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Background: Colorectal cancer (CRC) patients with different molecular phenotypes,

including microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and

somatic mutations in BRAF and KRAS gene, vary in treatment response and prognosis.

However, molecular phenotyping under adequate quality control in a community-based

setting may be difficult. We aimed to build the nomograms based on easily accessible

clinicopathological characteristics to predict molecular phenotypes.

Methods: Three hundred and six patients with pathologically confirmed stage I-IV CRC

were included in the cohort. The assays for MSI, CIMP, and mutations in BRAF and KRAS

gene were performed using resected tumor samples. The candidate predictors were identified

from clinicopathological variables using multivariate Logistic regression analyses to con-

struct the nomograms that could predict each molecular phenotype.

Results: The incidences of MSI, CIMP, BRAF mutation and KRAS mutation were 25.3%

(72/285), 2.5% (7/270), 3.4% (10/293), and 34.8% (96/276) respectively. In the multivariate

Logistic analysis, poor differentiation and high neutrophil/lymphocyte ratio (NLR) were

independently associated with MSI; poor differentiation, high NLR and high carcinoem-

bryonic antigen/tumor size ratio (CSR) were independently associated with CIMP; poor

differentiation, lymphovascular invasion and high CSR were independently associated with

BRAF mutation; poor differentiation, proximal tumor, mucinous tumor and high NLR were

independently associated with KRAS mutation. Four nomograms for MSI, CIMP, BRAF

mutation and KRAS mutation were developed based on these independent predictors, the

C-indexes of which were 61.22% (95% CI: 60.28–62.16%), 95.57% (95% CI: 95.20–

95.94%), 83.56% (95% CI: 81.54–85.58%), and 69.12% (95% CI: 68.30–69.94%)

respectively.

Conclusion: We established four nomograms using easily accessible variables that could

well predict the presence of MSI, CIMP, BRAF mutation and KRAS mutation in CRC

patients.

Keywords: colorectal cancer, microsatellite instability, CpG island methylator phenotype,

BRAF, KRAS, nomogram, prediction of molecular subtypes

Introduction
Colorectal cancer (CRC) is one of the most prevalent and fatal cancers

worldwide.1,2 CRC is widely recognized as a result of gradual accumulations of

genetic and epigenetic changes involving in different genes and pathways, and thus

it is considered as a disease with high heterogeneity.3 This heterogeneous nature

confers the variation of CRC patients in treatment response and prognosis. Several

molecular phenotypes have been studied to investigate CRC heterogeneity in past

decades. Among them, microsatellite instability (MSI), CpG island methylator
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phenotype (CIMP), and somatic mutations in BRAF and

KRAS exons were most widely used in clinical decision-

making.4,5

It has been suggested that 5-fluorouracil (5-FU) is an

effective chemotherapeutic agent to markedly improve

CRC survival in past decades.6 The regimen incorporating

irinotecan and capecitabine is a well-established option for

use as first-line, second-line and sequential treatment of

CRC.7 However, adverse effects on survival were found

when oxaliplatin or adjuvant treatment with 5-FU was

applied in patients with MSI, while they had a special

sensitivity to irinotecan.8–10 Moreover, several studies

have shown that a CIMP (+) phenotype might improve

the therapeutic effect of 5-FU treatment.11,12

The molecular phenotyping can guide the targeted

therapy and immune-checkpoint treatments as well. The

response to anti-epidermal growth factor receptor (EGFR)

