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Abstract: Chronic myeloid leukemia stem cells (CML LSCs) are a rare and quiescent population that
are resistant to tyrosine kinase inhibitors (TKI). When TKI therapy is discontinued in CML patients
in deep, sustained and apparently stable molecular remission, these cells in approximately half of the
cases restart to grow, resuming the leukemic process. The elimination of these TKI resistant leukemic
stem cells is therefore an essential step in increasing the percentage of those patients who can reach a
successful long-term treatment free remission (TFR). The understanding of the biology of the LSCs
and the identification of the differences, phenotypic and/or metabolic, that could eventually allow
them to be distinguished from the normal hematopoietic stem cells (HSCs) are therefore important
steps in designing strategies to target LSCs in a rather selective way, sparing the normal counterparts.

Keywords: chronic myeloid leukemia; leukemia stem cells; bone marrow microenvironment;
treatment free remission

1. Introduction

The development of different generations of BCR-ABL1 tyrosine kinase inhibitors
(TKIs) has led the overall survival (OS) of chronic myeloid leukemia (CML) patients to
become almost similar to that of a control population without leukemia. However in most
of the patients who discontinue the TKI therapy, a regrowth of the leukemic clone and
a molecular recurrence of the disease can be observed and only approximately half of
those who are achieving a very deep molecular response and therefore approximately
only 15–20% of the entire CML population, can definitely and successfully suspend the
therapy [1]. This is due to the persistence of leukemic stem cells that are able to survive
in spite of the TKI therapy and may have the clonogenic capacity to resume the leukemic
process once the TKI therapy has been interrupted. Therefore, alternative approaches for
the elimination of TKI resistant leukemic stem cells are essential to increase the percentage
of those who can reach a successful long-term treatment free remission (TFR) and possibly
a definitive cure of the disease [2]. Considering that loss of long-term TFR can be due to
the persistence of an even small number of leukemic stem cells (LSCs) showing a minimal,
but extreme form of resistance to the TKI therapy, that may be due not to BCR-ABL1
mutations but mainly to BCR-ABL1 independent mechanisms, several studies attempting
to identify possible metabolic and/or phenotypic differences between LSCs and normal
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hematopoietic stem cells (HSCs) are currently ongoing. Here we focus on the peculiar
features of CML leukemic stem cells (CML LSCs) that have been so far discovered and that
could be potentially useful as targets in designing therapeutic strategies aiming to eliminate
in a rather selective way the residual LSCs while sparing their normal counterparts.

2. Metabolic Pathways Potentially Useful for Targeting CML LSCs
2.1. WNT Signaling Pathway

The WNT signaling pathway has been shown to have a significant role in the devel-
opment of several organs including the hematopoietic system while perturbation of this
crucial pathway sparks induction of various types of cancers. In the resting condition,
the WNT-β catenin network forms a destruction complex including AXIN, adenomatous
polyposis coli (APC), Casein kinase 1 (CK1) and Glycogen synthase kinase 3 (GSK3) and
links to β-catenin, providing a binding site for the ubiquitin ligase that leads to β catenin
degradation in the proteasome. By contrast, following attachment of WNT to the frizzled
receptor (FR), GSK3, CK1, and AXIN bind Lipoprotein receptor-related proteins (LRP) and
leave β-catenin free for nucleus localization where it interacts with transcription factors
of the TCF/LEF family and promotes gene expression. It has been demonstrated that
β-catenin is of paramount importance for self-renewal and long-term maintenance of
both HSCs and LSCs [3]. After induction of BCR-ABL in β-catenin null mice, defect in
self-renewal and in engraftment potential of CML LSCs has been observed and this shows
that this pathway is essential for normal and leukemic stem cells survival [4]. It has been
shown that BCR-ABL has direct contact with β-catenin and mediates the nucleus transition
by making this protein more stable. Furthermore, expression of β-catenin increases with
CML progression and is responsible for the increased self-renewal of CML progenitors
in blast crisis [5]. In the bone marrow niche, mesenchymal cells may interact with CML
LSCs through the WNT/β- catenin pathway enhancing their proliferation. Therefore,
increased expression of β-catenin can be seen as a form of resistance of LSCs allowing their
survival [6,7] and a combination of WNT/β-catenin inhibitors and TKI could potentially
help to get rid of CML LSCs. However, unfortunately this approach has been demonstrated
to be too toxic also for normal HSCs as well as for the stem cells of other organs and, at
least for the moment, has been abandoned [8,9].

