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Abstract

In this paper, a total variation (TV) minimization strategy is proposed to overcome the prob-

lem of sparse spatial resolution and large amounts of noise in low dose positron emission

tomography (PET) imaging reconstruction. Two types of objective function were established

based on two statistical models of measured PET data, least-square (LS) TV for the Gauss-

ian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality

reconstructed images, the alternating direction method (ADM) is used to solve these objec-

tive functions. As compared with the iterative shrinkage/thresholding (IST) based algo-

rithms, the proposed ADM can make full use of the TV constraint and its convergence rate is

faster. The performance of the proposed approach is validated through comparisons with

the expectation-maximization (EM) method using synthetic and experimental biological

data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consider-

ation to find which models are more suitable for PET imaging, in particular low-dose PET.

To evaluate the results quantitatively, we computed bias, variance, and the contrast recov-

ery coefficient (CRC) and drew profiles of the reconstructed images produced by the differ-

ent methods. The results show that both Poisson-TV and LS-TV can provide a high visual

quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV

methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-

TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias

and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In

contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruc-

tion with the highest CRC.

Introduction

Positron emission tomography (PET) is a nuclear image modality that can produce 3D func-

tional images of biological processes inside the human body [1]. PET has now become an

indispensable tool in cardiac/brain research and cancer diagnosis/treatment. However, the

reconstruction of low-dose PET images has remained a challenge because of the large amount
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of noise and the sparse spatial resolution [2]. To meet the challenge, researchers have proposed

a number of different iterative statistical methods to reconstruct the PET images based on dif-

ferent statistical assumptions of PET measurements, such as maximum likelihood (ML),

expectation maximization (EM) [3–5], maximum a posteriori (MAP) [6–8], and penalized

weighted least-squares (PWLS) [9, 10]. Nevertheless, these iterative statistical methods still

have several drawbacks. For example they cannot easily handle low signal-to-noise ratio (SNR)

data. Furthermore, after the subtraction of random events, the corrections for scanner sensitiv-

ity and dead time, and the corrections for attenuation and scatter, the actual statistical property

of measured data is quite complex and it does not exactly follow the Poisson distribution

[11, 12].

The nature of PET images is an additional factor to consider in PET image reconstruction

[13]. One important PET image feature is the edge. The edge information usually represents

the sharp variation in images, such as the object boundaries, which is very important and use-

ful for clinical diagnosis, e.g., of tumors [14]. Given the nature of PET images, researchers have

proposed total variation (TV) based methods for both the image space and the projection

space in PET image reconstruction [15]. TV was incorporated to provide edge-preserving

guidance for the reconstruction [15], and it is well known that it suppresses noise effectively

while preserving sharp edges [16–18]. Based on the complexity of the statistical property of

PET data, there should be several types of TV-constraint PET imaging models for different sta-

tistical assumptions. However, there have been no discussions or research studies on this point

in the PET imaging community. In contrast, two types of TV incorporated models have been

developed in the image processing community: Gaussian-TV [19] and Poisson-TV [20]. The

Gaussian-TV model includes an energy functional to control the type of smoothness of solu-

tions. The Poisson-TV model includes a Poisson data fidelity term to meet the statistical

assumption. Both can be used for PET image reconstruction theoretically. However, it remains

unknown which one is the better choice for various PET application areas. For example, the

low bias and variance of the reconstructed image is more important for kinetic estimation,

whereas high contrast is required for tumor diagnosis. In addition, a complication of the TV

model is the strong nonlinearity in the data fidelity, and therefore, problems or issues arise in

the computation of minimizers [20].

There are three classes of existing solvers for the TV problem. Algorithms in the first class

are based on smoothing the TV term, since TV is non-smooth, which causes the main diffi-

culty in solving the TV problem. A number of methods based on smoothing have been pro-

posed, one of which is the second-order cone program (SOCP) [21, 22]. The SOCP solver

reformulates TV minimization as a second order cone programming problem [22], which can

be solved by interior-point algorithms. The SOCP solver can easily be adapted to various con-

vex TV models with distinct terms and constraints with high accuracy. However, the speed of

