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Abstract Liver cancer is a serious threat to public health

and has fairly complicated pathogenesis. Therefore, the

identification of key genes and pathways is of much

importance for clarifying molecular mechanism of hepa-

tocellular carcinoma (HCC) initiation and progression.

HCC-associated gene expression dataset was downloaded

from Gene Expression Omnibus database. Statistical soft-

ware R was used for significance analysis of differentially

expressed genes (DEGs) between liver cancer samples and

normal samples. Gene Ontology (GO) term enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, based on R software, were

applied for the identification of pathways in which DEGs

significantly enriched. Cytoscape software was for the

construction of protein–protein interaction (PPI) network

and module analysis to find the hub genes and key path-

ways. Finally, weighted correlation network analysis

(WGCNA) was conducted to further screen critical gene

modules with similar expression pattern and explore their

biological significance. Significance analysis identified

1230 DEGs with fold change [2, including 632 signifi-

cantly down-regulated DEGs and 598 significantly up-

regulated DEGs. GO term enrichment analysis suggested

that up-regulated DEG significantly enriched in immune

response, cell adhesion, cell migration, type I interferon

signaling pathway, and cell proliferation, and the down-

regulated DEG mainly enriched in response to endoplasmic

reticulum stress and endoplasmic reticulum unfolded pro-

tein response. KEGG pathway analysis found DEGs sig-

nificantly enriched in five pathways including complement

and coagulation cascades, focal adhesion, ECM–receptor

interaction, antigen processing and presentation, and pro-

tein processing in endoplasmic reticulum. The top 10 hub

genes in HCC were separately GMPS, ACACA, ALB,

TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and

CD8A, which resulted from PPI network. The top 3 gene

interaction modules in PPI network enriched in immune

response, organ development, and response to other

organism, respectively. WGCNA revealed that the con-

firmed eight gene modules significantly enriched in

monooxygenase and oxidoreductase activity, response to

endoplasmic reticulum stress, type I interferon signaling

pathway, processing, presentation and binding of peptide

antigen, cellular response to cadmium and zinc ion, cell

locomotion and differentiation, ribonucleoprotein complex

and RNA processing, and immune system process,

respectively. In conclusion, we identified some key genes

and pathways closely related with HCC initiation and

progression by a series of bioinformatics analysis on

DEGs. These screened genes and pathways provided for a

more detailed molecular mechanism underlying HCC

occurrence and progression, holding promise for acting as

biomarkers and potential therapeutic targets.
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Introduction

Liver cancer is the second leading cause of cancer associated

death among men worldwide, which ranks sixth place in

women over the world, suggesting that liver cancer is more

common in men than in women [1]. In China, liver cancer is

the fourth most commonly diagnosed cancer in men, and the

estimated new cases and deaths are 466.1 thousands and 422.1

thousands, respectively, in 2015 [2]. The most common type

of liver cancer is hepatocellular carcinoma (HCC). The risk

factors for liver cancer include chronic hepatitis B virus

(HBV) and hepatitis C virus (HCV) infection, consumption of

food such as corn and peanuts polluted by aflatoxin, obesity,

type 2 diabetes, heavy alcohol consumption-associated cir-

rhosis, and smoking [3–5]. At present, the commonly used

treatment approaches of liver cancer include surgical resec-

tion, radiotherapy, chemotherapy, and targeted therapy to

improve patients’ prognosis and recurrence. Nevertheless, the

5-year survival rate ofHCC is still low, especially in advanced

HCC [6]. In addition,most patientsmiss the optimal treatment

period because of no significant clinical symptoms at early

stage ofHCC.Consequently, it needsmore effort to clarify the

molecular mechanism underlying HCC development and

progression, holding promise for finding potential drug targets

and diagnostic biomarkers of HCC.