2.2. Hedgehog Signaling Pathway

The Hedgehog signaling pathway which is essential for hematopoiesis, is deregulated
in several solid tumors. It is initiated through binding of hedgehog (Hh) ligands (Sonic Hh,
Indian Hh, and Desert Hh) to a seven transmembrane receptor called Patched (Ptch). After
the consequent activation of the Smoothened protein (Smo) by Ptch, Glioma-Associated
Oncogene Homolog (Gli) family transcription factors are activated, which are able to tran-
scribe target genes such as Gli1, Ptch1, bcl2, Cyclin D, and MYC [10]. In CML high mRNA
expression of Hedgehog cascade related proteins underlines the role of this pathway in
driving leukemogenesis [11]. ABL kinase is not needed for the salvation of this cascade [12].
Whereas studies suggest that Smo targeting does not affect the engraftment potential and
the fate decision of normal HSCs, it has been shown that it may potentially reduce the
engraftment ability and the colony formation of CML LSCs. Therefore, hitting this pathway
should selectively affect LSCs but not normal HSCs [12,13]. Indeed, exposure of CML
cells containing both wild type BCR-ABL and BCR-ABL1 mutated T315I cells to an Smo
inhibitor led to the purging of the mutated clone [14]. Another study demonstrated that
the use of Hedgehog inhibitors not only propels CML LSCs into cycling condition but
also restores their susceptibility to TKI [13,15]. Again, however clinical trials testing the
usefulness of this approach have shown that Hh pathway inhibitors are too toxic and have
been finally abandoned.



J. Clin. Med. 2021, 10, 5805 3 of 13

2.3. PI3K-AKT Pathway

The known participation of the Phosphatidylinositol-3-kinase (PI3K) signaling path-
way in the maintenance and function of normal HSCs drove the attention on the possible
role of this cascade in the LSC population. By phosphorylation of phosphatidylinositol (3,4)-
bisphosphate (PIP2) by PI3K and formation of phosphatidylinositol-3,4,5-trisphosphate
(PIP3), Pyruvate Dehydrogenase Kinase 1 (PDK1) is recruited and associated to PIP3 and
phosphorylates AKT, that subsequently activates mTORC1 and phosphorylates the Fork-
head box O (FOXO) transcription factors family [16]. It has been shown that this signaling
pathway is activated by BCR-ABL1 and so, in the Ph-positive cell population, it may be
more specific with respect to the WNT and Hedgehog signaling pathways. When the
BCR-ABL TK activity is on, AKT phosphorylates FOXO transcription factors and does
not allow their shift to the nucleus, but TKIs blocking BCR-ABL1 TK activity can promote
FOXO nucleus relocalization, restoring their transcriptional activity. Expression of BCL6,
that is considered essential for the survival of CML stem cells, and also ATM and CDKN1C,
is enhanced by the FOXO transcriptional activity [16,17]. Inhibition of mTORC1 did not
show an evident effect on CML LSCs, but inhibition of PI3K can restore the vulnerability of
CML LSCs to TKIs [18].

2.4. JAK-STAT Pathway

In addition, the JAK-STAT pathway plays an important role in CML, but in a strong
association with BCR-ABL1 kinase activity. Indeed, STAT1, STAT3, and STAT5 can be
activated by BCR-ABL1 directly or indirectly through JAK2 induction and activation by
BCR-ABL1. JAK2 activation can be also stimulated by growth factors produced by the
mesenchymal cells of the hematopoietic bone marrow niche [19,20]. It has been shown that
inhibition of the JAK2 by ruxolitinib may reduce the level of BCR-ABL1 protein and may
help to overcome resistance [21]. It was also seen that the combination of Imatinib + INFγ
is able to decrease the phosphorylation of STAT5, but it increases the phosphorylation
of STAT1, an up-regulator of the survival hint induced by BCL6, clearly delineating an-
other potential pitfall of imatinib and of TKI therapy in general [22]. In line with these
concepts, the use of ruxolitinib (a JAKs inhibitor) together with nilotinib fruitfully in vitro
showed activity in suppressing the CML LSC population, without affecting the HSCs.
However clinical trials testing this strategy were unsuccessful. It has also been reported
that STAT3 dysregulates CML LSC metabolism, and its inhibition may eradicate these
resistant cells [23]. Meanwhile, glitazones an antidiabetic drug by activating peroxisome
proliferator-activated receptor-γ (PPARγ) reduces expression of STAT5 that might lead to
the elimination of the CML LSC population [24].

