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INTRODUCTION
Stress affects a variety of body systems including the neural, en-

docrine, immune, and digestive systems. Stress hormones, such as 
corticosterone, are regulated by the hypothalamic-pituitary-adrenal 
axis for alertness and adaptation in response to any demand and/
or threat 1,2. Sustained increases in corticosterone levels result in 
hippocampal atrophy, impaired long-term potentiation, and reduced 
neurogenesis, which produces aberrant synaptic plasticity and 
behavioral abnormalities 3-5. Chronic stress leads to diverse deteri-
orative consequences in the brain, which in turn impairs cognitive 
processes, such as learning and memory, and develops into emotion 
and mood-related illness such as depression 6-8.

Chronic stress-induced neuronal and behavioral abnormalities 
are deeply related to synaptic plasticity. Synaptic plasticity refers 
to the ability of synapses to strengthen or weaken over time in re-
sponse to altered activity. Aberrant synaptic plasticity, including 
structural and functional plasticity, emerges under the maladaptive 
condition evoked by chronic stress 9, 10. Chronic stress-induced ab-
normalities in synaptic plasticity are modulated by corticosterone, 
neurotrophins, oxidative stress, and various neurotransmitters 8, 

11-13. For example, chronic mild stress has been shown to reduce 
hippocampal transcription of hippocampal brain-derived natriuretic 
factor (BDNF), which reached basal levels in an isoform-specific 
manner by KCl-treated depolarization, suggesting that neurotroph-
ins differentially regulate activity-dependent transcription of BDNF 
14.

Glutamate, the major excitatory neurotransmitter released from 
presynaptic terminals, binds to specific receptors that are clustered 
in the postsynaptic membrane, which mediate the depolarizing 
signals in glutamatergic synapses. In particular, α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors 
(AMPAR) is a fast ligand-gated cation channel. AMPAR-dependent 
synaptic influx of cations, especially Ca2+, plays a critical role in 
synaptic plasticity 14-16. Diverse chronic stress leads to abnormal 
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[Purpose] Chronic stress can cause distur-
bances in synaptic plasticity, such as long-
term potentiation, along with behavioral 
defects including memory deficits. One 
major mechanism sustaining synaptic plas-
ticity involves the dynamics and contents 
of α-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid receptors (AMPARs) in the 
central nervous system. In particular, chronic 
stress-induced disruption of AMPARs in-
cludes it abnormal expression, trafficking, 
and calcium conductance at glutamatergic 
synapses, which contributes to synaptic plas-
ticity at excitatory synapses. Exercise has the 
effect of promoting synaptic plasticity in neu-
rons. However, the contribution of exercise 
to AMPAR behavior under chronic stressful 
maladaptation remains unclear. 

[Methods] The present article reviews the 
information about the chronic stress-related 
synaptic plasticity and the role of exercise 
from the previous-published articles.

[Results] AMPAR-mediated synaptic trans-
mission is an important for chronic stress-re-
lated changes of synaptic plasticity, and ex-
ercise may at least partly contribute to these 
episodes.

[Conclusion] The present article discusses 
the relationship between AMPARs and synap-
tic plasticity in chronic stress, as well as the 
potential role of exercise.   
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synaptic function of AMPAR, including AMPAR-medi-
ated excitation in the synapse 17-19.

Exercise has a beneficial effect on brain functions in 
both physiological and pathological states. Several stud-
ies have suggested that a variety of exercises can en-
hance hippocampal neurogenesis and neurotransmission 
underlying the synaptic plasticity related to cognition 
and mood under normal 20, 21 and chronic stress condi-
tions 22, 23. Thus, chronic stress-induced disturbances 
in synaptic plasticity can result in abnormal neuronal 
responses and behavioral defects, which can be, at least 
in part, overcome by exercise intervention. The present 
review discusses the literature pertaining to the relation-
ship between chronic stress-induced abnormal AMPAR 
characteristics and synaptic plasticity, as well as the po-
tential role of exercise.

The general mechanisms of synaptic 
plasticity

In general, synaptic plasticity refers to changes in syn-
aptic strength depending on increases or decreases in ac-
tivity. Synaptic plasticity represents a fundamental mech-
anism of enabling neurons to generate adaptive responses 
to stimuli for learning and memory. Subtypes of synaptic 
plasticity are classified into short-term, long-term, and ho-
meostatic, so-called “synaptic scaling”. 