Gene expression analysis based onmicroarray technology

is a widely used, high-throughput and powerful research

method, which can simultaneously detect expression change

of thousands of genes on the mRNA level. By gene expres-

sion profiling analysis with microarray technology, some

investigations have found many differently expressed genes

which played a critical role in HCC initiation and progres-

sion and could be assessed as potential molecular targets and

diagnostic markers. Zhai et al. [7] proved that HOXC10

could function as a important mediator of invasion in cer-

vical cancer by means of gene expression analysis. Through

gene expression profiling, Sato et al. [8] demonstrated that

epigenetic modification including promoter hypermethyla-

tion and histone deacetylation were the leading cause of the

down-regulation of CDKN1C. In the current study, we

identified HCC-associated DEGs between cancerous and

normal samples, and successively performed GO term

enrichment analysis, KEGG pathway analysis, PPI network

analysis and gene co-expression network analysis to dis-

cover the key genes and pathways closely related to HCC.

Methods and materials

Acquisition of microarray data

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.

nih.gov/geo/) database in the National Center for

Biotechnology Information (NCBI) is used to store curated

gene expression datasets, original series and platform

records. Hepatocellular carcinoma-associated dataset

GSE14323 submitted by Kellie J. Archer and based on

GPL571 platform ([HG-U133A_2] Affymetrix Human

Genome U133A 2.0 Array), was downloaded from GEO

database, including 38 HCC samples and 19 normal sam-

ples [9].

Identification of DEGs

Statistical software R (version 3.3.2, https://www.r-project.

org/) and packages of Bioconductor (http://www.bio

conductor.org/) were applied to significance analysis of

DEGs between HCC samples and normal samples. At first,

quality detection on microarray data was successively

conducted by quality control overview diagram, weights

and residuals plot, relative log expression (RLE) box plot,

normalized unscaled standard errors (NUSE) box plot,

RNA degradation curve, principal components plot (PCA)

and clustering analysis diagram based on ‘‘simpleaffy,’’

‘‘affyPLM,’’ ‘‘RColorBrewer,’’ ‘‘affy,’’ ‘‘gcrma,’’ ‘‘graph,’’

and ‘‘affycoretools’’ packages, to remove unqualified

samples [10, 11]. Then, integrative algorithm ‘‘gcRMA’’

was chosen for preprocessing of microarray data [12].

Empirical Bayes method was used to select significant

DEGs based on ‘‘limma’’ package of Bioconductor [13].

Finally, DEGs were annotated by ‘‘annotate’’ package. A

P\ 0.05 was considered statistically significant.

GO term and KEGG pathway enrichment analysis

Biological significance of DEGs was explored by GO term

enrichment analysis including biological process, cellular

component and molecular function, based on Bioconductor

packages ‘‘GOstats.’’ KEGG pathway enrichment analysis

of DEGs was performed by Bioconductor packages

‘‘GeneAnswers’’ to find critical pathways closely related to

HCC initiation and progression. A P\ 0.05 was consid-

ered to have statistical significance and to achieve signifi-

cant enrichment.

Protein–protein interaction (PPI) network analysis

PPI network can help us identity the key genes and

important gene modules which are involved in HCC

development from interaction level. PPI information of

DEGs was acquired from Search Tool for the Retrieval of

Interacting Genes (STRING) database (http://www.string-

db.org/). Then, Cytoscape software was used for con-

struction of PPI network. At last, module analysis and GO

analysis were carried out by two plug-ins Molecular

Complex Detection (MCODE) and Biological Network
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Gene Ontology tool (BiNGO) in Cytoscape to illuminate

the biological significance of gene modules in HCC.

P value less than 0.05 was considered significantly

different.

Weighted correlation network analysis of DEGs

As a system biology method, gene co-expression network

analysis was performed by weighted correlation network

analysis (WGCNA) package to describe the correlation of

gene expression pattern and to screen highly correlated

gene modules, holding promise for finding candidate

biomarkers and drug targets [14]. In this co-expression

network, nodes represented DEGs, and the correlation of

gene expression pattern was defined as connectivity degree

among genes [15]. In brief, excessive missing value and

outlier microarray samples were firstly detected according

to DEGs expression matrix. The soft thresholding power

was determined by analysis of network topology. Gene co-

expression similarity and adjacency were successively

calculated using the soft thresholding power. Then, the

adjacency was transformed into topological overlap matrix

(TOM). Finally, hierarchical clustering was conducted

using TOM and the dynamic tree cut algorithm was applied

to modules screening, after which we performed GO

enrichment analysis on gene modules to characterize

modules related to HCC.