Possible signaling pathways are shown in Figure 1.

2.5. Other Players
2.5.1. Blk

It has been shown that Blk as a tyrosine kinase protein has a diminished expression in
CML LSCs in contrast to normal cells. Although Blk is regarded as a tumor suppressor, in
CML LSCs, via upregulation of p27, BCR-ABL1 downsizes the expression of this protein
by modulation of c-myc and Pax5. Meanwhile, overexpression of Blk in CML LSCs inhibits
the self-renewal and increases the apoptosis rate, while Blk knock-down does not interfere
with the regular HSC activity [25].
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2.5.2. EZH2

EZH2 as part of the PRC2 complex mediates repression of various genes by trimethy-
lation of histone H3 (H3K27me3). Amplification of EZH2 in CML LSCs and reduction
after TKI therapy shows its engagement in the pathogenesis of CML and its dependency
on BCR-ABL1 TK activity. It has also been reported that EZH2 inhibitor increases the
possibility of CML LSC eradication while sparing the normal HSCs. This effect is enhanced
by the combination of TKI and EZH2 Inhibitor [26].

2.5.3. Fap-1

Another pathway associated with resistance to elimination is the enhanced expression
of Fap-1 in CML LSCs. Fap-1 with its phosphatase activity blocks Fas mediated apoptosis
and also stabilizes β-catenin by targeting its inhibitor Gsk3β. Fap-1 activity is accompanied
by persistence of CML stem cells and Fap-1 inhibition promotes TKI response and hampers
the progression of leukemic cells [27].

2.5.4. HIF-1

Hypoxia inducible factor (HIF), constituted of α and β subunits, increases when
oxygen concentration is low in order to facilitate the cell adaptation to this new environment.
HIF-1 as a transcription factor has a crucial role in regulating survival, proliferation, and
maintenance of CML LSCs. Cheloni et al., posited that using acriflavine, an HIF-1 inhibitor,
significantly affects the fate of CML cells by c-MYC down regulation and decrease of
stemness genes like NANOG, SOX2, and OCT4. As CML LSCs are more dependent on
HIF-1 than normal HSCs, the combination of an HIF-1 inhibitor with TKI could represent a
new form of strategy to target resistant CML LSCs that reside in the hypoxic region [28,29].
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2.5.5. PML

The promyelocyte leukemia protein (PML), by attending in the formation of PML-
nuclear bodies (PML-NBs), acts as a tumor suppressor and transcription factor and plays a
pivotal role in apoptosis and senescence of normal cells [30]. The PML gene is already well
known because of its involvement in the t(15;17) translocation that causes the fusion of
PML with retinoic acid receptor alpha (RAR-alpha) in acute promyelocyte leukemia (APL),
determining a differentiation arrest [31]. Besides, up-regulation of PML in CML LSCs may
hamper the cycling of these cells and cause a decrease in their sensitivity to TKIs. It has
been shown that targeting PML in CML cells by arsenic trioxide (As2O3) leads to PML
degradation and triggers cycling of these quiescent cells. This strategy may promote the
exhaustion of the CML LSCs restoring their sensitivity to the TKIs [32].

2.5.6. PP2A

Protein phosphatase 2 A (PP2A), a serine/threonine phosphatase which is composed
by the scaffold (A), regulatory (B), and catalytic (C) subunits, has a role in directing β-
catenin pathway, programmed cell death and cell cycle progression [33]. Until now our
knowledge about the role of PP2A in CML LSCs has been limited to its tumor inhibitory
effect. In CML this protein is regulated by SET protein activity, and enhancement of SET
during the progression of CML from chronic to more advanced phases of the disease
determines the downregulation of PP2A. It has been shown that in the LSC population,
PP2A reduction provides a stimulus for self-renewal of leukemic cells. Restoring its activity
could therefore be useful to decrease the LSC pool [34]. Various isoforms of PP2A, however
are present and while some of them play a suppressive role in many cancers, other isoforms
can act differently [33]. Recently, however, Lai et al. demonstrated that inhibition of PP2A
and TKI may efficiently suppress CML LSCs [35].