therapy, including cetuximab and panitumumab, also var-

ies in molecular subtypes. It has been well documented

that the patients with KRAS mutations would be resistant

to anti-EGFR therapies, and thus anti-EGFR agents should

be avoided in this subgroup of patients.3 In BRAF-mutant

CRCs with advanced stages, the FOLFOXIRI regimen

(irinotecan, oxaliplatin, 5-FU and leucovorin) and bevaci-

zumab were considered as a favourable treatment, but they

can benefit from oxaliplatin as well as patients with MSI

does.8 An anti-EGFR may also be resisted in CIMP-high

CRCs that display extensive DNA promoter hypermethy-

lation and tumor suppressor gene repression. In addition,

DNA methylation inhibition may be an efficient treatment

for tumors with CIMP.13 Of note, MSI has become one of

the most popular biomarkers in CRC and other cancers for

treatment response to immune checkpoint blockades.8–10

BRAF mutation and CIMP have also been considered as

promising prognostic markers in CRC.14

Given the values of these subtypes in distinguishing

prognosis and response to therapies, molecular phenotyp-

ing is deserved in clinical decision-making. Unfortunately,

testing tumor samples for molecular subtype under ade-

quate quality control in a community-based setting some-

times may be difficult due to cost and technique limit, but

clinicopathological information is easy-to-get in almost all

clinical settings. Therefore, understanding the clinico-

pathological factors that could predict the presence of

MSI, CIMP, and mutations in BRAF and KRAS is becom-

ing crucial to provide crude molecular information for

primary care physicians and assist molecular phenotyping

for pathologists. Several studies have revealed the specific

clinicopathological features associated with each molecu-

lar subtype.15–18 For example, CRCs with right-side loca-

tion or poor differentiation have been shown to be

associated with MSI-high, CIMP (+) and BRAF mutation.

In addition, CIMP (+), BRAF mutation and KRAS mutation

were more frequent in elderly female patients. Our study,

therefore, aimed to conduct a comprehensive association

analysis of clinicopathological variables with MSI, CIMP,

and mutations in BRAF and KRAS, and establish nomo-

grams using these easily accessible predictors for each

molecular phenotype to make them be well used in clinical

practice.

Materials and Methods
Patients
The eligible patients were identified from the prospec-

tively collected tissue bank of our institute from 2009 to

2012. Three hundred and six patients with pathologically

confirmed stage I-IV CRC were included. As shown in

Figure 1, the patients with multiple primary cancers,

inflammatory bowel disease, tumor samples having exten-

sive DNA degradation and missing medical records, Lynch

syndrome, familial adenomatous polyposis, and other her-

editary cancer syndromes were excluded. To avoid the

potential influence of chemo/radiotherapy on CIMP test

and clonal selection of other molecular phenotypes, the

patients receiving chemo/radiotherapy before sample col-

lecting were excluded. All the patients were treated and

followed according to the NCCN guideline-based proto-

cols in our institute.19,20 The demographic and clinico-

pathological information of included patients were

collected from the medical record. The tumors located in

ascending and transverse colon were defined as proximal

tumor, while the distal tumor includes the tumors located

in descending colon, sigmoid colon, and rectum.21 This

study was approved by the Institutional Review Board of

the Six Affiliated Hospital of Sun Yat-sen University and

conducted in compliance with the Declaration of Helsinki.

The written informed consent was obtained from the

patients included in this study.

Mutational Analysis for KRAS and BRAF
TheKRAS exon 2 and BRAFV600E mutation status of resected

tumor samples were determined by Sanger sequencing.

These mutation analyses were performed at the Molecular

Laboratory of our institute under a high-quality control as

previously described.22
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CIMP Assay
To determine the CpG Island Methylator Phenotype

(CIMP) in tumor samples, DNA was extracted (Qiagen,

51306) and bisulfite-treated (Zymo Research, D5002)

according to the manufacturer’s protocol. The assay

panel, including promoters of five genes (CACNA1G,

IGF2, NEUROG1, RUNX3, SOCS1),23 was exploited to

assess CIMP using quantitative methylation-specific PCR

(qMSP) as previously described.24,25

Microsatellite Analysis
Microsatellite status was analyzed based on five com-

monly used markers of microsatellite sequence: BAT-25,

BAT-26, NR-21, NR-22, and NR-24 using a fluorescence-

based pentaplex polymerase chain reaction technique and

capillary electrophoresis.26,27

Statistical Analysis
The potential predictive variables, including albumin (≤40 vs
>40 g/L), total protein (≤60 vs >60 g/L), platelet counts