SOCP is very slow, because it embeds the interior-point algorithm and directly solves a linear

system at each iteration. The second class of algorithms for TV problems comprises those

based on the iterative shrinkage/thresholding (IST) algorithms, which have been proposed by

several researchers in the last few years [23–26]. IST is able to minimize the TV constraint

term with some non-quadratic and non-smooth regularization terms. The convergence rate of

IST algorithms heavily relies on the linear observation operator, and the convergence rate of

algorithms in this class is not sufficiently fast. Furthermore, IST-based algorithms for TV de-

convolution require that a de-noising subproblem be solved at each iteration and they cannot

take advantage of problem structures. The third class of algorithms for TV problems comprises

those based on seeking the minimizer or maximizer of the original constrained problem by a

sequence of unconstrained subproblems. Methods belonging to this class add a quadratic pen-

alty term instead of the normal constraint term in the objective function. The penalty term is
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the square of the constraint violation with the multiplier. Because of its simplicity and intuitive

appeal, this approach is widely used. The well-known augmented Lagrangian method (ALM)

[27, 28] belongs to this class. In the augmented Lagrangian method, the Lagrangian multiplier

is introduced and is estimated at each iteration in the objective function. However, it requires

that multipliers go to infinity to guarantee the convergence, which may cause the ill-condition

problem numerically.

To overcome the issue that the solvers mentioned above are weak in terms of efficiency and

robustness, in this study an alternating direction method (ADM) was applied [29, 30] to solve

the TV problem. The proposed ADM constitutes implementable variants of the classical ALM

for optimization problems with separable structures and linear constraints. In this method, the

TV regularization term is split into two terms with the aid of a new slack variable so that an

alternating minimization scheme can be coupled to minimize the approximate objective func-

tion. This split and the use of the alternating minimization scheme not only accelerate the con-

vergence rate of the solution, but also result in improved accuracy, as well as in robustness of

the reconstructed results to the noise in the data set.

We used Monte Carlo simulated data, phantom data, and real patient data to validate the

performance of the proposed algorithm as perceived both quantitatively and visually. Experi-

mental results show that the proposed algorithm is highly effective in preserving sharp image

edges and more details while eliminating staircase artifacts. In addition, the performances of

the Poisson-TV and LS-TV methods on PET data at different counting levels are also evaluated

in this work.

The rest of this paper is organized as follows. In Section 2, first the PET imaging model is

reviewed, and then, two objective functions and the corresponding method to solve them are

suggested. In Section 3, the experimental setup, results, and comparisons of the existing meth-

ods and the proposed methods are presented. Section 4 constitutes the conclusion.

Materials and Methods

PET imaging model

PET acquired data are organized in a series of parallel slices that can be reconstructed indepen-

dently. Every slice of raw data collected by a PET scanner constitutes a list of coincidence

events representing near-simultaneous detection of annihilation photons by a pair of detec-

tors. Each coincidence event represents a line in space connecting the two detectors along

which the positron emission occurred (the line of response (LOR)). The raw data from PET

are organized in a sinogram.

Therefore, PET image reconstruction problems are specific cases of the following general

inverse problem: find an estimate of radioactive activity map u from a measurement b by

b ¼ Au þ noise ð1Þ

In the process of PET imaging reconstruction, u is the reconstruction image and A is the sys-

tem matrix that describes the tomographic geometry and the physical factors.

LS-TV

Problem formulation. Assuming piecewise constant behavior of PET images, we intro-

duce total variation (TV) regularization into PET reconstruction.

The problem is formulated as

min
u
TVðuÞ; s:t: Au ¼ b ð2Þ

PET Reconstruction and Total Variation
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where TV(u) is the PET reconstruction with the TV defined regularization; it is defined as

∑ikDiuk, the sum of the discrete gradient of activity map u of every pixel i.
Solution. It is difficult to directly obtain the solution of Eq (2). Therefore, we introduce a

new auxiliary variable, w. At each pixel, an auxiliary variable wi is introduced into the term k.k.