2.5.7. ALOX5

ALOX5 encodes 5-lypoxygenase (5-LO) that converts arachidonic acid into leukotrienes
and is involved in inflammatory condition and cancer development [36]. Targeting ALOX5
hampers the differentiation, the function, and the survival of CML LSCs, while normal
HSCs remain uninfluenced. Zileuton (5-LO inhibitor) impairs CML LSC development [37],
but although the oncogenicity of ALOX5 in the mouse model seemed to be compelling,
in CML patients it has a low expression and the use of a 5-LO inhibitor does not show
particular consequences [38].

2.5.8. SIRT1

Sirtuin 1 (SIRT1) is a histone deacetylase that regulates gene expression, metabolic ac-
tivity and aging within cells [39]. SIRT1 overexpression in primary CML cells deacetylates
many transcription factors including P53, Ku70, and FOX01. This genetic modification
promotes drug resistance, survival, and propagation of the leukemic fraction [40,41]. SIRT1
targeting in CML LSCs, both by inhibition or knock-down, enhances acetylation of P53
which gives rise to apoptosis and reduction of their growth [42]. So, applying the combina-
tion of TKI and SIRT1 inhibitor maybe a potential approach to tackle leukemogenesis.

Considering the role of different molecules in supporting CML LSC survival and
proliferation, many clinical trials have been designed to target these players and are
summarized in Table 1.
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Table 1. Clinical trials that used non-TKI agents for the treatment of CML.

CML Clinical Trial with New Therapeutic Agents (Non-TKIs)

Generic Name Brand Name Clinical Trial
Identifier Target Start Date Status

Sirolimus Rapamune NCT00101088 mTOR inhibitors 10-Jan-05 Terminated
Sorafenib Nexavar NCT00661180 Multikinase inhibitors,

VEGF/VEGFR inhibitors 18-Apr-08 Completed

Sunitinib Sutent NCT00387426 Multikinase inhibitors,
VEGF/VEGFR inhibitors 13-Oct-06 Completed

Ruxolitinib Jakafi NCT02253277 JAK/STAT inhibitors 1-Oct-14 Completed
Axitinib Inlyta NCT02782403 Multikinase inhibitors,

VEGF/VEGFR inhibitors 25-May-16 Terminated
Ibrutinib Imbruvica NCT03267186 BTK inhibitors 30-Aug-17 Ongoing

Midostaurin Rydapt NCT02115295 Multikinase inhibitors 16-Apr-14 Ongoing
PRI-724 - NCT01606579 Wnt/β-catenin inhibitors 25-May-12 Completed
BP1001 - NCT02923986 Grb2 5-Oct-16 Withdrawn

Tipifarnib Zarnestra NCT00040105 Farnesyl transferase 21-Jun-02 Completed
Lonafarnib SCH66336 NCT00047502 Farnesyl transferase 9-Oct-02 Completed
Rapamycin Sirolimus NCT00780104 mTOR 27-Oct-08 Completed

RAD001 Everolimus NCT01188889 mTOR 26-Aug-10 Withdrawn
Panobinostat LBH589 NCT00451035 Histone deacetylase 22-Mar-07 Terminated
Azacytidine Vidaza NCT03895671 Hypomethylating agents 29-Mar-19 Ongoing

MK-0457 Tozasertib NCT00405054 Aurora kinase pathway
inhibitors 29-Nov-06 Terminated

Venetoclax Venclexta NCT02689440 BCL-2 inhibitors 24-Feb-16 Ongoing
Temsirolimus Torisel NCT00101088 mTOR 10-Jan-05 Terminated
Abemaciclib Verzenio NCT03878524 CDK 4/6 inhibitors 18-Mar-19 Ongoing

Alemtuzumab Lemtrada/campath NCT00626626 CD52 monoclonal antibodies 29-Feb-08 Terminated
Bevacizumab Avastin NCT00023920 VEGF/VEGFR inhibitors 27-Jan-03 Terminated

Blinatumomab Blincyto NCT02790515 Miscellaneous antineoplastic 6-Jun-16 Ongoing

Ipilimumab Yervoy NCT00732186 Anti-CTLA-4 monoclonal
antibodies 11-Aug-08 Withdrawn

Nivolumab Opdivo NCT02011945 Anti-PD-1 monoclonal
antibodies 16-Dec-13 Completed

Rituximab Rituxan NCT03455517 Antirheumatics, CD20
monoclonal antibodies 6-Mar-18 Terminated