(≤300×109/L vs >300×109/L), hemoglobin (≤110 vs >110

g/L), MCH (≤27 vs >27 pg), MCHC (≤320 vs >320 g/L),

CEA (>5 vs ≤5 ng/mL), AFP (>25 vs ≤25 ng/mL), CA19-9

(≤37 vs >37 kU/L), CA125 (≤35 vs >35 kU/L), and CA153

(≤25 vs >25 kU/L), were preoperatively determined and

categorized according to previous studies.20,28,29 BMI

(<18.5 vs 18.5–24 vs ≥24 kg/m2) was categorized according

to the reference standard in Chinese populations.30 The pre-

operative CEA/tumor size ratio (CSR), defined as the ratio of

CEA level and the maximum tumor diameter, was exploited

to evaluate the CEA level per tumor volume as we previously

described.31 We used the preoperative neutrophil/lympho-

cyte ratio (NLR) and platelet/lymphocyte ratio (PLR) to

determine the baseline systemic inflammation status in

patients,32,33 and receiver operating characteristic curve

(ROC) analysis was used to identify the optimum cutoff

point for these variables (Supplementary Figure 1 and

Supplementary Table 1).

Descriptive statistics were used to summarize baseline

characteristics between patients with different molecular

phenotypes, and the variables were compared using the

Chi-square test or Rank-sum test according to their dis-

tributions. To estimate the predictive value of variables for

each molecular phenotype, univariate Logistic regression

analysis was used, and the odds ratio (OR) and the 95%

confidence intervals (95% CI) were calculated. The vari-

ables considered significant in the univariate logistic

regression analysis were further entered into the backward

stepwise multivariable logistic regression analysis, based

on which nomograms were constructed to predict the

status of CIMP, MSI, KRAS mutation and BRAF mutation.

The C-index was acquired for each nomogram, and inter-

nal validation using the bootstrap method was performed

306 CRC patients 

in SYSU cohort

KRAS mutation assay: 276 cases available

Demographic and clinicopathological

information: All cases available

BRAF mutation assay: 293 cases available

MSI assay: 285 cases available

Patients with 

pathologically 

confirmed stage I-IV CRC 

in SYSU
Exclusion Criteria:

• Hereditary cancers

• Multiple primary cancers

• Inflammatory bowel disease

• Samples with extensive DNA degradation 

• Missing medical records

• Receiving chemo/radiotherapy before 

sample collecting

CIMP assay: 270 cases available 

• Logistic Regression Analysis

• Nomograms Construction

Figure 1 Flow diagram for patient disposition and molecular assays to construct the nomograms for prediction of molecular phenotypes.
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to determine the adjusted C-index. Calibration curves of

the nomograms were generated to show the relationship

between the predicted and observed outcomes. The SPSS

(23.0) and R (3.6.0) were used for all analyses. The sign-

ificant values were 2-tailed, and all variables were consid-

ered statistically significant if P values were less than 0.05.

Results
Three hundred and six patients meeting the inclusion and

exclusion criteria were finally included in this study.

Among them, the assays for MSI, CIMP, BRAF mutation,

and KRAS mutation are available in 285, 270, 293, 276

patients, respectively (Figure 1), the incidences of which

were 25.3% (72/285), 2.5% (7/270), 3.4% (10/293), and

34.8% (96/276) respectively. In consistent with previous

studies, patients with CIMP (+) are tightly associated with

the status of BRAF mutation (83.3% vs 1.7%, P < 0.001,

Table 1). In addition, patients with MSI had significantly

higher CIMP (+) frequency (6.9% vs 0.5%, P = 0.004,

Table 1), and patients with KRAS mutation had signifi-

cantly higher BRAF mutation rate (5.6% vs 0%, P = 0.017,

Table 1). Patients’ baseline characteristics are summarized

in Table 1.