The purpose of this process is to transfer Diu out of k.k. The optimization problem of Eq (2) is

clearly equivalent to

min
wi;u

X

i

k wi k; s:t: Au ¼ b and Diu ¼ wi for all i ð3Þ

To deal with the constraints, we transform the constrained Problem (3) to an equivalent

unconstrained problem using an augmented Lagrangian function [31]. The corresponding

augmented Lagrangian function of Problem (3) is

LAðwi; uÞ ¼
X

i

ðk wi k � uTi ðDiu � wiÞ

þ
bi

2
k Diu � wi k

2

2
Þ � l

T
ðAu � bÞ þ

m

2
k Au � b k2

2

ð4Þ

where υi, βi, λ, and μ are the multipliers of the four penalty terms. The first term of Eq (4) is the

regularization term, and the remaining terms are penalty terms. The second and fourth terms

are linear parts, whereas the third term and fifth terms are quadratic parts. These parts ensure

the accuracy and robustness of the TV constraint. In order to make the result of every term a

number rather than a matrix, transposition of υ and λ is utilized in Eq (4). To solve Eq (4) effi-

ciently, the ADM, which was originally proposed to handle parabolic and elliptic differential

equations, was embedded here. This algorithm is a variant of the classical ALM. When the clas-

sical ALM approaches the solutions of the original Problem (4), the nice separable structure

emerging from Eq (4) in both the objective function and the constraint is weaker. This draw-

back, however, can be completely overcome by the ADM. In the ADM, the solution of Eq (4)

is transformed to solve three subproblems at each iteration for variables uk and wi,k and param-

eters λ and υ.

In ADM, let uk and wi,k represent the true minimizers of Eq (4) at the kth iteration. wi,k+1

can be attained by

min
wi

LAðwi; ukÞ ¼
X

i

ðk wi k � uTi ðDiuk � wiÞ

þ
bi

2
k Diuk � wi k

2

2
Þ � l

T
ðAuk � bÞ þ

m

2
k Auk � b k

2

2

ð5Þ

To solve this minimization problem, Eq (5) can be separated as two subproblems for vari-

ables u and w based on ADM. We first fix the value of u and calculate the solution of w. There-

fore, only the terms containing w are useful. The corresponding subproblem can be expressed

as the following problem:

wi ¼ arg min
wi

LAðwi; ukÞ ¼ min
wi

X

i

k wi k � uTi ðDiu � wiÞ þ
bi

2
k Diu � wi k

2

2

� �

ð6Þ

For given β> 0, the minimizer of Eq (6) is given by the 2D shrinkage-like formula [32]. wi,k+1

can be calculated by

wi;kþ1 ¼ max k Diuk �
ui
bi
k �

1

bi
; 0

� � Diuk �
ui
bi

� �

k Diuk �
ui
bi
k

ð7Þ

PET Reconstruction and Total Variation

PLOS ONE | DOI:10.1371/journal.pone.0166871 December 22, 2016 4 / 19



With wi,k+1, we can achieve uk+1 by

min
u

LAðwi;kþ1; uÞ ¼
X

i

ðk wi;kþ1 k � uTi ðDiuk � wi;kþ1Þ

þ
bi

2
k Diuk � wi;kþ1 k

2

2
Þ � l

T
ðAuk � bÞ þ

m

2
k Auk � b k

2

2

ð8Þ

The constant terms do not influence the minimum, and thus, this subproblem is equivalent

to the problem

u ¼ arg min
u

LAðwi;kþ1; uÞ ¼ min
u

X

i

ð� uTi ðDiuk � wi;kþ1Þ

þ
bi

2
k Diuk � wi;kþ1 k

2

2
Þ � l

T
ðAuk � bÞ þ

m

2
k Auk � b k

2

2

ð9Þ

Its gradient is

dkðuÞ ¼
X

i

ðbiD
T
i ð� Diu � wi;kþ1Þ þ mATðAu � bÞ � ATl � DT

i uiÞ ð10Þ

By enforcing dk(u) = 0, we can obtain the exact minimizer of Eq (9) directly. However, this cal-

culation is too costly to implement numerically, in particular when the matrix is large. To

obtain uk+1 more efficiently, the steepest descent method with an appropriate step length is

used iteratively by applying the recurrence formulation:

ukþ1 ¼ uk � akdkðukÞ ð11Þ

where αk is the step length. Each iteration of the steepest descent method demands that the

gradient be updated to update the estimation value of uk+1. Therefore, the step length should

be chosen carefully to obtain an accurate solution.