2.5.9. microRNAs

microRNAs (miRNA), a class of non-coding RNAs, in physiological conditions reg-
ulate various cellular process such as differentiation [43], proliferation, metabolism, and
apoptosis through mechanisms of repression of translation and mRNA cleavage [44]. Dys-
regulation of miRNAs is a crucial determinant in the pathogenesis of multiple cancers [45]
and some data suggest a possible active involvement of several microRNAs also in CML
LSC resistance, self-renewal, and maintenance processes. miR-126 is considered to be
the regulator of dormancy of CML LSCs and HSCs. Active BCR-ABL1 phosphorylates
SPRED1 which in turn depletes the amount of mature miR-126. This depletion should be
compensated for by an external source to keep up stemness features. In bone marrow niche
endosteal Sca-1+ cells can provide a high amount of miR-126 through extracellular vesicles.
Conversely, the TKI therapy can reverse the mechanism of miR-126 inhibition and elevate
the mature miR-126 level, contributing to maintaining the CML LSCs. Considering this
mechanism, decreasing the activity of miR-126 may sensitize LSCs to TKI and facilitate
their elimination [46]. On the other hand, the parallel enhanced activity of the JAK-STAT
pathway as described before may induce ADAR1 expression and activity, an enzyme that
converts adenosine to inosine and regarded as a post transcriptional regulator able to
control the stability of mRNA and miRNAs. ADAR1 can in turn impair the biogenesis of
mir-let7, a tumor suppressor, and modulate the self-renewal of CML LSCs [47]. Exposure
of primitive CML cells to imatinib is associated with an elevation of miR- 21 and may
culminate in TKI resistance. So, depletion of miR-21 through amplification of PDCD4 and
PTEN by interrupting the PI3K/AKT pathway may restore the sensitivity of CML LSCs
to TKI [48]. In another experiment mir-30a downregulation following imatinib treatment
allowed autophagy related proteins Beclin1 and ATG5 to push LSCs towards resistance [49].
Therefore, although, the role of long non-coding RNAs in the CML LSC fraction have not
been totally defined, participation of mi-RNAs supports a role for these non-coding RNAs
in LSC persistence.
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3. The Environment
Bone Marrow Niche

At the time of introducing the term “niche” by Schofield in 1978, many experiments
had been accomplished to uncover the mysterious role of this spatial structure in the nor-
mal and leukemic state. This microenvironment not only encompasses stromal cells, HSCs,
endothelial cells, and neural cells but also interactions, secretions of varied molecules, and
signaling pathways are included in the definition [49]. As normal hematopoiesis hinges
upon the equilibrium between osteoblastic niche for preserving stemness and vascular
niche for differentiation strategy, in the leukemic condition, an erratic contest between
LSCs and HSCs leads to creation of the leukemic niche [50]. It has been postulated that
expression and signaling of CXCR4 are modulated by the level of BCR-ABL [51] and higher
expression of BCR-ABL both in mRNA and protein levels in CML stem cells [52] may
cause downregulation of CXCR4 and release of CML stem cells into the peripheral blood.
Simultaneously, as mentioned above, CD26 by disruption of CXCL12 as an accompani-
ment is deeply involved in this process [53]. In the interim, enhancement of CXCR4 by
imatinib may be mediated by suppression of BCR-ABL, triggering the homing process [51].
This lodgment into the bone marrow niche induces CML stem cells to become quiescent,
chemoresistant, and constitute the leukemic stem cell reservoir [51,54]. In addition, CML
LSCs in contrast with their normal counterpart are not dependent on VLA-4 and VLA-5 for
homing. It has been reported that E and L-selectin and related ligands such as CD44 play
an important role in CML LSC homing. Meanwhile, TKI exposure may lead to adhesion
of CML LSCs to stromal cells through N-cadherin that may result in activation of the
B-catenin pathway and protection against TKIs [50]. It has been demonstrated that CML
cells by secretion of exosome containing amphiregulin, switch on epidermal growth factor
(EGFR) pathway in stromal cells. This interface increases the secretion of IL-8 and increases
cell adhesion and survival of leukemic cells [55]. Besides, multiple mechanisms amalga-
mate to promote evasion of CML LSCs from destruction in the bone marrow niche by
common TKIs. For instance, higher expression of BMPR1b in more primitive CML cells and
activation via BMP4 through both the paracrine and autocrine loop boosts expression of
TWIST1, a contributor to drug resistance [56]. Other studies indicated that the presence of
stromal cells whether by reduction of ROS or production of FGF2 support chemoresistance
and act as the sanctuary of CML LSCs [57–59]. However, we should take note that these
mesenchymal stem cells are not the precedent ones due to the many genetic changes in
dealing with the leukemic niche [60,61]. Meanwhile, participation of the adipose tissue
in the treatment circumvention reminds us that endosteal and vascular milieus are only
the tip of the iceberg. CML LSCs in the adipose niche consume free fatty acid as a source
of energy, and by enhancing lipolysis have a hand in progression, drug resistance, and
body weight loss [62]. Aside from these scenarios in niches, numerous signaling pathways
in BCR-ABL dependent and independent manner are ongoing and should be taken into
account in baring the facts of CML LSC persistence.