Predictive Variables for MSI
In our cohort, the characteristics of patients with MSI and

microsatellite stability (MSS) are similar except for tumor

differentiation and location. MSI was more frequent in

poorly differentiated CRCs [39.6% (19/48) vs 22.4% (52/

232), P=0.013] and proximal CRCs [36.5% (19/52) vs

22.7% (53/233), P=0.039] (Table 1). Next, we performed

logistic regression analyses to identify the clinicopathologi-

cal variables that predict MSI in CRC. In the univariate

analysis, tumor differentiation, location and NLR were sig-

nificantly associated with MSI (Table 2). These factors were

entered into a multivariate analysis, in which poor differ-

entiation (OR=2.392, 95% CI: 1.213–4.715; P=0.012) and

high NLR (OR=3.893, 95% CI: 1.14–13.293; p=0.030)

were independently associated with MSI status (Table 3).

Predictive Variables for CIMP
A CIMP (+) status was more frequent in CRCs characterized

as older patients [4.1%(6/147) vs 0.6%(1/159), P=0.043],

larger size [4.9%(7/143) vs 0.0%(0/160), P=0.014], poor

differentiation [10.7%(6/56) vs 0.4%(1/243), P<0.001], lym-

phovascular invasion [13.0%(3/23) vs 1.4%(4/280),

P=0.004], and elevated CA125 [15.0%(3/20) vs 1.5%(4/

239), P=0.003] (Table 1). To identify the clinicopathological

predictors for CIMP (+) in CRC, we performed Logistic

regression analyses. A CIMP (+) status was found to be

associated with poor differentiation, lymphovascular inva-

sion, platelet counts, NLR, PLR and CSR in the univariate

analysis (Table 2), while only the association with poor

differentiation (OR=28.373, 95% CI: 2.961–271.921;

P=0.004), NLR (OR 14.518, 95% CI: 1.526–138.108;

P=0.020), and CSR (OR=14.350, 95% CI: 2.718–75.753;

P=0.047) were still significant in multivariate analysis

(Table 3).

Predictive Variables for BRAF Mutation
BRAF mutation was more frequent in CRCs with poor

differentiation [13.7% (7/51) vs 1.3% (2/235), P<0.001],

lymphovascular invasion [22.7% (5/22) vs 1.9% (5/269),

P<0.001], elevated CEA [9.0% (6/67) vs 1.9% (4/208),

P=0.022], elevated CA19-9 [12.8% (5/39) vs 2.2% (5/

231), P=0.005], and elevated CA125 level [20.0% (4/20)

vs 2.4% (6/249), P=0.001] (Table 1). Next, we performed

Logistic regression analyses to identify predictors for BRAF

mutation from clinicopathological variables. The predictors

that was significant in the univariate analysis, including

poor differentiation, lymphovascular invasion, CEA, NLR,

PLR and CSR (Table 2), were entered into a multivariate

analysis, in which poor differentiation (OR=9.447, 95% CI:

1.937–46.071; P=0.005), lymphovascular invasion

(OR=10.861, 95% CI: 2.043–57.727; P=0.005), and high

CSR (OR=14.350, 95% CI: 2.718–75.752; P=0.002) were

independently associated with BRAF mutation (Table 3).

