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Real-time biofeedback of muscle forces should help clinicians adapt their movement

recommendations. Because these forces cannot directly be measured, researchers

have developed numerical models and methods informed by electromyography (EMG)

and body kinematics to estimate them. Among these methods, static optimization is

the most computationally efficient and widely used. However, it suffers from limitation,

namely: unrealistic joint torques computation, non-physiological muscle forces estimates

and inconsistent for motions inducing co-contraction. Forward approaches, relying

on numerical optimal control, address some of these issues, providing dynamically

consistent estimates of muscle forces. However, they result in a high computational

cost increase, apparently disqualifying them for real-time applications. However, this

computational cost can be reduced by combining the implementation of a moving

horizon estimation (MHE) and advanced optimization tools. Our objective was to assess

the feasibility and accuracy of muscle forces estimation in real-time, using a MHE. To

this end, a 4-DoFs arm actuated by 19 Hill-type muscle lines of action was modeled

for simulating a set of reference motions, with corresponding EMG signals and markers

positions. Excitation- and activation-driven models were tested to assess the effects

of model complexity. Four levels of co-contraction, EMG noise and marker noise were

simulated, to run the estimator under 64 different conditions, 30 times each. The MHE

problem was implemented with three cost functions: EMG-markers tracking (high and

low weight on markers) and marker-tracking with least-squared muscle excitations. For

the excitation-driven model, a 7-frame MHE was selected as it allowed the estimator

to run at 24 Hz (faster than biofeedback standard) while ensuring the lowest RMSE on

estimates in noiseless conditions. This corresponds to a 3,500-fold speed improvement

in comparison to state-of-the-art equivalent approaches. When adding experimental-like

noise to the reference data, estimation error onmuscle forces ranged from 1 to 30 Nwhen
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tracking EMG signals and from 8 to 50 N (highly impacted by the co-contraction level)

when muscle excitations were minimized. Statistical analysis was conducted to report

significant effects of the problem conditions on the estimates. To conclude, the presented

MHE implementation proved to be promising for real-time muscle forces estimation in

experimental-like noise conditions, such as in biofeedback applications.

Keywords: muscle forces estimation, real-time, biofeedback, optimal control, EMG, moving horizon estimation,

upper limb

1. INTRODUCTION

Real-time estimation of muscle forces is a necessary technical
breakthrough in biomechanics, as pointed out by various
authors (Erdemir et al., 2007; Bouillard et al., 2011). It
should help clinicians to determine movements and postures
which are likely to cause muscular pain and injuries without
compromising diagnosis speed. It is also a promising feature
for interactive biofeedback during rehabilitation (Pizzolato et al.,
2017b). Muscle force measurements being highly invasive,
researchers have turned to musculoskeletal modeling that
relies on body kinematics and electromyography (EMG).
Some of the algorithms behind these simulations are now
fast and mature (inverse/forward kinematics/dynamics) for
models without muscles. They have been extensively used
for real-time biofeedback of joint angles and moments in
rehabilitation applications (Giggins et al., 2013; Richards et al.,
2017) or to control active prostheses (Tucker et al., 2015).
However, adding muscles to skeletal models widely increases
their numerical complexity, requiring either simplifications
on the dynamics or very large computational resources. The
main hurdle comes from the redundancy of the muscle
actuation system which has two consequences: an increase in
the number of variables to be controlled/estimated and the
need for an optimization layer to resolve this redundancy.
The existing approaches for estimating muscle forces can be
grouped into three main categories: inverse, forward, and
hybrid methods.

Static optimization—an inverse dynamics-based algorithm
combined with least-stresses or least-activation criteria has been
widely used to estimate muscle forces during various tasks
(Crowninshield and Brand, 1981; Raikova and Aladjov, 2002;
Heintz and Gutierrez-Farewik, 2007; Morrow et al., 2014). Its
computational efficiency has even enabled real-time estimation
of muscle forces (Van Den Bogert et al., 2013). However,
static optimization presents three main drawbacks: (i) inverse
dynamics relies on the double numerical differentiation of noisy
kinematic data which results in unrealistic joint torques (Challis
and Pain, 2008; Dumas et al., 2016); (ii) the time-independent
nature of static optimization prevents the activation dynamics to
be accounted for Ackermann and Schiehlen (2009), resulting in
non-physiological variations of muscle forces; (iii) the commonly
used least-activation criterion makes it unsuitable for retrieving
muscle activation of movements or pathologies involving co-
contraction (Bélaise et al., 2018a) such as cerebral palsy or stroke
(Hu et al., 2013).

