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Abstract

Motivation: In recent years, Mendelian randomization analysis using summary data

from genome-wide association studies has become a popular approach for investigating

causal relationships in epidemiology. The mrrobust Stata package implements several of

the recently developed methods.

Implementation: mrrobust is freely available as a Stata package.

General features: The package includes inverse variance weighted estimation, as well as

a range of median, modal and MR-Egger estimation methods. Using mrrobust, plots can

be constructed visualizing each estimate either individually or simultaneously. The pack-

age also provides statistics such as I2
GX , which are useful in assessing attenuation bias in

causal estimates.

Availability: The software is freely available from GitHub [https://raw.github.com/remlap

mot/mrrobust/master/].
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Key Messages

• The mrrobust software package facilitates two-sample summary MR analyses using summary data from genome-

wide association studies.

• The package allows for implementation of a range of summary MR estimators using Stata, improving the extent to

which results are reproducible.

• Conclusions from the supported analyses can be robust to sources of confounding bias and pleiotropy, though find-

ings should be considered with respect to the underlying assumptions of each estimator.
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Introduction

Mendelian randomization1 has developed into a popular

approach to examining causal relationships in epidemiol-

ogy.2,3 By employing genetic variants as instrumental varia-

bles (IVs) it is possible to limit bias from confounding,

provided variants satisfy the assumptions of IV analysis.1,4

For a genetic variant to serve as a suitable instrument, three

assumptions must hold: (i) it must be associated with the

exposure of interest; (ii) there must be no confounders of

the instrument and outcome; and (iii) the instrument must

not affect the outcome except via the exposure of interest.5

Candidate variants are usually identified through large

genome-wide association studies (GWASs).6 However, IV

analyses using single variants rarely have sufficient power to

test hypotheses of interest.6,7 One approach to increase the

statistical power of Mendelian randomization studies is to

use multiple genetic variants as instruments within a two-

sample summary framework.8,9 Two-sample Mendelian

randomization estimates the effect of the exposure using

instrument-exposure and instrument-outcome associations

from different samples, often through methods originally

developed for meta-analysis.8,9 This is particularly useful as

MR estimators, such as MR Egger and median based regres-

sion, are robust to certain forms of violation of the third in-

strumental variable assumption.8,10,11 Violations of this

assumption can occur through directional pleiotropy, where

a genetic variant affects the study outcome through path-

ways that are not mediated via the exposure. Such develop-

ments have contributed to the increasing popularity of two-

sample summary MR.5

This paper introduces the mrrobust Stata package as a

tool to help researchers implement two-sample MR analy-

ses, and can be viewed as the Stata counterpart to toolkits

such as the MR-Base web application, and the

MendelianRandomization and TwoSampleMR R pack-

ages.12,13 Whereas it is possible to conduct individual-level

IV analyses in Stata using modules such as IVREG2,14 two-

sample summary MR has previously required bespoke code

to implement. The mrrobust package addresses this limita-

tion, providing a suite of popular two-sample MR methods

and sensitivity analyses. Before continuing, we briefly out-

line the three primary estimation methods included in the

mrrobust package, using the notation of Bowden et al.10,15

Methods

Inverse variance weighting (IVW)

To perform IVW, a weighted average b̂IVW is calculated

using the set of ratio estimates b̂J for each individual

variant J ¼ 1; 2; . . . ; j:9 Ratio estimates are obtained for

each variant by dividing the instrument-outcome associa-

tion by the corresponding instrument-exposure associa-

tion. Such association estimates are obtained by fitting

simple linear regression models of the outcome and expo-

sure upon the genetic variant, primarily by conducting a

GWAS. Let ĉ j and r2
Yj denote the instrument-outcome as-

sociation and variance, respectively, for the jth variant.