Predictive Variables for KRAS Mutation
KRASmutation was more frequent in patients with proximal

tumors [48.1% (35/52) vs 31.7% (71/224), P=0.025], muci-

nous tumor [56.7% (17/30) vs 32.1% (79/46), P=0.008], and

high platelet counts [0.0% (0/4) vs 38.7% (79/204),

P=0.015], while other characteristics were similar between

KRAS wild-type and mutant patients (Table 1). Next, we

performed logistic regression analyses to identify the clini-

copathological predictors for KRAS mutation in CRC. In the

univariate analysis, poor differentiation, proximal tumor,

mucinous tumor and NLR were significant predictors for

harboring KRASmutation (Table 2). The further multivariate

analysis showed all these variables, including poor differen-

tiation (OR=0.164, 95% CI: 0.035–0.771; P=0.022), proxi-

mal tumor (OR=2.351, 95% CI: 1.202–4.598; P=0.013),

mucinous tumor (OR=11.651, 95% CI: 2.119–64.074;

P=0.005), and high NLR (OR=1.983, 95% CI: 1.144–4.438;
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P=0.015), were independently associated with KRAS muta-

tion (Table 3).

Predictive Nomograms Established for

MSI, CIMP, BRAF and KRAS Mutation
Four Nomograms were developed based on the indepen-

dently significant factors in the multivariate logistic

regression analysis (Figure 2, left). The nomogram for

predicting MSI status was a model in which NLR

weighted more than differentiation. Tumor differentiation

weighted most, and NLR and CSR were followed in the

nomogram for predicting CIMP (+). The nomogram for

predicting BRAF mutation included predictors similar to

that for CIMP (+), except for NLR replaced by lympho-

vascular invasion. These three predictors weighted similar

in this model. In the nomogram for predicting KRAS

mutation, the histological features of differentiation and

mucinous tumor showed a superior impact on the predic-

tion over proximal location and NLR. Using these nomo-

grams, we could easily calculate the probability of MSI,

CIMP (+), BRAF mutation and KRAS mutation based on

clinicopathological information.

We further used 1000 bootstrap resamples to compute

adjusted C-indexes. The C-indexes of MSI, CIMP (+),

BRAF mutation and KRAS mutation were 61.22% (95%

CI: 60.28–62.16%), 95.57% (95% CI: 95.20–95.94%),

83.56% (95% CI: 81.54–85.58%), and 69.12% (95% CI:

68.30–69.94%) respectively. Calibration curves between

predicted and actual observations by internal validation

demonstrated that these nomograms showed good statisti-

cal performance for predicting the probability of each

phenotype, except for the nomograms for MSI and CIMP

(+), in which the probability of MSI would be overesti-

mated when the probability was less than 0.2 (Figure 2,

right).

Discussion
In this study, we identified the independent predictors for

MSI, CIMP (+), BRAF mutation and KRAS mutation.

Among these predictors, NLR and PLR as the systemic

inflammation markers, and CSR as a tumor size-corrected

CEA indicator have not been reported to be associated with

any of molecular phenotypes so far. To the best of our

knowledge, this is the first study exploiting them in models

to predict molecular phenotypes. We constructed four

nomograms using these independent predictors, and their

internal validations showed good statistical performance to
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predict molecular phenotypes. Considering the significance

of MSI, CIMP (+), BRAF mutation and KRAS mutation in

currently clinical decision-making, the nomograms we

generated that could predict molecular phenotypes using

easily accessible clinicopathological variables would be

widely used in clinical practice.

Table 2 Predictive Factors for Molecular Phenotypes in Univariate Logistic Regression Analysis