Forward approaches, also known as dynamic optimization,
address limitations (i) and (ii) by integrating both the equation of
motion and the activation dynamics forward in time (Ackermann
and Schiehlen, 2009; Bélaise et al., 2018a) while tracking
experimental data such as body kinematics or contact forces.
Issue (iii) can be tackled by tracking both markers and EMG data
as in the so-called “EMG-marker tracking” proposed in Bélaise
et al. (2018a) and Moissenet et al. (2019). High computational
costs and challenging convergence are the main shortcomings
of dynamic optimization approaches which, at first glance,
disqualify them for real-time applications. For instance, a 1 s
movement with a 6-degree-of-freedom (DoF) arm actuated by
20 Hill-type muscle elements converged in about 60 min with the
EMG-markers tracking in Bélaise et al. (2018a). To the best of our
knowledge this constitutes a state-of-the-art result.

Finally, hybrid approaches rely on the inverse dynamics to
compute reference joint torques which are then tracked using
a forward integration of the activation dynamics (Sartori et al.,
2012, 2014; Pizzolato et al., 2017a), as seen in the CEINMS
toolbox (Pizzolato et al., 2015). These methods address the
activation dynamics limitations coming from inverse approaches
but maintain the aforementioned problems (i), arising from the
double differentiation.

To tackle the computational cost of forward approaches,
two strategies can be combined. First, the problem can be
implemented as a moving horizon estimation (MHE, Rao
et al., 2003). MHE relies on a relatively small subset of past
measurements which yields an estimate of the current state via
dynamic optimization. Each time this subproblem is solved,
the estimation window is shifted forward in time and a new
optimization problem is set up, initialized by the previous one,
significantly speeding up the convergence. For instance, real-time
MHE was used in Bae and Oh (2017) to estimate the simplified
state of a humanoid robot or in Quintero et al. (2015) for the
coordinated control of two unmanned aerial vehicles. However,
to the best of our knowledge, real-time MHE was never applied
to amusculoskeletal model in biomechanics. Both the complexity
of the system and the size of the estimation window affecting the
speed and accuracy of MHE, they need to be jointly investigated
in order to satisfy the biofeedback real-time standard (≤ 75
ms, Kannape and Blanke, 2013). Second, the solving speed in
itself must be improved. To that end, exact derivatives of the
optimal control problem (OCP) can be automatically computed
thanks to algorithmic differentiation (Andersson et al., 2019),
and recent advances in optimal control software such as acados
(Verschueren et al., 2019) can be leveraged. In particular, the
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core of acados was written in C (making it remarkably fast) as
it is intended to be used on embedded systems, typically for
real-time applications.

By feeding a MHE into a fast optimal control software,
the main objective of the present study was to assess, for the
first time, the feasibility and accuracy of real-time muscle force
estimation using EMG and kinematic marker tracking on an
arm musculoskeletal model. On an upper limb model, our
goals were to satisfy the biofeedback real-time standard and to
provide an in-depth insight into the possibilities and limits of the
method, paving the way for accurate muscle forces estimation for
rehabilitation applications.

2. METHODS

2.1. Musculoskeletal Model
A 4-DoFs arm actuated by 19 Hill-type muscle
elements was developed in the biorbd C++ library
(Michaud and Begon, 2021). It consists of three segments:
a fixed thorax, an upper arm attached to the thorax with
three DoFs in rotation (Glenohumeral plane of elevation,
Glenohumeral elevation, Glenohumeral axial rotation) and a
forearm attached to the upper arm with one DoF (Elbow flexion),
see (Figure 1). Eight markers are placed on the arm, mostly away
from large soft tissues: four on Humerus (Medial Deltoid, equal
distance between Olecranon and Acromion, Medial and Lateral
Condyle), three on Ulna (Olecranon, Ulnar Styloid and lateral
side of lower arm) and one on Radius (Radial Styloid). The
muscles of the model are: Pectoralis Major (Clavicular, Sternal
and Rib parts), Latissimus Dorsi (Thoracic, Lumbar and Iliac
parts), Deltoid (Anterior, Middle, and Posterior), Supraspinatus,
Infraspinatus, Subscapularis, Triceps (Medial, Lateral, and Long
Head), Brachioradialis, Brachial, and Biceps Brachial (Long and
Short Head). Lines of action paths are defined using via-points
and muscle characteristics are derived from the model of
Holzbaur et al. (2005). Two versions of this model were used in
this study. In the first one, activation-driven, the controls were
the muscle activations and the states were the joint kinematics.
In this case, an electromechanical delay of 20 ms was added to
EMG data for modeling the time lag between neural excitation
and muscle activation (Nordez et al., 2009). In the second one,
excitation-driven, the controls were the muscle excitations and
the states were the muscle activations and the joint kinematics.