The IVW estimate is then defined as:

b̂IVW ¼
PJ

j¼1 wjb̂jPJ
j¼1 wj

; wj ¼
ĉ2

j

r2
Yj

This corresponds to the estimate one would obtain from

a weighted linear regression of the set of instrument-

outcome associations upon the set of instrument-exposure

associations, constraining the intercept at the origin.9 One

drawback of the IVW approach is that causal effect

estimates can be biased in cases where one or more var-

iants exhibit directional pleiotropy.9

MR-Egger regression

MR-Egger regression is valid under weaker assumptions

than IVW, as it can provide unbiased causal effect esti-

mates even if the variants have pleiotropic effects. In this

case, the set of instrument-outcome associations is

regressed upon the set of instrument-exposure associations,

weighting the regression using precision of the instrument-

outcome associations, as in the IVW case.8 However, MR-

Egger does not constrain the intercept at the origin, and

the intercept represents an estimate of the average direc-

tional pleiotropic effect across the set of variants. The slope

of the model provides an unbiased estimate of the causal

effect.8,10 If there is little evidence of systematic differences

between the IVW and MR-Egger, then the IVW should be

preferred. The IVW is more efficient, but potentially less

robust, and in such cases the IVW estimate is often the

most appropriate estimate to adopt due to the greater pre-

cision of IVW estimates in comparison with other

approaches.10 If there are differences between the IVW and

MR-Egger estimates, this may be due to pleiotropy or to

heterogeneous treatment effects.

The utility of MR Egger regression hinges upon two

core assumptions. First, the INstrument Strength

Independent of Direct Effect (InSIDE) assumption requires

the effects of single nucleotide polymorphisms (SNPs) on

the exposure and their pleiotropic effects on the outcome

to be independent. If the InSIDE assumption holds, esti-

mates for variants with stronger instrument-exposure
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associations ðĉjÞ will be closer to the true causal effect pa-

rameter than variants with weaker associations.8 Second,

the NO Measurement Error (NOME) assumption requires

no measurement error to be present in the instrument-

exposure associations, and therefore that the variance of

the instrument-exposure association r2
Xj ¼ 0. In cases

where NOME is strictly satisfied, estimates ĉj will be equal

to cj and the variance of the ratio estimate for each var-

iant j is var b̂j

� �
¼ r2

Yj

ĉ2
j

. We further note that the NOME as-

sumption applies to other two-sample MR approaches and

is not therefore a unique feature of the MR Egger

approach.

In cases where the NOME assumption is violated, indi-

vidual variants will suffer from weak instrument bias, lead-

ing to attenuation of MR Egger estimates towards the null.

This can occur if the SNPs were not genome-wide signifi-

cant (p ¼ 5� 10�8) or were selected from small GWAS.

One novel approach to assessing the strength of the

NOME assumption is to evaluate the I2
GX statistic, inter-

preted as the relative degree of attenuation bias in the MR

Egger regression in the interval (0, 1).10 Thus, for example,

an I2
GX value of 0.7 represents an estimated relative bias of

30% towards the null. Further details regarding calcula-

tion of the I2
GX statistic are presented in the Supplementary

material, available at IJE online.

Weighted median

The weighted median approach is an adaptation of the

simple median estimator for two-sample summary MR.15

For a total number of variants J ¼ 2kþ 1, the simple me-

dian approach selects the middle ratio estimate b̂kþ1, from

ordered ratio estimates b̂1; b̂2; . . . b̂j:
15 In cases where the

total number of variants is even, the median is interpolated

as 1
2 b̂k þ b̂kþ1

� �
. As the simple median approach is ineffi-

cient, particularly in cases with variable precision in the set

of ratio estimates, it is preferable to incorporate weights in

a fashion similar to the IVW and MR Egger approaches.

Let sj ¼
Pj

k¼1 wk be the sum of weights for the set of var-

iants 1; 2; . . . j, standardized so the sum of weights sJ¼1.

The weighted median estimator is the median of a distribu-

tion having estimate b̂j as its pj ¼ 100 sj � wj

2

� �th
percen-

tile.15 For the range of percentile values, we perform a

linear extrapolation between neighbouring ratio estimates.

An important assumption of the median summary MR

approaches is that more than 50% of the genetic variants

do not exhibit directional pleiotropy. In the simple median

case, this threshold refers to the number of variants, where-

as in the weighted median case, the 50% threshold is with

respect to the weights of the non-pleiotropic variants.15

Additional estimators

As two-sample MR represents a developing area of genetic

epidemiology, novel approaches to causal effect estimation

are incorporated into the mrrobust package through fre-

quent updates. One such method is the mode-based estima-

tor put forward by Hartwig et al.16 Details on the

implementation of this approach with accompanying

examples can be found in the Supplementary material,

available at IJE online.