Results

The identification of DEGs

Gene expression dataset GSE14323 was downloaded from

GEO database. After quality detection of microarray raw

data, we removed 11 unqualified microarrays and retained

the rest of 46 microarrays based on GPL571 platform,

including 28 HCC samples and 18 normal samples. Sta-

tistical analysis software R was used for preprocessing and

gene differential expression analysis of microarray data.

There were altogether 2546 DEGs, among which we

selected 1230 DEGs (fold change [2, Fig. 1) consisting

632 significantly down-regulated DEGs and 598 signifi-

cantly up-regulated DEGs, for the subsequent bioinfor-

matics analysis. The expression level of the top 100 DEGs

with fold change[2 was displayed in Fig. 2.

GO term enrichment analysis of DEGs

GO term enrichment analysis results varied from GO

classification and expression change of DEGs. As to bio-

logical process, the up-regulated DEGs significantly enri-

ched in immune response, defense response, cell adhesion,

cell migration, type I interferon signaling pathway and cell

proliferation, and the down-regulated DEGs significantly

enriched in response to endoplasmic reticulum stress,

endoplasmic reticulum unfolded protein response and cel-

lular response to unfolded protein. For cellular component,

the up-regulated DEGs significantly enriched in extracel-

lular region, extracellular vesicle, extracellular exosome,

cell surface and MHC protein complex, and the down-

regulated DEGs significantly enriched in cytoplasmic part,

endoplasmic reticulum, endomembrane system, and Golgi

membrane. About molecular function, the up-regulated

DEGs significantly enriched in glycosaminoglycan bind-

ing, antigen binding, heparin binding, and collagen bind-

ing, and the down-regulated DEGs significantly enriched in

misfolded protein binding, cofactor binding and catalytic

binding. More detailed GO enrichment analysis results are

shown in Figs. 3 and 4. These significantly enriched

pathways and terms could help us a lot to further under-

stand the role which DEGs played in HCC occurrence and

progress.

KEGG pathway analysis of DEGs

As shown in Fig. 5, KEGG pathway analysis found five

significantly enriched pathways. Fifteen up-regulated

DEGs and four down-regulated DEGs enriched in com-

plement and coagulation cascades. Thirty up-regulated

DEGs and nine down-regulated DEGs enriched in focal

adhesion. Twenty up-regulated DEGs and two down-reg-

ulated DEGs enriched in ECM–receptor interaction.

Eighteen up-regulated DEGs and three down-regulated

DEGs enriched in antigen processing and presentation.

Five up-regulated DEGs and 32 down-regulated DEGs

enriched in protein processing in endoplasmic reticulum.

This analysis results was obviously different from GO

terms enrichment analysis, indicating fairly complicated

molecular mechanism existing in HCC.

Protein–protein interaction network analysis

of DEGs

Protein–protein interaction (PPI) network of DEGs, con-

sisting of 1072 nodes and 7155 edges, was constructed by

Cytoscape software, based on STRING database. The top

10 DEGs with high degree of connectivity were selected as

the hub genes of HCC. These hub genes were separately

guanine monophosphate synthase (GMPS), acetyl-CoA

carboxylase alpha (ACACA), albumin (ALB), transform-

ing growth factor beta 1 (TGFB1), KRAS proto-oncogene,

GTPase (KRAS), erb-b2 receptor tyrosine kinase 2

(ERBB2), BCL2, apoptosis regulator (BCL2), epidermal

growth factor receptor (EGFR), and signal transducer and

activator of transcription 3 (STAT3) and CD8a molecule
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(CD8A), which might play a critical role in HCC pro-

gression. Two plug-ins MCODE and BiNGO were used to

carry out module analysis in Cytoscape software. The top

three gene modules were significantly enriched in immune

response, organ development, and response to other

organism, respectively (Fig. 6).