2.2. Reference Motion and Physiological
Noise
To create reference EMG and kinematic data, a dynamically
consistent cyclic motion of the arm was simulated by optimal
control. Joint kinematics were imposed at initial and final
instants. The control inputs of the model were the muscle
excitations, according to Hill’s muscle model (Winters, 1990).
The objective function to be minimized included weighted
Lagrange cost functionals on the controls and on the states
(muscle activations and joint angles/velocities). This optimal
control problem was solved using a direct multiple shooting
formulation with 800 shooting nodes for an 8 s upper-limb
motion (corresponding to a 100 Hz data collection). To test

FIGURE 1 | Representation of the musculoskeletal model. The muscle lines of

action are depicted in red. The markers are represented by blue spheres. The

orthogonal frames are the coordinate systems of each joint.

the estimator’s ability to track several types of excitation
profiles, four levels of co-contraction (Conone|low|mid|high) were
produced for the same kinematics. They were obtained by
adjusting the weights of the cost functions and by targeting
minimal levels of excitations (0, 0.1, 0.2, and 0.3) on the
muscle elements of the agonist/antagonist pair formed by
the Triceps and the Biceps. To estimate the muscle forces
in experimental-like conditions, noise was added to the data
which were further tracked (EMG, markers). Particular attention
was paid to the properties of this artificial noise, to make
it as representative as possible of the noise encountered
in experimental data. The following manipulations aimed
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FIGURE 2 | Reference muscle excitations for the mid co-contraction level (red) along with the noised versions (low in blue, mid in orange, and high in red). These are

the simulated EMG signals tracked in the estimation problem. Muscle abbreviations stand for (from left to right and top to bottom) : Pectoralis sternal, Pectoralis ribs

parts, Latissimus dorsi Thoracic, Lumbar and Iliac parts, Deltoid Posterior, Triceps long head, lateral and medial, Brachial, Brachioradialis, Pectoralis major clavicular,

Deltoid Anterior and Middle, Supraspinatus, Infraspinatus, Subscapularis, Biceps Brachial long and short head.

at generating noisy reference data while conserving the
ground-truth references for later analysis of the estimator
performances:

• EMG - Because of the signal processing pipeline generally
applied to processed EMG signals (envelope detection, low-
pass filtering), the residual noise should remain in the low-
frequency domain (Farina, 2006). To do so, the Fourier
transforms of the reference excitations were calculated and its
lowest coefficients (up to 2.125 Hz) were randomly biased with
four levels of gaussian noise (none, low, mid, high, Figure 2 ,
see details in Supplementary Material 1.). The EMG signals to
be tracked were then obtained by inverse Fourier transform.
• Markers - The main errors affecting motion capture markers

data come from soft- tissue artifacts and marker placement

errors (Gorton et al., 2009; Blache et al., 2017). Therefore,
the simulated noise cannot be modeled as a simple

additive gaussian distribution on the markers’ trajectories.

For the following reasons, the soft tissues artifact noise
was not modeled: (i) the reference movement of this study
is not particularly dynamic; (ii) it comprises very low
internal/external rotations; (iii) most of the markers are placed
away from large soft tissues. For instance, the Medial Condyle
is known for its accuracy (Blache et al., 2017). Therefore,
prior to computing reference markers trajectories, placement
errors (0, 2, 5, and 10mm, Salvia et al. (2009)), were simulated

by randomly moving the markers on a surrogate model
with four levels of centered gaussian noise (none, low, mid

and high, respectively). Then, the optimized movement was

simulated with this surrogate model in order to obtain altered
makers trajectories.