Visualizing MR estimates

One useful approach to presenting the results of MR analy-

ses is to produce a scatterplot, with the x and y axes repre-

senting the instrument-exposure and instrument-outcome

associations, respectively, for each variant. If one were to

draw a hypothetical regression line leading from the origin

to each variant, the slope of the line would represent a ra-

tio estimate of the causal effect using the single variant as

an instrument, that is dividing the instrument-outcome as-

sociation by the instrument-exposure association (defined

as bj above). The precision of the instrument-outcome as-

sociation estimate for each variant is illustrated using verti-

cal error bars, whereas horizontal error bars pertaining to

the instrument-exposure association may be omitted for

clarity. As the IVW, MR-Egger, median and modal

approaches essentially meta-analyse the set of ratio esti-

mates, it is possible to include regression lines highlighting

effect estimates of each approach for comparison. For such

regression lines, positive and negative slopes are indicative

of a positive or negative effect, respectively, whereas a

slope of zero represents the absence of an observed

association.

Implementation

The mrrobust package uses functions from moremata,17

addplot18 and the heterogi19 command. For versions of

Stata 13 and higher, it can be installed using the .net install

command from [https://raw.github.com/remlapmot/mrro

bust/master/]. For older versions of Stata, a zip archive of

the files is freely available for download at: [https://github.

com/remlapmot/mrrobust].

The package facilitates two-sample summary MR anal-

yses with key features including:

• IVW and MR-Egger regression approaches, including

fixed effects MR-Egger regression, standard error

correction and weighting options;

• unweighted, weighted and penalized weighted median

IV estimators, providing pleiotropy robust estimates in
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cases where fewer than 50% of the genetic instruments

are valid;

• modal estimation following Hartwig et al.,16 including

weighted and unweighted variations;

• presentation of heterogeneity statistics, statistics such as

I2
GX for use in assessing attenuation bias,10 and

Simulation Extrapolation (SIMEX) correction following

Bowden et al;10

• plotting tools to visualize IVW, MR-Egger and weighted

median estimators, as well as density plotting with re-

spect to implementing the modal estimator;

• and illustrative examples and documentation using data

from Do et al.20

Applied examples: adiposity and height as

predictors of serum glucose levels

To illustrate key features of the mrrobust package, we per-

form two analyses investigating potential relationships be-

tween adiposity, height and serum glucose. Adiposity was

selected owing to the vast body of evidence supporting a

positive association with serum glucose levels,21–24 where-

as height was based upon limited evidence of associa-

tion.25–27 Glucose was selected as an outcome with respect

to its hypothesized role in the development of type 2 diabe-

tes.21,27 Datasets were obtained from the MR-Base web

application and pruned for linkage disequilibrium before

conducting the analyses.13

Applied example I: adiposity and serum glucose

Though the relationship between adiposity and glucose has

received much attention in the literature, such studies are

predominantly observational and therefore may be subject

to bias from confounding. This provides motivation for

considering Mendelian randomization techniques which

are able to control for such unobserved confounding. In

the initial analysis, we select adiposity as an exposure mea-

sured using standardized body mass index (BMI), obtain-

ing estimates of its associations with genotypes and their

respective standard errors from Locke et al.28

For the outcome, we consider log transformed measures

of serum glucose logðmMÞ using effect estimates and stan-

dard errors from Shin et al.29 The summary data used for

this analysis are provided in the Supplementary material,

available at IJE online. Adopting a GWAS significance P-

value threshold of 5� 10�8; a total of 79 independent

SNPs were identified in both samples. We confirmed the

linkage equilibrium (LD) between the SNPs using a clump-

ing algorithm, a clumping distance of 10000 kb and an LD

R2 of 0.001. This resulted in a total of 79 SNPs for use as

instrumental variables, details of which are presented in

the Supplementary material, available at IJE online.

Using mrrobust, we conducted IVW, MR-Egger and

weighted median regression approaches using the above

summary data. The code for our analysis is in the

Supplementary material, available at IJE online. For IVW

and MR Egger approaches, the regression was weighted us-

ing the variance of the instrument-outcome association. The

set of summary MR estimates are presented in Table 1A.

We find strong evidence of a positive association be-

tween BMI and serum glucose, using both IVW and

weighted median methods. Considering the MR Egger

case, a substantial average directional pleiotropic effect

was not detected, and the lack of significance with respect

to the effect estimate can be attributed to a lack of statisti-

cal power. An I2
GX value of 0.88 was reported, which can

be interpreted as a relative bias in the MR-Egger estimate

of 12% towards the null. The estimates are shown in

Figure 1A, constructed using the mreggerplot command

which generates a scatterplot of the instrument-exposure

and instrument-outcome associations for each variant.