It remains to choose α. It is suggested that the aggressive manner [33–35] be used to choose

the step length for the steepest descent method, which is called the BB (Barzilai and Borwein)

step or BB method. This method is applied to choose α:

ak ¼
ðuk � uk� 1Þ

T
ðuk � uk� 1Þ

ðuk � uk� 1Þ
T
ðdkðukÞ � dkðuk� 1ÞÞ

ð12Þ

Parameters. There are several parameters in the algorithm. Among these, β, υi, and λ are

initialized as 1, 1, 1, based on [36]. μ is the most important parameter, since it determines the

weight of the data fitting term. Therefore, to achieve the best performance, the value of μ
should be set according to the noise level in observation b. For example, the higher the noise

level is, the smaller μ should be. μ was manually tuned in this study. υi and λ should be updated

provided that Eq (4) is minimized at each iteration. According to the formula proposed by

Hestenes and Powell [28, 37–40], the update formulas of multipliers follow

ui;kþ1 ¼ ui;k � bi;kðDiuk � wi;kÞ ð13Þ

lkþ1 ¼ lk � mkðAuk � bÞ ð14Þ

PET Reconstruction and Total Variation
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The program terminates after a certain number of iterations (300 in this study), or when

the relative stopping criterion (based on empirical estimations) is reached:

� ¼
k ukþ1 � uk k
k uk k

< 10� 3 ð15Þ

Poisson-TV

Problem formulation. Because of the issue of the low SNR and the Poisson distribution

of PET measurements, we build the objective function as

min
u
TVðuÞ þ m

X

i

ð�bi � bi log �biÞ; s:t: Au ¼ b ð16Þ

Solution. To solve the objective function in Eq (16), the ADM is also used to solve some

subproblems at each iteration to approach a solution of Eq (16). We add two auxiliary vari-

ables, ZS and S, into the function, as in Eq (3). Then, we construct the augmented Lagrangian

objective function for Eq (16):

min
u

TVðuÞ þ m
X

i

ð�bi � bi log �biÞ� < ZS; S � u > þ
bS

2
k S � u k2

F ð17Þ

In a more compact form, we have

min
u

X

i

k Dui k þm
X

i

ð�bi � bi log �biÞ þ
bS

2
k S � u �

ZS
bS
k2

F ð18Þ

We can obtain u by

min
u

X

i

k Dui k þ
bS

2
k S � u �

ZS
bS
k2

F ð19Þ

where the u sub-problem is solved by an EM-like method. We rewrite the objective function

with items containing only u and take the expectation step with respect to the unobservable

variables wi j and calculate the surrogate function.

FðuÞ ¼ m
Xnm

m¼1

Xnj

j¼1

Xni

i¼1

ðujmaij � w
m
ij logðgijSjmÞÞ

" # !

ð20Þ

We minimize this surrogate function F by zeroing its derivative with respect to Sjm:

@F
@Sjm
¼ m

Xni

m¼1

gij �
m

Sjm

Xni

i¼1

wm
ij ¼ 0 ð21Þ

Thus, xkþ1
jm is the root of

S2
jm þ m

Xni

i¼1

gij

 !

xjm � m
Xni

i¼1

wm
ij ¼ 0 ð22Þ
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Finally, the updating rule for xkþ1
jm is

xkþ1
jm ¼

� ðm
Pni

i¼1
gijÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm
Pni

i¼1
gijÞ

2
þ 4m

Pni
i¼1
wm
ij

q

2

ð23Þ

Moreover, ZS in Eq (19) is updated as

Zkþ1
S ¼ ZkS � bSðukþ1 � Skþ1Þ ð24Þ

Convergence analysis

The analysis of the convergence properties of the proposed TV regulation process is presented

in this section. β and βS strongly affect convergence in both the Poisson-TV and LS-TV meth-

ods. The selection of these parameters also affects the convergence rate of the proposed

method. The convergence of the sequence (w and u) in the Poisson-TV and (u and S) in the

LS-TV was proven in the convergence analysis section in [32, 41]. It has been proven that the

proposed method can converge to the final solutions from any initial points. To demonstrate

the effectiveness of the ADM, we also provide a comparison of the convergence speed of the

proposed method and IST method (a detailed description of this is algorithm is given in [23])

in the results section.

Ethics Statement

Before the Results section, we state that no human and animal research was involved in this

work.