2.3. Estimation Problem Formulation
The estimation problem was formulated as a constrained non-
linear least-square program, i.e., “to find the controls and the
states that minimize the tracking error on the experimental data,
while enforcing the dynamics of the system as well as model-
related constraints (kinematics, activations, and excitations
bounds)”:

min
x,u

∫ T

0
L(x, u) dt (1a)

s.t. ∀t, ẋ = f (x, u) Dynamics constraints (1b)

∀t, u ∈ U Control path constraints (1c)

∀t, x ∈ X State path constraints (1d)

x(0) = x0, Initial state constraint (1e)

L(x, u) =























ωm

∥

∥(m̂(x)−m∗)2
∥

∥+ωe

∥

∥(ê(u)− emg∗)2
∥

∥

+ωrx

∥

∥x2
∥

∥+ωru

∥

∥u2
∥

∥ , (2a)

ωm

∥

∥(m̂(x)−m∗)2
∥

∥+ωe

∥

∥ê(u)2
∥

∥+ωrx
∥

∥x2
∥

∥+ωru

∥

∥u2
∥

∥ , (2b)

where x and u are respectively the state and control vector
trajectories. Equation (1b) is the forward dynamics function
that implements the ordinary differential equations of the rigid-
body and muscle dynamics. Equation (1c) are the control path
constraints enforcing muscle excitations in [0, 1]. Equation (1d)
are the state path constraints enforcing the kinematics limits of
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the model ([−π/2;π/2], [−2;π/2], [−π/2;π/2], [−0.5; 2.1], in
the order of the joints defined in 2.1). Equation (1a) is the running
cost to beminimized (detailed in Equations 2a and 2b), it includes
tracking terms on the marker positions and EMG signals,
respectively weighted by ωm and ωe, as well as regularization
terms on x and u, respectively weighted by ωrx and ωru. ˆ and
∗ respectively denote estimated and measured quantities. m

represents themarker positions, e themuscle excitations and emg

the measured emg signals. Three versions of this problem were
implemented. In the first and the second versions, the tracked
data were the EMG and the markers (Equation 2a). They differed
in the weights put on the marker tracking (ωm = 1e7 or 1e9). In
the third version, only the markers were tracked and the squared
muscle excitations wereminimized (Equation 2b), as widely done
in the field (Heintz and Gutierrez-Farewik, 2007).

The results provided by all versions were then analyzed
and compared (section 2.5). In both approaches, the resulting
problems were large constrained non-linear programs which, if
treated as a whole, are not solvable in real time and are thus
disqualified for biofeedback applications. TheOCPwas written in
Python 3 using bioptim (Michaud et al., 2020), a library dedicated
to OCP in biomechanics, interfaced with the cutting edge solver
acados (Verschueren et al., 2019). This pipeline also relies on
biorbd for all musculoskeletal computations, which were written
in CasADi symbolics (Andersson et al., 2019) to take advantage
of automatic differentiation and generate the required Jacobians
and Hessians for the non-linear solver.

2.4. Moving Horizon Estimation of Muscle
Forces
A MHE algorithm was implemented to split the estimation
problem in a succession of smaller ones. The idea is to process
fixed-size subsets of the tracking data moving forward in time. In
the following, we refer to this moving horizon as a MHEwindow.
Each time one subproblem is solved, a new measurement is
acquired, the oldest one is discarded and a new subproblem
is defined, of which only a few numerical values differ from
the previous one. Due to this similarity, an efficient warm-
starting strategy using the previously estimated state and control
trajectories can be implemented to speed up the convergence of
the successive problems to be solved. The dynamic consistency
of the final solution is enforced by appropriate constraints on the
initial state. Convergence was considered achieved when more
than 90% of the iterations actually converged. Pseudocode for this
algorithm is provided below:

2.5. Analyses
First, the MHE was applied to noiseless data to assess the
soundness of the approach and to study its accuracy with
regard to an offline full window estimation (section 3.1). To
that end, MHE window sizes varying from 3 to 20 were used
and each time both the convergence time and the root mean
square errors of the estimates were collected and compared
to the ones of the full window approach. As the reference
data was generated at 100 Hz, which is faster than the

MHE performances, EMG signals and marker positions were
appropriately subsampled for each window size, in order to
simulate real-time conditions. The MHE was run 100 times per
window size to compute its average running frequency. Based on
these results, a speed/accuracy tradeoff was chosen by fixing the
window size for subsequent analyses.

Then, the MHE was run on data with the physiological noise
(section 2.2). To assess the effects of the marker noise (four levels,
none, low, mid, and high), of the EMG noise (four levels, none,
low, mid, and high) and of the co-contraction (four levels, none,
low, mid, and high), a fully crossed experimental design was
conducted resulting in 64 experimental conditions, each repeated
30 times. Each time, the root mean square error was calculated
for the joint angles, marker positions and muscle forces, with
respect to the reference data. The effect of EMG noise and co-
contraction on muscle forces estimation was assessed using a
two-way analysis of variance and postdoc t-test with Bonferroni
correction (section 3.3). The effect of marker noise, EMG noise
and marker tracking weight on joint angles estimation was
assessed using a three-way analysis of variance and post-hoc t-
tests with Bonferroni correction (section 3.4). All computations
were performed on a personal computer (Intelr CoreTM i7-
6700HQ CPU @ 2.60 GHz) with parallelization on eight threads.