Weighted correlation network analysis of DEGs

Genes with relationship of regulation or interaction tend to

display same or similar expression pattern. Consequently,

we constructed the DEGs co-expression network to screen

gene modules with similar expression profile. In total, we

screened eight gene modules as shown in Fig. 7 through

DEGs cluster analysis and dynamic tree cut algorithm.

Each color represented one gene module including a cer-

tain number of DEGs with similar expression pattern. GO

enrichment analysis on gene module was performed to find

the key modules and biological processes closely related to

HCC. As we can see in Fig. 8, specifically, DEGs in black

module significantly enriched in monooxygenase activity

and oxidoreductase activity; DEGs in blue module signif-

icantly enriched in IRE1-mediated unfolded protein

response and response to endoplasmic reticulum stress;

DEGs in pink module significantly enriched in type I

interferon signaling pathway and cellular response to type I

interferon; DEGs in turquoise module significantly enri-

ched in peptide antigen binding and antigen processing and

presentation of peptide antigen; DEGs in yellow module

significantly enriched in cellular response to cadmium ion

and cellular response to zinc ion; DEGs in green module

significantly enriched in anatomical structure morphogen-

esis and locomotion; DEGs in red module significantly

enriched in intracellular ribonucleoprotein complex and

ribonucleoprotein complex; DEGs in brown module sig-

nificantly enriched in positive regulation of immune system

process and immunoglobulin complex, circulating.

Discussion

In the present study, we identified significant DEGs

between cancerous and normal samples and conducted a

series of bioinformatics analysis to screen key genes and

pathways closely related to HCC. By significance analysis

on microarray data in statistical software R, we identified

1230 DEGs with fold change over 2, including 632 up-

regulated DEGs and 598 down-regulated DEGs.

Fig. 1 Volcano plot of 2546

DEGs. Red DEGs with fold

change\2; turquoise DEGs

with fold change[2
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Bioinformatics analysis on DEGs including GO term

enrichment analysis, KEGG pathway analysis, PPI network

analysis and WGCNA found HCC-associated genes and

pathways, which exerted momentous effect on cancer ini-

tiation and progression from different sides.

Immune response and HCC. By comprehensive analysis,

we found all the bioinformatics analysis results mentioned

immune response-related genes and pathways. Specifically,

GO term enrichment analysis showed that 158 up-regulated

DEGs significantly enriched in immune response and 91

up-regulated DEGs enriched in regulation of immune

response. KEGG pathway analysis indicated that 18 up-

regulated DEGs and 3 down-regulated DEGs significantly

enriched in antigen processing and presentation. In addi-

tion, 15 up-regulated DEGs and 4 down-regulated DEGs

enriched in complement and coagulation cascades. PPI

network and module analysis found that the first gene

module significantly enriched in immune response. Co-

expression network analysis by WGCNA suggested that

pink module including 38 up-regulated DEGs significantly

Fig. 2 Heatmap of the top 100 DEGs with fold change[2. Red up-regulated DEGs; green down-regulated DEGs
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enrich in type I interferon signaling pathway. Conse-

quently, we could initially conclude that many DEGs

participated in immune response including antigen pro-

cessing and presentation, complement cascades, and type I

interferon signaling pathway to influence liver inflamma-

tion response and liver cancer progression. Most of HCC

incidence results from chronic infection of HBV or HCV,

and inflammatory response deriving from chronic infection

contributes to HCC development, while immunotherapy of

HCC aims to activate and promote immunity, prompting

that immune response is closely related to HCC progres-

sion [16]. Type I interferon, including IFN-a and IFN-b,
can directly inhibit the proliferation and facilitate the

apoptosis of tumor cell, or indirectly regulate tumor

microenvironment [17, 18]. The up-regulation of type I

interferon signaling pathway could result from lymphocyte

response to the high-dose infection of HBV or HCV, and

displayed the complicated interaction mechanism between

type I interferon mediated immunosuppression and liver

cell carcinogenesis. Therefore, more effort is needed to

confirm the relationship between up-regulation of type I

interferon and HCC progression. As a part of innate

immune system, complement system was traditionally

supposed to play a suppressive role on the tumor occur-

rence and development. In recent years, however, there

were increasing evidence demonstrating that complement

component and complement activated product can promote

tumor cell growth, tumor angiogenesis, and immunosup-

pression [19–24]. The up-regulation of complement cas-

cades in our study supported the latest investigations.