Short-term synaptic plasticity refers to changes in 
synaptic efficacy over time, depending on the history of 
presynaptic activity within hundreds to thousands of mi-
croseconds. Short-term depression is produced by neuro-
transmitter(s) depletion during the synaptic signaling pro-
cess at the axonal terminal of a pre-synaptic neuron, while 
short-term facilitation is mediated by Ca2+ influx into 
the axonal terminal according to spike production, which 
increases the probability of neurotransmitter(s) release and 
leads to structural changes (i.e., shape and density) in den-
dritic spines 24. 

Unlike short-term plasticity, long-term plasticity is 
primarily modulated by gene expression and protein syn-
thesis. Long-term potentiation (LTP), and its counterpart 
long-term depression (LTD), are two forms of long-term 
plasticity. Changes at excitatory synapses are long-lasting 
(i.e., minutes or more). LTD is generated by a minimum 
level of postsynaptic depolarization as well as increases in 
the intracellular calcium concentration at the postsynaptic 
neuron. LTP is the increased synaptic response after the 
potentiation of prolonged electrical stimuli above the base-
line response for hours or longer. Long-lasting synaptic 
stabilization is regulated by structural changes, including 
pre- and post-synaptic density, along with the increase in 
the postsynaptic density protein-95, which causes synaptic 
enlargement 25.

Homeostatic plasticity refers to the ability of neurons to 
modify and self-adjust their excitability over a timescale 
of days. Homeostatic plasticity maintains the stability of 

neuronal functions through coordinated plasticity among 
subcellular compartments, such as synapses versus the 
neurons, and cell bodies versus axons, unlike synapse-spe-
cific correlation-based plasticity mechanisms such as LTP 
and LTD 26.

 
The role of the AMPAR in synaptic plasticity

 
Over the past decades, the molecular mechanisms 

underpinning synaptic plasticity have been extensively 
investigated in models of learning and memory. In 
particular, one of the major mechanisms involved in 
synaptic plasticity is the dynamics and activity of AM-
PA-type receptors for controlling plastic changes in the 
strength and connectivity of glutamatergic or excitatory 
synapses. 

AMPARs are formed from the tetrameric assembly of 
subunits GluR1-4, which mediates the fast moment-to-
moment transmission of excitatory signals on post-syn-
apses. Endogenous forms of AMPAR primarily consist 
of GluR1/GluR2 or GluR2/GluR3 heteromers. Gluta-
matergic synapses that lack AMPAR current―known 
as “silent synapses”―are not able to achieve sufficient 
depolarization (excitation) despite containing functional 
N-methyl-D-aspartate (NMDA) receptors 27. In addition 
to NMDA receptor-dependent Ca2+ influx, AMPAR-de-
pendent synaptic Ca2+ influx is required for NMDA 
receptor-mediated LTP 14-15, 28. Additionally, enhanced 
LTP expression has been observed in mice with genetic 
deletion of GluR2 29, 30. The phenotypic properties of 
long-term AMPARs, including synaptic recruitment and 
calcium permeability, are believed to play a critical role 
in NMDAR-dependent LTP. These AMPAR dynamics 
for synaptic plasticity are regulated by its biosynthesis, 
dendritic transport, exocytosis and endocytosis, through 
interaction with partner proteins and translational modi-
fications. 

The contents and trafficking of the AMPAR into the 
plasma membrane through endocytosis and exocytosis 
is the key regulator of plasticity at glutamatergic syn-
apses 14.

This process is related to Hebbian and homeostatic 
plasticity, and is implicated in the interaction of several 
proteins. For example, the association of GluR2/3 with 
C-kinase 1 contributes to LTP, LTD, and homeostatic 
plasticity 31, 32. The binding of GluR2 to N-ethylmaleim-
ide-sensitive factor is also contributes to synaptic incor-
poration through SNARE-mediated membrane fusion, 
in which the heteromeric GluR1/GluR2 receptor is 
recruited into the synaptic site by CaMKII activation 
33. Recent studies have reported that overexpression 
of neural precursor cell-expressed developmentally 
downregulated gene 4-1 (Nedd4-1), a member of the E3 
ligase family, reduced the surface density of AMPARs 
through facilitated endocytosis and the accumulated 
internalization of GluR1 in the endosome 34-35. Down-
regulation of homeostatic scaling maintains internal ex-
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citability via control of synaptic AMPARs content under 
sustained enhancement of synaptic activity by GABAA 
receptor antagonism or chronic increased neuronal ac-
tivity 35-36.

Synaptic insertion of AMPAR into the plasma mem-
brane of excitatory neurons is regulated by protein 
kinases; PKA- and CaMKII-dependent GluR1 phospho-
rylation, produces or stabilizes more synapses, thereby 
controlling synaptic plasticity 28, 37, 38. As mentioned 
above, the characteristics of AMPAR behavior are an 
important determinant of synaptic plasticity.