3. RESULTS

3.1. Performance of the MHE on Noiseless
Data
While a full-window estimation is not appropriate for real-
time feedback (it is necessarily an offline approach), it is
interesting to report its performance in order to better appreciate
the improvements brought by the MHE implementation.
The full window estimation took 13.86 and 29.80 s for the
activation-driven and excitation-driven models, respectively
(1.7–3.7 times real-time performances, since the reference
motion lasts for 8 s). With the MHE formulation, the
computation times were drastically reduced, enabling real-time
estimation. The frequency at which the MHE runs decreases as
the window size increases (Figure 3), from 30 to 10Hz for the
excitation-driven formulation. Decreasing the complexity of the
model, i.e.,, from excitation- to activation-driven, increases the
speed of the estimation, by an average of 9.6 Hz. The excitation-
driven (respectively activation-driven) formulation was faster
than the real-time biofeedback standard (13.3Hz) up to a window
size of 11 (respectively 20).

The accuracy of the full window estimator and of the
MHE for increasing window sizes and for both formulations
(activation/excitation-driven) for joint angles, muscle forces and
marker positions was computed on noiseless measurements
(Figure 4). The estimation error is larger on all components
when comparing MHE to full window estimation, which is an
expected result given the lesser amount of measurement data
available for the MHE. In the excitation-driven formulation,
estimation errors on joint and marker positions decrease up
to a window size of 7 and then increase with the length of
the window size. The estimation error on muscle forces is
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Algorithm 1:MHE pseudo-code

1: mhe_nlp← new_mhe_nlp() // create nonlinear program

2: mhe_nlp.init_data_to_track(sensor_data) // get initial data to track

3: [x, u]←mhe_nlp.solve() // solve nlp and get state and control trajectories

4: store_estimation(x[0], u[0]) // store first estimates of state and control

5:

6: while true do
7: if new_measurement_available then // move forward in time

8: mhe_nlp.update_data_to_track(sensor_data) // get new measurement and discard old one

9: mhe_nlp.update_initial_constraint(x[1]) // impose first state for dynamic consistency

10: mhe_nlp.warmstart(x, u) // provide nlp with initial guess from previous solve

11: [x,u]←mhe_nlp.solve() // solve nlp and get state and control trajectories

12: store_estimation(x[0], u[0]) // store first estimates of state and control

FIGURE 3 | Frequency (mean and standard deviation for 100 tests) at which the moving horizon estimator (MHE) runs as a function of the window size, for activation

and excitation driven formulations. The biofeedback standard is depicted in dashed green.

constant up to a window size of 7 and then increases with
the length of the window size. Similar results can be observed
for the activation driven formulation. In what follows, results
are presented for the excitation-driven formulation. Indeed, we
chose to conduct further analysis with the most advanced model
to demonstrate its ability to deal with activation dynamics,
despite the good performances exhibited by the activation-driven
formulation in both speed and accuracy (see section 4 for a
discussion). In this regard, a window size of 7 was chosen because
it allows the estimator to run around 24Hz, while ensuring
the lowest RMSE on joint kinematics and muscle forces (joint
angle errors < 0.01, muscle force errors 1 N, marker positions
error < 0.01mm).

3.2. Muscle Force Estimates in the
Presence of Marker and EMG Noise
The muscle forces obtained with our method are consistent
with the reference trajectories (Figure 5). When minimizing

muscle excitations, the muscle forces are accurate for most
muscles, except for the ones where the co-contraction occurs
(e.g., Triceps medial and lateral, Brachioradialis, Brachial and
Biceps Brachial long and short). The variability of the EMG-
tracking solutions (blue, Figure 5) comes from the random
noise injected to reference muscle excitations (Figure 2).
In the remainder only the trials for which more than
90% of the optimizations have converged will be kept for
analysis, the others will be ignored. Across all conditions,
the mean convergence rate was 98.95% ranging from 80
to 100%.

3.3. Effect of Excitation Noise and
Co-contraction on Muscle Forces
Estimation
The two-way ANOVA presented significant interactions which
are summed-up in Figure 6. Inside each co-contraction the
RMSE on muscle forces mainly increases with the EMG noise
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FIGURE 4 | RMSE of the moving horizon estimation (MHE) and full window estimation for joint angles (q, deg), muscle forces (N) and marker positions (m) as a

function of the window size, for the excitation-driven and activation-driven formulations. RMSE are displayed in decimal logarithmic scale for the sake of visualization.