Results

In this section, to validate and evaluate the proposed method, the results of simulation and

clinical experiments are presented. In the Monte Carlo simulation experiments, a Hoffman

brain phantom and Zubal phantom were used and we simulated projections using GATE [42].

All the tests were performed using MATLAB on a PC with an Intel i7-3770 3.40 GHz and 8 GB

RAM. In the clinical experiment, we applied our method to a typical PET scanner. All the

scans were executed using a Hamamatsu PET scanner. To obtain a good visual effect of our

method, we compared the EM [43], Poisson-TV, and LS-TV methods.

Monte Carlo simulations

The scanner simulated in GATE was the Hamamatsu SHR-22000 scanner, which consists of

32 rings with 24576 (3072/ring) BGO crystals of 2.8mm � 6.95mm � 30mm, 768 PMTs, and an

838 mm detector ring diameter. The activity maps of the Hoffman brain phantom (Fig 1(a))

and Zubal phantom (Fig 1(b)) were used as the ground truths. The sinograms calculated from

the ground truths by GATE were used as the measurements for our tests. All the tests were per-

formed using MATLAB on a PC with an Intel i7-3770 3.40 GHz and 8 GB RAM. The system

matrix G used for matching the dimensions of the simulated sinogram was generated by the

Fessler tomography toolbox [44].

Both the EM and our model-based TV method were applied to reconstruct the activity

maps from the Monte Carlo simulation measurements. The ability of two frameworks (the EM

and model-based TV method) to reconstruct a PET activity map was compared in this experi-

ment. This ability is quantified using the relative errors bias, variance, and contrast recovery

PET Reconstruction and Total Variation
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coefficient (CRC) of the region of interest (ROI) calculated as

bias ¼
1

n

Xn

i¼1

ðûi � uiÞ ð25Þ

variance ¼
1

n

Xn

i¼1

ðûi � uiÞ
2

ð26Þ

CRC ¼
Contrastmeasure
Contrasttheory

¼
ðS=BÞmeasure � 1

ðS=BÞtheory � 1
ð27Þ

where ui is the ith pixel of ground truth u and ûi is the ith pixel of the reconstructed images. S
is the mean activity of the ROI and B is the mean activity of the white matter region (back-

ground) in the reconstructed image. The bias and variance are used to evaluate the accuracy of

the reconstruction and CRC is used to indicate the relative contrast of the ROI in the recon-

structed images.

In our method, the TV factor (the value of weighting parameter μ) is an important parame-

ter, which can be optimized to smoothen the results. To study the impact of the initial condi-

tion of the TV factor in our method, we plotted the bias curve and variance curve versus the

TV factor, which are shown in Fig 2. When the TV factor increases, the bias and variance

curves first decrease and then increase. Therefore, we can choose the nadir value of the curve

as the optimized TV factor, which is 0.0025 in Poisson-TV and 4 in LS-TV for all experiments

at all count levels.

The activity maps of Hoffman brain phantom and Zubal phantom reconstructed by the EM

and the proposed TV methods are presented in Figs 3 and 4. The sinograms used in Figs 3 and

4 constitute high count level data; the count is approximately 107. This clearly indicates that

the quality of recovery of both Poisson-TV and LS-TV is much higher than that of the EM

method. In addition, the reconstructed images also indicate that the edge of the reconstruction

produced by the proposed methods is sharper. However, the LS-TV method yields sharper

edge information than does Poisson-TV. To evaluate the accuracy of the reconstruction, we

marked the specific region of the images (Figs 3(b) and 4(b)) for quantitative analysis. In addi-

tion, we present the profiles of the reconstructed images by all methods in the Fig 5. It is clear

that the results of Poisson-TV give the closest fit to the ground truth.

Fig 1. Ground truths of the Monte Carlo simulation.

doi:10.1371/journal.pone.0166871.g001
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Fig 2. Profile of the bias and variance versus TV factor.

doi:10.1371/journal.pone.0166871.g002

Fig 3. Reconstruction of the brain phantom.

doi:10.1371/journal.pone.0166871.g003

Fig 4. Reconstruction of the Zubal phantom.

doi:10.1371/journal.pone.0166871.g004
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To evaluate the performance of the Poisson-TV and LS-TV methods at different count

(dose) levels, five counting level values (total number of photon counts in the reconstruction

plane: 5 � 105, 1 � 106, 3 � 106, 6 � 106 and 9 � 106) were simulated in this experiment.