This shows the set of estimates to be in agreement, with

the plot being constructed as previously described.

Applied example II: height and serum glucose

As a further example, we consider the effect of

standardized height (metres) upon serum glucose, using

summary data from Wood et al.30 and outcome summary

data on log transformed serum glucose from Shin et al.29

Table 1. Summary MR estimates for the effect of standard-

ized BMI (A) and height (B) upon log transformed serum

glucose

Estimate SE P-value 95% CI

BMI (A)

IVW

Effect 0.023 0.008 0.004 0.01, 0.04

MR Egger

Intercept 0.000 0.001 0.948 �0.001, 0.001

Effect 0.022 0.022 0.325 �0.02, 0.07

Weighted median

Effect 0.034 0.012 0.005 0.01, 0.06

Height (B)

IVW

Effect 0.002 0.003 0.641 �0.005, 0.008

MR Egger

Intercept 0.0001 0.0003 0.627 �0.0001, 0.0001

Effect 0.003 0.009 0.777 �0.02, 0.02

Weighted median

Effect <0.0001 0.005 >0.99 �0.01, 0.01

SE, standard error.
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The summary data used for this analysis are provided in

the Supplementary material, available at IJE online. We as-

sess the SNPS for LD using criteria from the previous ex-

ample and identify 367 SNPs as suitable instruments for

the analysis, details of which are presented in the

Supplementary material as above. The set of summary MR

estimates are presented in Table 1B.

From Table 1B, we find no evidence against the null hy-

pothesis of no association between height and serum glu-

cose levels using IVW, weighted median and MR Egger

regression. Considering the MR Egger case, there appeared

to be no evidence of directional pleiotropy, with an I2
GX

value of 0.90 indicating a relative bias of 10% towards the

null. As in the previous example, a plot of the MR esti-

mates can be generated using the mreggerplot command as

shown in Figure 1B. In this scenario, the estimates appear

in agreement, indicating a lack of evidence for a substantial

directional pleiotropic effect.

Discussion

The mrrobust package is a freely available Stata package,

containing a number of summary MR estimation methods

which can be used to estimate causal effects. In the applied

example, the mrrobust package was able to provide a series

of estimates, finding evidence of a positive association be-

tween BMI and serum glucose and no evidence of associa-

tion between height and serum glucose. One possible

conclusion that can be drawn from these results is that pre-

viously reported associations between height and glucose

are driven by confounding factors.31,32 It is important,

however, to consider the extent to which Mendelian ran-

domization is appropriate for a given analysis and, by ex-

tension, situations in which mrrobust is suitable.

In the first instance, Mendelian randomization studies

only produce unbiased estimates when genetic instruments

satisfy the assumptions of each estimator (e.g. IVW,

Figure 1. mreggerplot output for applied examples using BMI (A) and height (B) as exposures.
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MR-Egger or weighted median). In two-sample analyses, ge-

netic instruments should be associated with the exposure of

interest at genome-wide levels of significance (satisfying the

first instrumental variable assumption), and pruned for LD to

limit the overlap between SNPs. The IVW estimator also

requires that genetic variants should not have directional

pleiotropic effects. The MR Egger and median estimators are

robust to directional pleiotropy if the effects of the exposure

are constant. MR Egger regression requires the InSIDE as-

sumption, whereas median methods assume that the number

of valid instruments is greater than 50%. For MR-Egger esti-

mation where the value of I2
GX is low, it is possible to use

SIMEX to correct for regression attenuation towards the

null. This is implemented using the mreggersimex command.

In this paper, we have presented the mrrobust Stata

package as an accessible toolkit for performing summary

MR and instrumental variable analysis using many instru-

ments. It contains a range of summary MR approaches,

and should make examining causal relationships using

Mendelian randomization more accessible for genetic

epidemiologists.

Supplementary Data

Within the Supplementary material, available at IJE online, we in-

clude example code and Stata output for each of the analyses per-

formed within this paper, as well as the summary data obtained

from the MRBase GWAS catalogue. We also include a brief sum-

mary of the I2
GX statistic, as well as guidance on implementing and

interpreting the modal estimator.
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