4. Phenotypic Differences

The CML LSCs reside in the CD34+/CD38− fraction as the normal ones [63], and
a good CD marker useful to distinguish them is expected to be preferentially expressed
in one of the two populations, the leukemic or the normal one. Indeed, different studies
have identified several surface markers potentially able to allow the recognition of CML
LSCs, although in some cases these markers are simply expressed by both populations in a
different or asynchronous way. In this category we can insert CD33, that is expressed by
normal HSCs as well as by blasts of acute myelogenous leukemia (AML), but not at a high
level as in CML LSCs [64]. Similarly, CD36, a scavenger receptor, shows a low expression
on normal HSCs, but it is highly expressed in CML LSCs [65]. Other markers such as CD25,
CD26, and IL-1RAP that are also highly expressed by CML LSCs appear more suitable. In
the CD34+/CD38− fraction, CD25 (IL-2Rα) is exclusively expressed by CML LSCs as we
cannot detect it on normal HSCs. A low amount of CD25 on the surface of normal HSCs
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becomes however detectable in the CD34+/CD38+ fraction [66]. Interleukin 1 receptor
accessory protein (IL-1RAP) is not expressed by HSCs and theoretically can be used to
detect CML LSCs. According to some studies however not all the IL-1RAP expressing cells
are Ph+ LSCs [67]. Furthermore, expression of IL-1RAP is much more pronounced in the
advanced phases of the disease with respect to that of the CML LSCs present in the chronic
phase [68], making this marker more suitable for resistant cases rather than to increase the
percentage of those reaching a successful TFR, who are per definition in the category of
very good responders. On the contrary, CD26 (DPP4, a serine exopeptidase with a cleavage
activity against diverse substrates and able to demolish SDF1 on the SDF1-CXCR4 axis
contributing in this way to the release of the CML LSCs into the peripheral blood) [53,69]
is aberrantly expressed by CML LSCs/progenitor cells and has no expression on normal
HSC/progenitor cell population [70]. It has been reported that CD26+ cells are detectable
in newly diagnosed and resistant CML patients and also in those who are in TFR [71]. In
a normal context, CD26 is expressed mainly by activated T cells and has a relation with
the proliferation of these cells. In certain other conditions including autoimmune diseases,
lung adenocarcinoma, hepatocellular carcinoma, B-chronic lymphoblastic leukemia, and T
acute lymphoblastic leukemia, enhanced expression of CD26 is detectable, but previous
reports claimed that inhibition of CD26 does not suppress the activation and cytotoxic
effect of T cells [68,69,72]. Until now, among the suggested markers, CD26 can therefore
be considered to be the best option for CML LSC detection and targeting. Indeed, in a
recent study a monoclonal antibody against CD26 called Begelomab (used in clinics for
the treatment of acute graft versus host disease, aGvHD) [70] has been conjugated to a
PEGylated liposome. Using this immunoliposome (IL), it was demonstrated that LSCs from
primary CML samples could be selectively targeted, but not their normal counterparts.
As Begelomab alone had no toxicity in treated cells, the immunoliposome was used as
a carrier for venetoclax, a BCL2 inhibitor already demonstrated as being efficacious in
eliminating CML LSCs. This anti CD26 immunoliposome carrying venetoclax not only
eliminated CD26+ cells but also reduced the drug concentration that was required to induce
apoptosis in leukemic cell lines. This strategy consisting in recognizing specific antigens
on the surface of the LSCs, demonstrates therefore higher efficiency in comparison to free
drug administration and can also decrease the toxicity due to off-target effects of the drugs.
In addition to CD26, CD93 has been reported to be another antigen for targeting. It has
been reported that CD93 has a role in the self-renewal and proliferation of the CML LSCs
and CD93 expressing LSCs showed resistance to TKIs [73,74].