FIGURE 5 | Muscle forces estimation obtained with the MHE algorithm for the mid co-contraction level, mid marker noise level and mid EMG noise level (mean ± std,

30 trials). The muscle force references (from the simulation) are represented (in red) along with the estimates obtained by EMG tracking (in blue) and the estimates

obtained by minimizing muscle excitations (in orange).

level (except for one test), with the excitation-minimizing
formulation (blue boxplot) leading to a bigger RMSE for low,
mid, and high co-contraction levels. Moreover the EMG-tracking
formulation can track co-contraction (the RMSE of EMG-
tracking solutions are not significantly sensitive to the co-
contraction level, except for two tests) whereas minimizing the
excitations leads to a RMSE increasing with the level of co-
contraction (p < 0.001).

3.4. Effect of Marker Tracking Weights,
Marker Noise, and EMG Noise on Joint
Angles Estimation
The three-way ANOVA presented significant interactions which

are summed-up in Figures 7, 8 where the RMSE on the joint

kinematics as a function of the marker and EMG noise levels and
of the EMG objective (tracking or minimizing excitations), are
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FIGURE 6 | RMSE (30 trials x 4 marker noise conditions per boxplot) of the MHE on muscle forces as a function of the co-contraction level, the EMG noise level (color

coded from lvl:none to lvl:high) and the type of objective function (EMG tracking or minimizing excitations). * stands for significantly different RMSE (p < 0.001). †

stands for significantly different RMSE for one objective type across all co-contraction levels. (**) stands for significantly different RMSE (p < 0.001) for all objective

types inside one co-contraction level, unless stated otherwise by N.S. Inside each objective type, if not stated otherwise, the RMSE are not significantly different.

FIGURE 7 | RMSE (30 trials x 4 co-contraction level conditions per boxplot) of the MHE on joint kinematics as a function of the marker and EMG noise levels (color

coded from lvl:none to lvl:high) and of the objective function (EMG tracking or minimizing excitations), with a high weight on the marker tracking. * stands for

significantly different RMSE (p < 0.001). † stands for significantly different RMSE for one objective type across all marker noise levels. (**) stands for significantly

different RMSE (p < 0.001) for all objective types inside one marker noise level, unless stated otherwise by N.S.

depicted for higher and lower weights on the marker tracking,
respectively. Across all marker noise levels, the RMSE on the
joint kinematics increased as the noise on the markers increased
(p < 0.001). When emphasizing the marker tracking (higher
weight, Figure 7), the level of EMG noise did not have a

significant effect on the quality of the joint kinematics estimation
for the low, mid and high marker noise levels (except for two
tests). In this case, essentially, the choice between minimizing or
tracking the excitations does not significantly affect the RMSE on
joint kinematics.With a lowermarker tracking weight (Figure 7),
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FIGURE 8 | RMSE (30 trials x 4 co-contraction level conditions per boxplot) of the MHE on joint kinematics as a function of the marker and EMG noise levels (color

coded from lvl:none to lvl:high) and of the objective function (EMG tracking or minimizing excitations), with a low weight on the marker tracking. *stands for significantly

different RMSE (p < 0.001). † stands for significantly different RMSE for one objective type across all marker noise levels. (**) stands for significantly different RMSE (p

< 0.001) for all objective types inside one marker noise level, unless stated otherwise by N.S.

the RMSE on the joint kinematics also significantly depends on
the level of EMG noise (it systematically increases with the level
of noise, with the excitation-minimizing formulation leading to a
higher RMSE, p < 0.001). But in this case, the RMSE on the joint
kinematics is always significantly smaller when tracking the EMG
signals for the none level and almost always for the low and mid
levels, than when minimizing muscle excitations (p < 0.001).

4. DISCUSSION

Our objective was to achieve a real-time and dynamically
consistent estimation of muscle forces and joint kinematics
from EMG signals and marker positions. As a proof-of-
concept, we used a 4-DoFs and 19 muscle elements arm model.
We found that this estimation problem was tractable in real
time, estimating muscle forces at up to 30 Hz. To guarantee
dynamic consistency, the problem was formulated as a moving-
horizon forward approach discretized using a direct multiple
shooting formulation.