Molecular Subtypes Variablea P OR CI 95%

MSI Tumor location Proximal 0.041 1.955 1.029–3.717

Non-proximal 1

Differentiation Poor 0.014 2.268 1.177–4.369

Moderate-well 1

NLR High 0.026 3.988 1.177–13.510

Low 1

CIMP Differentiation Poor 0.002 29.040 3.421–246.524

Moderate-well 1

Lymphovascular invasion + 0.003 10.350 2.166–49.463

- 1

Platelet (109/L) >300 0.022 5.987 1.300–27.577

≤ 300 1

NLR High 0.008 17.746 2.100–149.938

Low 1

PLR High 0.050 5.250 0.999–27.582

Low 1

CSR High 0.015 6.696 1.450–30.923

Low 1

BRAF Lymphovascular invasion + <0.001 15.529 4.095–58.899

- 1

Differentiation Poor <0.001 12.356 3.077–49.625

Moderate-well 1

CEA(ng/mL) ≥ 5 0.015 5.016 1.371–18.353

<5 1

PLR High 0.042 4.175 1.055–16.524

Low 1

CSR High 0.002 8.325 2.248–30.829

Low 1

KRAS Differentiation Poor 0.637 1.168 0.612–2.230

Moderate-well 1

Tumor location Proximal 0.027 1.995 1.081–3.681

Distal 1

Histology Mucinous 0.027 2.371 1.103–5.098

Non-mucinous 1

NLR High 0.013 1.937 1.149–3.267

Low 1

Notes: aAll the laboratory variables were preoperatively determined. Only predictive factors with statistical significance were presented in this table. The cutoff of each

variable determined by ROC can be found in Supplementary Table 1.

Abbreviations: MSI, microsatellite instability; CIMP, CpG island methylator phenotype; CEA, carcinoembryonic antigen; CSR, CEA/tumor size ratio; NLR, neutrophil/

lymphocyte ratio; PLR, platelet/lymphocyte ratio.
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The missense mutations in KRAS occur in approxi-

mately 37.5–38% CRCs in Chinese populations.22,34

A similar sequencing result was found in our cohort, in

which KRAS mutation presented in 34.8% (96/276)

patients with CRC. KRAS mutation has been found to be

more likely to present in female, older patients, and tumors

with right-side location, poor differentiation, elevated

CEA or CA19-9, and high albumin/globular protein.17,28

In our study, we found similar results in the association

analysis with poor differentiation and proximal tumor. We

also identified high systemic inflammation status (high

NLR) as an independent predictor for KRAS mutation.

The preference to developing KRAS mutations in high-

NLR CRC supports the recent findings that inflammatory

signaling plays a critical role in promoting KRAS-driven

oncogenesis through the interaction with autophagy and

MAPK signaling.35

It has been reported that BRAF mutation presented in

approximately 10–15% CRCs in Western cohort.36 However,

several studies showed that BRAF mutation was only found in

2.8–4.4%CRCs in Chinese population.22,34 In our study, BRAF

mutation presented in 3.4% (10/293) cases, which is accordant

to the reported mutation rate in Chinese population. These

results showed that there may exist a distinct nature of CRC

between populations. The previous studies have reported var-

ious predictors for BRAF mutation, including elderly female

patients and tumors characterized as right-sided, mucinous and

poor differentiation.17,22,37 In our study, poor differentiation,

lymphovascular invasion and high CSR were independent pre-

dictors for BRAFmutation. The distinct BRAF-mutation epide-

miology and genetic basis between our population and previous

cohort may contribute to the variation in predictors. The devel-

oped nomogram using these variables showed a high predictive

accuracy up to 83.56%. As shown in the calibration curve,

Table 3 Predictive Factors for Molecular Phenotypes in Multivariate Logistic Regression Analysis

Molecular Subtypes Variablea P OR CI 95%

MSI Differentiation Poor 0.012 2.392 1.213–4.715

Moderate-well 1

NLR High 0.030 3.893 1.140–13.293

Low 1

CIMP Differentiation Poor 0.004 28.373 2.961–271.921

Moderate-well 1

NLR High 0.020 14.518 1.526–138.108

Low 1

CSR High 0.047 6.230 1.023–37.959

Low 1

BRAF Differentiation Poor 0.005 9.447 1.937–46.071

Moderate-well 1

Lymphovascular invasion + 0.005 10.861 2.043–57.727

- 1

CSR High 0.002 14.350 2.718–75.753

Low 1

KRAS Differentiation Poor 0.022 0.164 0.035–0.771

Moderate-well 1

Tumor location Proximal 0.013 2.351 1.202–4.598

Distal 1

Histology Mucinous 0.005 11.651 2.119–64.074

Non-mucinous 1

NLR High 0.015 1.983 1.144–3.438

Low 1

Notes: aAll the laboratory variables were preoperatively determined. The cutoff of each variable determined by ROC can be found in Supplementary Table 1.