Chronic stress and AMPARs under chronic 
stress-induced maladaptation, and the role 
of exercise

 
Chronic stress-induced elevation of glucocorticoid 

levels affects glutamate transmission and synaptic plas-
ticity, thereby leading to abnormal behavior(s) such 
as cognitive impairment and depression 39. Although, 
exercise has long been known to improve synaptic 
plasticity, exercise-elicited AMPAR phenotype altera-
tion in chronic stressful conditions has rarely been 
investigated. Mounting evidence has demonstrated 
how chronic stress induces disturbances in AMPAR-de-
pendent synaptic plasticity. For example, chronic stress 
led to a reduction in AMPAR-dependent excitation of 
temporoammonic (TA)-CA1 path synapses and a de-
crease in AMPAR expression of hippocampal CA1 17-18. 
Chronic restraint stress causes an alteration in AMPAR 
distribution and function, as well as an increase in neu-
ronal excitatory drive on the basolateral amygdala 40-41. 
Our previous data revealed increased GluR1 content and 
PKA-directed GluR1 phosphorylation in the basolateral 
amygdala synapse, along with behavioral depression 13. 

Significant evidence supports the exercise-elicited 
improvement of synaptic plasticity. For example, acute 
and long-term exercise enhanced the hippocampal 
expression of synaptic plasticity-related genes, which 
includes synaptic remodeling-related genes such as 
synapsin I and synaptotagmin, as well as synaptic plas-
ticity-promoting pathways such as CaMK II and BDNF 
[20]. Our previously published study demonstrated that 
4-week treadmill running restored chronic stress-in-
duced decreases in hippocampal BDNF expression in 
an AMPK-dependent manner, along with the reversal of 
memory impairment 22. With regard to the AMPAR, vol-
untary exercise reversed the decreased field excitatory 
post-synaptic potential of Schaffer collateral-CA1 path-
way concomitantly with enhanced GluR2, which is the 
less Ca2+-permeable AMPAR assembly, in a genetic rat 
model of depression 23. Furthermore, 4 weeks of volun-
tary wheel running―but not acute exercise―enhanced 
GluR1 and pGluR1 (Ser845) levels in the hippocampus 
41. In unpublished data, exercise exerted an ampakine-
like effect on chronic stress-induced failure of memory 

consolidation and depression-like behaviors, indicated 
by rendering AMPAR Ca2+ permeable in the CA1 area 
of the hippocampus. 

Apart from the hippocampus, repeated exercise alters 
the distribution of AMPAR subunits in diverse brain 
regions, evidenced by the alteration of AMPAR subun-
its depending on the duration of sensory-motor cortical 
area, cerebellum, and striatum 42. In the mesolimbic 
reward pathway, which is closely associated with 
stress-response plasticity, 6-week running enhanced the 
expression of tyrosine hydroxylase messenger RNA in 
the ventral tegmental area and delta opioid receptor in 
the shell region of the nucleus accumbens 43, in which 
dopamine signaling alters AMPAR-mediated synaptic 
transmission or potentiation in the nucleus accumbens 
shell 44, suggesting that endogenous dopamine may af-
fect AMPA receptor-mediated Ca2+ conductance. 

As addressed above, chronic stress disrupts AMPAR-
mediated synaptic plasticity in some limbic structures, 
such as the hippocampus, thereby leading to behavioral 
abnormalities such as cognitive- and mood-related ill-
ness. In contrast, exercise may help cope with chronic 
stress-induced aberrant synaptic plasticity by the incor-
poration of calcium-permeable AMPAR into the syn-
apse, thereby improving stress-related consequences.

Prospective
Chronic stress-induced defects in behavior(s), such 

as impairment of memory processes and mood-related 
disorders, are closely linked to synaptic plasticity. This 
phenomenon has, at least in part, been attributed to the 
characteristics of AMPARs such as calcium conduc-
tance and trafficking. To date, however, the relation-
ship between these electrophysiological and molecular 
events and exercise has rarely been explored. To clarify 
this issue, there are several promising prospects. First, 
we need to investigate what molecules are able to regu-
late synaptic AMPAR expression, and to determine what 
signals or partners control AMPAR trafficking in “exer-
cised environments”. Second, to clarify which aspects 
of an exercise program, including intensity, type, and 
duration, efficiently affects and/or effects AMPAR-de-
pendent alteration of AMPAR properties.
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