Compared to state-of-the-art dynamically consistent
estimation of muscle forces and joint kinematics (Bélaise et al.,
2018a), the tremendous speed increase (3500x real-time vs. real-
time) comes from three major methodological improvements.
First, all the dynamic computations were written in CasADi
symbolics to efficiently and automatically compute the first and
second derivatives required by the non-linear solver (Andersson
et al., 2019). Moreover, the problem was solved using the fast
non-linear solver acados (Verschueren et al., 2019). To the best
of our knowledge, this is the first time that acados was used in

a biomechanical study. We believe that it is a very promising
tool for optimization-in-the-loop biomedical applications with
real-time expectations. As shown by the performances of the full
window estimation (see section 3.1), the combination of these
two contributions resulted in a 945-fold increase (3.7x vs. 3500x
real-time) of the resolution speed. Finally, by formulating the
estimation problem on a moving horizon, which is a necessary
condition to be able to process data on the fly and implement
true real-time software, the remaining speed improvement
was achieved, without compromising the convergence (98.95%
success rate on 1920 different problems). With the prospect of
making our code accessible to the largest audience, an effort was
put in the development of a Python interface (Michaud et al.,
2020), to facilitate the setup and help solve general optimization
problems in biomechanics. This should be of particular interest
to the community (C++ is used in other available solutions,
Bélaise et al., 2018a; Dembia et al., 2019).

First, the estimation algorithm was run onto noiseless
measurements to report its behavior with regard to a classic
full window approach. This step was essential to choose the
size of the estimation window that best met the speed/accuracy
tradeoff. Indeed, in section 3.1 it was reported that the RMSE
tended to increase with the length of the window size. This
is explained by the fact that, as the window size increases,
the solving speed decreases, thus new measurements are more
distant from one another, the quality of the initial guess is
degraded and each subproblem is harder to solve. We also
showed that, for the model and motion investigated in this work,
the activation-based formulation accuracy was similar to the
excitation-based one. This is the result of the activation-based
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formulation being faster (by about 10 Hz for a same window
size), meaning that the tracked measurements are subsampled
by a smaller factor and the resulting optimization problem is
therefore better informed. Before deciding on the relevance of
modeling activation dynamics when estimating muscle forces,
this finding should be further investigated on a wider range of
models and motions. As stated earlier, to illustrate the ability of
our formulation to deal with activation dynamics, the excitation-
based formulation was kept for further analyses. For the model
used in this study, a 7-sample window appeared to be the optimal
choice. It led to the lowest error on all variables of interest, while
running at 24 Hz, which is approximately twice the biofeedback
standard. This time margin of about 80 ms will be crucial when
carrying the method out in an experimental context as it leaves
time for other computing tasks while remaining in real-time (e.g.,
EMG and markers processing, visualization, warm-starting with
an extended Kalman filter, etc.). All these side computations are
commonly carried out in real-time (Zohar and van den Bogert,
2008;Menegaldo, 2017; Pizzolato et al., 2017b, 2020) and could be
run in parallel, opening up the possibility of working with more
complex models. For instance, in Pizzolato et al. (2017b), data
processing in Vicon Nexus, time delays caused by the filtering
phase shift and refresh time of the monitor used to provide the
visual biofeedback accounted for 50% of the total processing time,
i.e., 58 ms. Since our implementation is parallelized (specifically
the integrations of the shooting intervals), the main leverage
to increase our solving rate would be the number of cores
(unreported results). Forward approaches are also able to handle
the fact that in practical situations, it is frequent that only a
limited number of muscle EMGs are available for tracking. In
that case, several heuristics can be implemented to overcome this
lack of information [as done in CEINMS, Pizzolato et al. (2015)
], such as mapping, synergies or least activation criterion for the
uninformed muscles.

The performances of the present method should be put in
perspective with the static optimization results in VanDen Bogert
et al. (2013), where joint kinematics and kinetics of a 44-
DoFs full-body model with 300 muscle elements were computed
at 120 Hz and of the hybrid approach in Pizzolato et al.
(2017b), where joint kinematics and kinetics of a 23-DoFs lower-
body model with 34 muscle elements were computed at 17.5
Hz (excluding aforementioned side computations). In terms
of number of DoFs and muscle elements, the model used in
the present study is simpler. Compared to Van Den Bogert
et al. (2013), the estimation rate is also much lower, but
promisingly, it is above the one reported in Pizzolato et al.
(2017b). As stated in the introduction, the computational burden
of our method is the price to pay to estimate dynamically
consistent muscle forces and joint kinematics. Given the
computational breakthrough reported in the present work, we
believe that forward approaches, once disqualified for real-time
applications, should be investigated further because they provide
physiologically plausible estimates of muscle forces, without the
issues surrounding differentiation of ill-conditioned kinematic
data. In order to have a sense of how the presented method
would scale up to more complex upper limb models such as the
ones developed in Saul et al. (2015) and Rajagopal et al. (2016),