Tumor antigen processing and presentation, including

MHC I pathway and MHC II pathway, assist CD8 T cell to

kill target cells and CD4 T cell to generate cytokine to

activate other immune cells, respectively. HCV infection

into HCC samples could be the leading cause of the

increased ability of antigen processing and presentation.

Endoplasmic reticulum (ER) stress and HCC. GO term

enrichment analysis suggested that 42 down-regulated

DEGs significantly enriched in response to ER stress and

25 down-regulated DEGs enriched in ER unfolded protein

response. KEGG pathway analysis found that five up-reg-

ulated DEGs and 32 down-regulated DEGs significantly

Fig. 3 GO enrichment analysis result of up-regulated DEGs with fold change[2. BP biological process, CC cellular component, MF molecular

function
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enriched in protein processing in endoplasmic reticulum.

WGCNA indicated that blue module including 272 down-

regulated DEGs, mainly enriched in IRE1-mediated

unfolded protein response (URP) and response to ER stress.

ER stress response, induced by the accumulation of the

unfold protein in the ER, can lead to the activation of

inositol-requiring transmembrane kinase/endonuclease-1

(IRE1) to further increase the expression level of URP

related gene and promote unfold protein response to

maintain cellular homeostasis [25]. Some researches have

confirmed that chronic ER stress existed in diverse cancers

and played a important role in tumor cell growth and

apoptosis [26–28]. In the present study, down-regulation of

the majority of DEGs meant reduction in ER stress

response and unfold protein response, prompting that liver

cancer cell in currently specific tumor stage has accom-

plished cellular homeostasis to avoid apoptosis induced by

continuous ER stress response. Therefore, accelerating cell

apoptosis by elevating the expression of ER stress-associ-

ated genes to bring out enduring ER stress response could

function as a promising therapeutic strategy of HCC.

Cell adhesion and HCC. According to GO term

enrichment analysis results, 149 up-regulated DEGs sig-

nificantly enriched in cell adhesion, and 79 up-regulated

DEGs enriched in regulation of cell adhesion. On the basis

of KEGG pathway analysis results, 30 up-regulated DEGs

and 9 down-regulated DEGs enriched in focal adhesion.

Besides, 20 up-regulated DEGs and two down-regulated

DEGs enriched in ECM-receptor interaction. As we all

know, cancer metastasis is the pivotal cause of tumor

patient deaths [29]. The capture and adhesion of cancer cell

in microcirculation are the first condition of cancer

metastasis through vessel [30, 31]. Accordingly, overex-

pression of cell adhesion molecules could enhance focal

adhesion and ECM-receptor interaction and accelerate liver

cancer cell metastasis in vessel and settlement in metastatic

sites. In metastatic HCC or advanced HCC, targeting cell

adhesion molecules might be a potentially effective ther-

apeutic method.

In addition to these pathways we have discussed above,

GO term enrichment analysis also suggested that up-regu-

lated DEGs positively participated in HCC initiation and

Fig. 4 GO enrichment analysis result of down-regulated DEGs with fold change \2. BP biological process, CC cellular component, MF

molecular function
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development through cell migration and cell proliferation.

Modules analysis in PPI network found that the top three

gene modules primarily enriched in immune response,

organ development and response to other organism, which

was consistent with what we have discussed in the above.

The top 10 hub genes were GMPS, ACACA, ALB, TGFB1,

KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A,

respectively. With the highest degree of connectivity in PPI

network, ALB combined with bilirubin, namely albumin–

bilirubin grade, displayed a higher prognostic value than

Child–Pugh grade in HCC patients, suggesting that ALB

was a good prognostic biomarker of HCC [32]. GMPS, a

crucial enzyme of de novo purine biosynthesis, has been

identified as an important p53 repression target by

proteomic analysis, and its up-regulation led to disruption

of tumor-suppressive p53 network in liver cancer [33].