The phenotypic characteristic of CML LSCs is summarized in Table 2.

Table 2. Phenotypic characteristic of CML LSCs.

Marker Name CD Name
CML Cells Normal Cells

ReferencesLSCs Progenitor Cells Stem Cells Progenitor Cells

CD34+/CD38− CD34+/CD38+ CD34+/CD38− CD34+/CD38+

IL-2Rα CD25 + +/− − +/− [75]
DPPIV CD26 + +/− − − [53]
Siglec-3 CD33 + + +/− +/− [76]
SCARB3 CD36 + + +/− + [65]

Pgp-1 CD44 + + + + [76]
IAP CD47 + + + + [77]

Campath-1 CD52 + − +/− +/− [76]
MXRA4 (C1qR1) CD93 + +/− +/− +/− [73,76]

MIC2 CD99 − unknown + + [78]
SCFR (KIT) CD117 + + + + [76]

IL-3Rα CD123 + + + + [76]
AC133 CD133 + +/− + + [76]
BST1 CD157 + + + + [76]
CLL-1 CD371 − + − + [76]
TIM-3 - − unknown +/− +/− [79]

IL-1RAP - + + − + [68]

CML LSC: Chronic myeloid leukemia stem cells; IL-2Rα: Interleukin-2 receptor alpha; DPPIV: Dipeptidyl peptidase IV; Siglec-3: Sialic acid-
binding immunoglobulin-type lectin-3; SCARB3: Mast/stem cell growth factor receptor; Pgp-1: Phagocytic glycoprotein-1; IAP: Integrin as-
sociated protein; SCFR: Stem cell factor receptor; IL-3Rα: Interleukin receptor subunit α; CLL-1: C-type lectin-like molecule-1; TIM-3: T-cell
immunoglobulin mucin-3; IL-1RAP: Interleukin-1 receptor accessory protein.
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5. Conclusions and Future Perspectives

Different durations of deep molecular response (DMR) have been seen to be associated
with different probabilities of achieving TFR. However, even in the presence of the theo-
retically best conditions to maintain a long TFR, a threshold of 70–75% for successful TFR
cannot be exceeded. This has been ascribed to the presence of LSCs resistant to TKI therapy
because of the BCR-ABL1 independent mechanisms of resistance, that can persist even in
patients in DMR and that, on discontinuation of the TKI therapy, can resume the leukemic
process. Time to loss TFR varies from patient to patient and might be germane to the
heterogeneity in the LSC population. It has been hypothesised that patients with a faster
LSC cell growth rate might face a faster molecular relapse. As reviewed above, several
phenotypic and biological characteristics can theoretically distinguish between CML LSCs
and their normal counterparts and can therefore represent potential targets to hit these TKI
resistant LSC subclones, increasing the percentage of those able to achieve a long-term TFR,
and that after five years of duration can be regarded as a definitive cure of the disease, at
least from an operational point of view. Currently, however, many attempts of trying to
achieve this goal with various forms of combination therapy have failed. Indeed, in most
cases this is not due to lack of efficacy, but to a level of toxicity that, if acceptable for patients
in critical clinical situations, is unacceptable for patients that are doing well and have a
normal life expectancy and a good quality of life even continuing TKI therapy. Therefore, in
order to offer a clinical advantage, all that we have learned in terms of biology of the LSCs
and about their differences with respect to those of normal HSCs, requires to be translated
into therapeutical approaches that are mild and safe for patients. These kinds of approaches
cannot be easily tested when using new drugs, because generally new treatments are first
offered to patients without other therapeutical options, where both efficacy and toxicity are
tested in a totally different scenario with respect to that of patients already having good
response and in complete remission. Possible options can be represented by testing these
new approaches only when absolutely needed as in the patients who have failed the first
attempt to reach TFR and who, because of side effects or for the strong wish to discontinue
the therapy in any case, may accept the risk of mild additional toxicity, at least for a limited
period of time. In the end only time will tell us whether the investment in studying CML
LSCs will be of clinical value, as we all really hope.
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