we conducted a quick test. Sixteen muscles from our original
model were duplicated with slightly modified insertion points
and isometric forces reduced by half. With this 35 muscle
elements model, both formulations performed similarly to the
previousmodel in terms of estimation errors. On a regular laptop,
the excitation-driven formulation ran at 10 Hz, which is under
the biofeedback standard. The activation-driven formulation
however ran at 21 Hz which satisfies the biofeedback standard.
On a regular laptop, this would certainly imply to go with
the activation-driven formulation which was shown to be
comparable to the excitation-driven one on this type of motions.
Future improvements in optimal control software and in the
computational efficiency of processors should quickly allow the
application of this method to bigger models while remaining
in real-time.

In a second stage, the MHE algorithm was applied to
experimental-like data with simulated noise, whose properties
were chosen with care. On this occasion, we introduced an
new way of simulating EMG noise, using the properties of
the Fourier transform. Results from the noise analysis are as
expected, as the RMSE on the variables of interest generally
increases with the level of the noise. They also confirm the
superiority of an EMG tracking formulation over minimizing
excitations when processing motions involving co-contraction
(Figure 6), reinforcing the findings of Bélaise et al. (2018a),
Moissenet et al. (2019), and Lloyd and Besier (2003). We
showed that, because our tracking variables are of a completely
different nature (marker positions and EMG signals), they
complement each other. For instance, when the experimental
noise is higher on marker positions and lower on the muscle
excitations, tracking the EMG signals improves the accuracy
of the joint angles estimation with regard to just minimizing
muscle excitations (Figure 8). Even if such noise conditions
are unlikely to happen in experimental circumstances (marker
kinematics are generally more accurate than EMG) this result
illustrates the strength of our formulation which boils down to
a dynamically consistent data fusion from different sensors. In
a clinical context, where classical motion capture systems are
often too demanding to be used, such a method could still give
relevant results with less accurate kinematic data (Xsens, Leap
Motion), enhanced by EMG signals. In the present work, we
chose to work with markers according to the recommendations
from Bélaise et al. (2018b), but a recent study suggests that
tracking joint angles instead of markers improves convergence
(Febrer-Nafría et al., 2020). In terms of solving speed, the
outcomes of such a change in the tracked data should be
investigated further since, if it simplifies the kinematic tracking
term, turning the non-linear quadratic program into a linear
one, it requires a round of inverse kinematics. Finally our
MHE formulation proved to be a promising solution for
estimating muscle forces, even on data with experimental-like
levels of noise.

While low-frequency noise was added to EMG signals and
although marker positions were biased on a surrogate model, the
main limitation of this study is that muscle models (geometry
and properties of Hill actuators) and inertial parameters were
kept unchanged between the reference and the experimental
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models, like in Bélaise et al. (2018b), Moissenet et al. (2019).
As the MHE is a novel approach in biomechanics, it should be
investigated further to quantify its ability to cope with this type
of model noise. The estimation error coming from biased inertial
parameters should be moderate, especially for slow movements
such as the one investigated in the present study. However,
an off-line calibration of muscle parameters will be essential
before the use of MHE in experimental conditions as done
for hybrid approaches in Pizzolato et al. (2017b). Besides, the
modeling of the markers positioning error could be improved
by enforcing their random displacements on a manifold locally
matching the skin surface. Furthermore, we only implemented a
single dynamics (without contact forces) as a proof-of-concept.
Additional developments (similarly to the changes implemented
in Moissenet et al. (2019) compared to Bélaise et al. (2018b)) will
therefore be required to adapt the MHE to walking for example,
namely the tracking of the contact forces and the transition of the
sliding window between phases (implying a change in the set of
ordinary differential equations). Moreover, changing the model
and the dynamics of the motion might affect the convex speed
accuracy trade-off found in this study.

In conclusion, this work demonstrates the relevance of
moving horizon forward approaches for muscle forces estimation
in biomechanics. Thanks to an appropriate formulation and
efficient numerical software, the results show that real-time
estimation of muscle forces is achievable on a standard personal
laptop. Further studies need to be conducted in order to
generalize these findings on several models and motions, but
the presented developments are really promising for real-time
biofeedback in the context of rehabilitation.
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