The activity maps of the Hoffman brain phantom (Fig 6(a)) and Zubal phantom (Fig 6(b))

reconstructed by EM, Poisson-TV, and LS-TV from the data with different numbers of counts

are given in Fig 6. Tables 1 and 2 list the bias and variance of EM, Poisson-TV, and LS-TV for

the different counting level data. This demonstrates the statistical analysis of the reconstructed

Fig 5. Profiles of the marked region of the brain phantom.

doi:10.1371/journal.pone.0166871.g005
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PLOS ONE | DOI:10.1371/journal.pone.0166871 December 22, 2016 10 / 19



Fig 6. Reconstruction of the EM, LS-TV, and Poisson-TV for the data with different counts.

doi:10.1371/journal.pone.0166871.g006
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results, which confirms that our model yields better estimates in terms of bias when the count-

ing level changes. The robustness of the proposed method to noise was also evaluated by sino-

gram data with different counting levels (a lower count means more serious noise). As

indicated in Tables 1 and 2, the variance of the Poisson-TV and LS-TV methods is 22% to 74%

less than that of the EM method at all counting levels. In other words, the proposed method is

more robust to noise than EM. Moreover, Table 1 also shows that the bias and variance for

LS-TV and Poisson-TV decrease faster than those of EM when the counting level increases.

For a full comparison, the bias, variance, and CRC curves of EM, Poisson-TV, and LS-TV in

ROI 1, 2, and 3 for the brain and Zubal phantoms are given in Fig 7. Fig 7(a) and 7(b) show

the bias curves. The bias curve for the EM was not improved significantly when the counting

level increased, whereas the bias curve for our method decreased. Fig 7(c) and 7(d) show the

variance curves, which exhibit the same trend as Fig 7(a) and 7(b). Fig 7(e) and 7(f) show the

CRC curves. All the CRC curves increase when the counting level increases, whereas the CRC

curves for the proposed method increase faster and higher, and LS-TV gives the best CRC in

all methods.

Furthermore, we plotted the relative error of reconstruction after each iteration of the algo-

rithms to evaluate the convergence speed of the Poisson-TV, LS-TV, EM, and IST methods.

Table 1. Quantitative analysis of the reconstructions by EM, Poisson-TV, and LS-TV for Zubal phantom.

Counting Zubal Phantom

Bias Variance

EM LSTV PosTV EM LSTV PosTV

Total 5E5 0.0327 0.0312 0.0286 0.0043 0.0039 0.0033

1E6 0.0262 0.0214 0.0206 0.0029 0.0021 0.0020

3E6 0.0218 0.0205 0.0195 0.0022 0.0018 0.0019

6E6 0.0198 0.0196 0.0185 0.0020 0.0017 0.0017

9E6 0.0186 0.0181 0.0166 0.0018 0.0014 0.0015

ROI 1 5E5 0.3995 0.2653 0.3527 0.2114 0.0864 0.1725

1E6 0.3275 0.2031 0.3101 0.1541 0.0657 0.1455

3E6 0.2613 0.1604 0.1925 0.0789 0.0425 0.0571

6E6 0.2460 0.1825 0.1874 0.0626 0.0492 0.0523

9E6 0.1876 0.1093 0.1431 0.0236 0.0186 0.0309

ROI 2 5E5 0.1715 0.1005 0.1459 0.0436 0.0193 0.0275

1E6 0.1415 0.0777 0.1088 0.0385 0.0122 0.0227

3E6 0.1307 0.0586 0.0943 0.0303 0.0064 0.0164

6E6 0.0735 0.0524 0.0642 0.0098 0.0051 0.0075

9E6 0.0521 0.0348 0.0412 0.0054 0.0025 0.0038

ROI 3 5E5 0.1766 0.0946 0.1063 0.0672 0.0163 0.0186

1E6 0.1478 0.0742 0.0848 0.0427 0.0130 0.0147

3E6 0.1120 0.0588 0.0637 0.0222 0.0077 0.0073

6E6 0.0896 0.0419 0.0499 0.0149 0.0054 0.0051

9E6 0.0686 0.0404 0.0446 0.0101 0.0052 0.0048

ROI 4 5E5 0.1954 0.1122 0.1965 0.0865 0.0186 0.0822

1E6 0.1679 0.0960 0.1591 0.0595 0.0186 0.0539

3E6 0.1510 0.0829 0.1378 0.0432 0.0155 0.0366

6E6 0.1407 0.0751 0.1207 0.0387 0.0131 0.0281

9E6 0.0869 0.0533 0.0756 0.0174 0.0070 0.0132

doi:10.1371/journal.pone.0166871.t001
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Here, the IST method was used to evaluate the effectiveness of the ADM to solve the TV-prob-

