information

Text S1 Supplementary Material. Detailed structural analysis of

the protomers and data to support the DFT calculations.

Found at: doi:10.1371/journal.pcbi.1000775.s001 (1.04 MB PDF)
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