Abbreviations: MSI, microsatellite instability; CIMP, CpG island methylator phenotype; CSR, carcinoembryonic antigen/tumor size ratio; NLR, neutrophil/lymphocyte ratio.
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nomogram-predicted probability of status also fitted well with

actualmolecular status. This nomogram showed good statistical

performance for predicting the probability of BRAF mutation.

It has been shown in both our cohort (Table 1) and previous

report16,38 that CIMP (+) is tightly associated with BRAF

mutation. Since CIMP (+) was reported to represent about

15% of CRCs in western population,39 it is not surprising that

CIMP (+) incidence in our study, similar to BRAF mutation

frequency, is lower than that in the previous report (2.7% versus

15%). Some retrospective studies have described the clinical

features associated with CIMP (+) CRCs, including proximal

tumor, elderly females, poor differentiation and mucinous

tumor.16 In consistent with this study, poor differentiation was

also independently associated with CIMP (+) status in our

study. Moreover, high NLR and high CSR were independent

predictors for CIMP (+) status as well. We built a nomogram

showing good statistical performance for predicting CIMP (+)

using these three independent predictors. However, this nomo-

gram could only predict tumor with low risk of CIMP (+). This

might result from low CIMP (+) incidence in our cohort.

Approximately 5% to 25% of sporadic CRCs develop with

the defects in DNA mismatch repair (MMR) system.39–41

Similarly, MSI presented in 25.3% (72/285) patients in our

cohort. MMR deficiency leads to MSI in cancer cells, which

is the second most common pathway for CRC development.

According to previous studies, the CRCs with MSI have dis-

tinct features, including right-sided tumor, poor differentiation,

abundant tumor-infiltrating lymphocytes and less aggressive

clinical course.18,34,42 It has been demonstrated that MSI has

high sensitivity as the screening test to identify individuals with

Lynch syndrome.43 Our nomogram for MSI, thus, may provide

useful information for primary physicians to identify this sub-

group of hereditary cancers. Models for predicting the presence

of MSI-H status has been built. Jenkins et al developed the

MsPath model in 2007.15 However, this model is only applied

to patients diagnosed before the age of 60 years. In addition,

Angela Hyde et al developed a histology-based model for

predicting MSI in 2010.18 Unfortunately, popular use of this

model would be limited by its predictors that need to be

evaluated by experienced pathologists. In current study, we

identified NLR as an independent predictor for MSI, which

could be easily used and provided valuable information in

practice. However, there were only two independent predictors

in this model, and the generated nomogram using differentia-

tion and NLR did not perform well for the prediction.

The robustness of this study includes the high quality-

control inmolecular assays, strict patient selection to eliminate

the confounding influence on molecular phenotyping, and

reliable statistical workflow to construct nomograms using

continuous and categorized variables. However, this study

has some limitations. First, the statistical power of the results

in CIMP and BRAF mutation was limited by their low inci-

dences in our population. Second, the sample size of stage-IV

patients was small, and thus the nomograms need to be further

trained and validated in a cohort with sufficient stage-IV cases

to make them can be applied to stage-IV CRC. Moreover,

patients included in our study were from a single institution.

As a result, there may exist a variation of predictive ability of

models among institutions, and an external validation set

would be useful to validate our predictive models.

In conclusion, we established four models with easily

obtained variables to predict the probability of MSI, CIMP

(+), BRAF mutation and KRAS mutation. The nomograms

should not replace the molecular laboratory tests of CRC,

but it could allow physicians to speculate molecular sub-

types of CRCs, then better estimate patients’ prognosis

where genetic testing is not available or reimbursed

because of infrastructure limits.
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