lem. The results are shown in Fig 8. The y-axis represents relative error and the x-axis repre-

sents the iteration times of the methods. The black curve represents Poisson-TV, the green

curve LS-TV, the yellow curve EM, and the red curve the IST method. For all methods, the rel-

ative error approaches close to 0 within 20 iterations (since the stopping threshold is 10−3 for

all experiments). With the help of the ADM, the relative error of the Poisson-TV and LS-TV

decreases to approximately 0.1 with only two iterations, while the relative error of IST

decreases to approximately 0.22 and the relative error of EM is 0.65. This shows that the curves

of both Poisson-TV and LS-TV decrease faster than those of IST and EM. All the results dem-

onstrate that the convergence speed of the ADM is faster than that of the IST method and

much faster than that of the EM method.

Table 2. Quantitative analysis of the reconstructions by EM, Poisson-TV, and LS-TV for brain phantom.

Counting Zubal Phantom

Bias Variance

EM LSTV PosTV EM LSTV PosTV

Total 5E5 0.0357 0.0319 0.0273 0.0134 0.0119 0.0098

1E6 0.0334 0.0281 0.0249 0.0123 0.0102 0.0086

3E6 0.0329 0.0275 0.0223 0.0116 0.0089 0.0075

6E6 0.0329 0.0263 0.0201 0.0116 0.0078 0.0069

9E6 0.033 0.0248 0.0195 0.0116 0.0069 0.0064

ROI 1 5E5 0.1321 0.0776 0.0400 0.0372 0.0132 0.0037

1E6 0.0834 0.0444 0.0298 0.0143 0.0054 0.0022

3E6 0.0620 0.0464 0.0294 0.0083 0.0054 0.0021

6E6 0.0423 0.0391 0.0203 0.0046 0.0045 0.0012

9E6 0.0337 0.0301 0.0136 0.0032 0.0025 0.0006

ROI 2 5E5 0.2198 0.2068 0.0945 0.0882 0.0779 0.0168

1E6 0.1723 0.1568 0.0708 0.0547 0.0488 0.0090

3E6 0.1297 0.1272 0.0649 0.0331 0.0292 0.0079

6E6 0.1235 0.1102 0.0563 0.0318 0.0222 0.0060

9E6 0.1189 0.0624 0.0482 0.0292 0.0091 0.0054

ROI 3 5E5 0.1570 0.1051 0.0780 0.0479 0.0223 0.0120

1E6 0.1183 0.0591 0.0448 0.0277 0.0082 0.0047

3E6 0.0857 0.0615 0.0591 0.0147 0.0090 0.0071

6E6 0.0742 0.0378 0.0428 0.0120 0.0048 0.0042

9E6 0.0476 0.0367 0.0421 0.0053 0.0041 0.0039

ROI 4 5E5 0.1542 0.1102 0.0657 0.0557 0.0358 0.0125

1E6 0.1199 0.0928 0.0551 0.0401 0.0233 0.0080

3E6 0.0932 0.0804 0.0478 0.0228 0.0175 0.0060

6E6 0.0758 0.0648 0.0477 0.0174 0.0109 0.0059

9E6 0.0716 0.0447 0.0361 0.0133 0.0057 0.0040

ROI 5 5E5 0.2673 0.2255 0.1984 0.2239 0.1677 0.1469

1E6 0.2554 0.2201 0.1895 0.2203 0.1626 0.1414

3E6 0.2403 0.2024 0.1641 0.2035 0.1356 0.1156

6E6 0.2302 0.1971 0.1565 0.1812 0.1317 0.0909

9E6 0.2200 0.1864 0.1503 0.1807 0.1239 0.0899

doi:10.1371/journal.pone.0166871.t002
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Phantom case