Consequently, GMPS was a pivotal contributor to HCC

progression and could function as a potential therapeutic

target to maintain the stability of p53 network. The over-

expression of EGFR plays a positive role in progression of

HCC by contributing to cell proliferation, migration and

invasion, and EGFR has been demonstrated a relatively

effective drug target and a good prognostic biomarker

[34–37]. As a downstream regulatory object of EGFR in

EGFR-STAT3 oncogenic pathway, aberrantly activated and

up-regulated STAT3 signaling pathway has been detected

in various cancers including HCC and is considered as an

essential risk factor for tumor initiation and development

Fig. 5 Heatmap of DEGs significantly enriched KEGG pathways. Red up-regulation; blue down-regulation
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[38–40]. However, in our study, both EGFR and STAT3 in

HCC samples were significantly down-regulated, which

might be responsible for EGFR-targeting therapy failure in

some HCC cases. The discrepancy of EGFR–STAT3

pathway expression in different studies suggested these

oncogenes displayed spatial and temporal-specific expres-

sion and also reflected tumor heterogeneity in HCC. Hence

the more effective molecular-targeting therapy should be

based on specific gene expression profiling of each patient

in consideration of individual difference.

Fig. 6 Module analysis of PPI network. a module 1; b GO enrichment analysis of module 1; c module 2; d GO enrichment analysis of module 2;

e module 3; f GO enrichment analysis of module 3
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Co-expression network analysis by WGCNA found

eight gene modules with highly relevant expression pat-

tern. Then GO term enrichment analysis was conducted to

explore the biological significance of each gene module.

Black module including 47 DEGs mainly was involved in

redox reaction of cancer cell by regulating monooxyge-

nase and oxidoreductase activity. Redox imbalance, which

results from disruption of the homeostasis of endogenous

antioxidants and oxidants and is expressed as elevated

oxidative stress, has been confirmed in cancer cell [41]. In

order to avoid cell apoptosis and growth arrest, various

cancer cells have formed a series of antioxidant mecha-

nisms to remove excessive oxidants and sustain stable re-

dox status [42, 43]. Blue module including 272 DEGs

were closely related to IRE1-mediated unfolded protein

response (URP) and response to endoplasmic reticulum

(ER) stress. Pink module including 38 DEGs was signif-

icantly enriched in type I interferon signaling pathway

which has been discussed in GO term enrichment analysis

results, prompting the crucial significance of immune

response associated pathways in HCC development.

Turquoise module including 435 DEGs principally was

involved in processing, presentation, and binding of

peptide antigen, which were several key biological pro-

cesses in adaptive immune response. Yellow module

including 121 DEGs participated in cellular response to

cadmium and zinc ion. Green module including 104

DEGs was correlated with cell locomotion and differen-

tiation, which was consistent with GO term enrichment

analysis results. The up-regulated DEGs associated with

cell locomotion could facilitate liver cancer cell migration

and invasion to contribute to HCC progression. Red

module including 74 DEGs was enriched in ribonucleo-

protein complex and RNA processing. Brown module

including 37 DEGs took part in immune system process

and regulation of immune system process, further veri-

fying the close relationship of immune response and

HCC, as we have mentioned in GO enrichment and

KEGG pathway analysis. In brief, the confirmed eight

gene modules were involved in different biological pro-

cesses to play an important role in HCC initiation and

progression from various aspects.

Fig. 7 DEGs clustering and module screening based on gene expression pattern. The top was gene dendrogram and the bottom was genes

modules with different colors
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Conclusion

In conclusion, we identified some key genes and pathways

closely related with HCC initiation and progression by a

series of bioinformatics analysis on DEGs between HCC

samples and normal samples. For example, immune

response including antigen processing and presentation,

complement cascades and type I interferon signaling

pathway participated in HCV carcinogenic process and

contributed to HCC development. These identified genes

and pathways provided for a more detailed molecular

mechanism underlying HCC occurrence and progression,

holding promise for acting as potential biomarkers and

therapeutic targets.
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