In this section, the results of real scanning phantom experiments are presented. The results

were obtained under real conditions, in which sinograms were generated by the scan of a

Hamamatsu SHR-22000 PET scanner. The phantom used is the Derenzo phantom. There are

six sector regions in this phantom. In each sector region, there are several spheres arranged in a

triangular array. These spheres have different diameters corresponding to the different spatial

Fig 7. Bias, variance, and CRC profiles for the Zubal phantom and brain phantom with different counts.

doi:10.1371/journal.pone.0166871.g007
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resolutions. A 18F − FDG solution was injected into the Derenzo phantom. The total counting

rate of coincidence events was 105. The images reconstructed by the EM, Poisson-TV, and

LS-TV methods are shown in Fig 9. To evaluate the detailed information of the reconstruction,

the marked areas (marked by a red rectangle) are given in Fig 9(b) and zoomed for comparison.

It is clearly indicated that the quality of the recovery, in particular the detailed information

yielded by the Poisson-TV and LS-TV methods, is better than that of the EM method.

Fig 8. Convergence rate for IST, EM, Poisson-TV, and LS-TV.

doi:10.1371/journal.pone.0166871.g008

Fig 9. Reconstruction of the phantom case.

doi:10.1371/journal.pone.0166871.g009
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Clinical case

In this section, we validate the proposed method using clinical patient data. The clinical patient

data comprised a PET scan acquired from a volunteer at a local hospital. The PET system used

was a Hamamatsu SHR-22000 whole body PET scanner. It has 32 crystal rings and can be

operated in 2D or 3D mode. The trans-axial resolution of the central FOV is about 3.7 mm.

The patient lay on the bed and the main target of the scanning was the thorax. The total scan-

ning time was 40 min. Random, normalization, dead time, scatter, and attenuation correction

were applied to the measurement data using the programs provided by the scanner prior to

reconstruction. The measurement data were stored in the sinogram model, the size of the

reconstructed images was 128 � 128.

To evaluate the effectiveness of the proposed method, the Poisson-TV, LS-TV, and EM

algorithms were used in this experiment. Their results are shown in Fig 10. In Fig 10(a), the

difference between these three methods is not sufficiently clear, however, all the algorithms

can provide a clear reconstruction. However, when we zoom in on the highlighted region

(marked by a red rectangle) in the reconstructed images, it is clear that, as compared to EM,

both the Poisson and LS TV algorithm can provide better edge information and better visual

quality, in particular for the small highlighted point marked by the red arrow. In the results of

the EM algorithm, this point almost disappears in the noise background. In contrast, we can

easily locate this point in the results of Poisson-TV and LS-TV. In the comparison of the

LS-TV and Poisson-TV, since the results of the LS-TV method suffer from some undesirable

Fig 10. Reconstruction of images for the clinical patient.

doi:10.1371/journal.pone.0166871.g010
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artifacts (such as edge over-smoothness and staircase effects), Poisson-TV yields a much better

visual quality than LS-TV and recovers more detail of textures in the reconstructed image.

Conclusion

This paper presented a TV-constraint reconstruction algorithm for low dose PET image

reconstruction. According to the property of the PET measured data, two types of TV-con-

straint models, LS-TV and Poisson-TV, were established. To efficiently obtain high quality

reconstructed images, the ADM is used. To evaluate the effectiveness of the proposed LS-TV

and Poisson-TV methods, PET data measured from a Monte Carlo simulation and real scan-

ning were used. As compared with the traditional EM method, the proposed TV-constraint

models are able to reconstruct the images with higher accuracy and much clearer structures.

The ADM also provides a faster convergence rate as compared to the IST method for solving

the TV problem. Both Poisson-TV and LS-TV can provide a high visual quality and are robust

to noise corruptions at a low dose level; Poisson-TV gives a more accurate estimation with

lower bias and variances, whereas the CRC of the LS-TV is better. This means that, although

both the proposed TV methods can provide a highly accurate and robust reconstruction, Pois-

son-TV is more suitable for kinetic parameter estimation, which requires a highly accurate

estimation with low bias and variance for PET images. In contrast, LS-TV is more suitable for

tumor diagnosis, which requires a high contrast for PET images in order to locate the tumor.
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