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Abstract: The Lumipulse® G SARS-CoV-2 Ag assay performance was evaluated on prospectively
collected saliva and nasopharyngeal swabs (NPS) of recently ill in- and outpatients and according to
the estimated viral load. Performances were calculated using RT-PCR positive NPS from patients
with symptoms ≤ 7 days and RT-PCR negative NPS as gold standard. In addition, non-selected
positive NPS were analyzed to assess the performances on various viral loads. This assay yielded
a sensitivity of 93.1% on NPS and 71.4% on saliva for recently ill patients. For NPS with a viral
load > 103 RNA copies/mL, sensitivity was 96.4%. A model established on our daily routine showed
fluctuations of the performances depending on the epidemic trends but an overall good negative
predictive value. Lumipulse® G SARS-CoV-2 assay yielded good performance for an automated
antigen detection assay on NPS. Using it for the detection of recently ill patients or to screen high-risk
patients could be an interesting alternative to the more expensive RT-PCR.

Keywords: SARS-CoV-2; COVID-19; model; diagnostic; test; assay

1. Introduction

The Lumipulse® G SARS-CoV-2 Ag assay (Fujirebio, Tokyo, Japan) is an automated
chemiluminescence enzyme immunoassay (CLEIA) allowing SARS-CoV-2 antigen quantifi-
cation. Its throughput is between 60 to 120 samples per hour depending on the instrument
used (Lumipulse® G600II or G1200) and it can be performed on both universal transport
medium (UTM) preserved nasopharyngeal swabs (NPS) and saliva. Saliva sample use
could indeed improve the comfort of patients, and decrease the needs in terms of swabs and
transport media [1,2]. The World Health Organization (WHO) recommends a ≥80% sensi-
tivity and ≥97% specificity for antigen detection test but without providing any specific
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setting [3]. The European Centre for Disease Control agrees with the WHO but advo-
cates for higher performance (≥90% sensitivity and >98% specificity) for samples taken
within 5 days from symptom onset (DSO) or seven days from exposure [4]. While global
performance of the Lumipulse® G SARS-CoV-2 Ag assay was assessed previously [5–8],
performance data are still missing regarding saliva samples for this latter specific popula-
tion. Furthermore, existing studies [5–8] did not use the pretreatment step recommended
now by the manufacturer for viral deactivation and sample fluidification. Adding an
in-house inactivation step does improve safety but can also decrease the test sensitivity [9].
Here, we evaluated the performance of the Lumipulse® G SARS-CoV-2 assay using the
manufacturer’s sample extraction solution (SES) pretreatment on both NPS and saliva and
assessed its performance with regards to the target population and the viral load. In a
second step, we used the semi-quantitative PCR results from our daily routine to model
the influence of the epidemic curve on the overall performance of this assay.

2. Materials and Methods
2.1. Study Design, Population and Sample Collection

Residual UTMs of patients’ NPS were selected on the basis of SARS-CoV-2 daily
routine RT-PCR results. In particular, and as required for the CE-IVD certification, a
minimum of 300 SARS-CoV-2 negative RT-PCR samples from outpatients, 100 SARS-CoV-2
negative RT-PCR samples from inpatients and 100 SARS-CoV-2 positive RT-PCR samples
from patients with maximum 7 DSO were included. In addition, residuals of consecutive
available positive samples that did not meet the above selection criteria (i.e., either taken
more than 7 DSO or for which DSO was not known) were included to better assess the
limit of detection by increasing the number of positive samples and broadening the range
of antigen concentration tested. All these samples were stored at 4 ◦C and analyzed within
2 days after the RT-PCR was performed.

Saliva samples were collected from patients prospectively enrolled in two settings:
outpatients at the consultation or at the sampling center with a prescription of a SARS-CoV-
2 PCR test on NPS as well as inpatients with a positive SARS-CoV-2 RT-PCR test on NPS
for less than 2 days. The NPS was paired with the saliva sample when available.

2.2. SARS-CoV-2 RT-PCR

SARS-CoV-2 RT-PCR on NPS was considered as the gold standard. If the NPS was not
available anymore to perform the assay, the RT-PCR performed on saliva was considered
as a proxy of the gold standard.

The RT-PCR was performed using the Alinity m SARS-CoV-2 assay (Abbott Molecular,
Des Plaines, IL, USA). The two target sequences (in the RdRp and the N genes) are detected
using the same fluorophore. A 4-fold dilution was performed on saliva samples before
extraction to reach the volume of 500 µL needed for this assay. Cycle threshold (Ct)
values were plotted with standards provided by the Belgian national reference center
following recommendations by Sciensano to provide semi-quantitative results [10]. The
correspondence table between Ct values and viral load estimation is summarized in Table 1.

Table 1. Semi-quantification of SARS-CoV-2 RT-PCR results using the Alinity m SARS-CoV-2 assay
(Abbott Molecular, Des Plaines, IL, USA).

Semi-Quantification Ct Values Estimated Viral Load (RNA Copies/mL)

Weak >29.9 <103

Mild >23.3–29.9 103–<105

Strong >16.7–23.3 105–<107

Very strong ≤16.7 ≥107
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2.3. SARS-CoV-2 Antigen Quantification

Antigen quantification was performed using the Lumipulse® G SARS-CoV-2 Ag as-
say, expressing the dosage in pg/mL. Viral inactivation was performed using the sample
extraction solution (SES) by diluting 4 parts of UTM with 1 part of SES or 1 part of saliva
with 1 part of SES. A 30 min incubation at room temperature was performed before cen-
trifugation at 2000× g for 5 min. Lumipulse® SARS-CoV-2 antigen testing was performed
on a Lumipulse® G600II instrument according to the manufacturer’s instruction. To obtain
a binary qualitative result (negative/positive), a positivity threshold was determined using
the positive samples from patients with ≤7 DSO and all the negative samples using the
following criteria: highest possible Youden’s index, specificity >98% and a minimum of
0.6 pg/mL (instrument quantification limit). Samples presenting a dosage below this
threshold were considered as negative.

2.4. SARS-CoV-2 Variant Determination

As a part of the Belgian national surveillance program, all the strong and very strong
available positive samples (see Table 1) were prospectively sequenced at the time of the
experimentation using the COVIDSeq kit on NextSeq (Illumina, San Diego, CA, USA).
Hence, they represent the variants circulating at the time of the study in Belgium.

2.5. Model

All the available positive RT-PCR results of our clinical laboratory were semi-quantified
according to their Ct values regardless of their indication (symptoms, screening . . . ). Daily
overall sensitivity (Se), positive predictive value (PPV) and negative predictive value (NPV)
were estimated according to the performance of the automated antigen quantification for
each semi-quantitative RT-PCR category. To minimize day-to-day and holiday-related
fluctuations, data were computed from 1 May 2020 to 30 October 2021 using a moving
average of 14 days (hereafter referred as “14-day Se”, “14-day PPV” and “14-day NPV”).

2.6. Statistical Analyses

Statistical analyses and receiver operating characteristic (ROC) curves were performed
using Analyse-it® for Microsoft Excel v5.30.4.

2.7. Ethical Approval

The Erasme University Hospital Ethics Committee approved and reviewed the com-
parative performance evaluation study on saliva and NPS. The Ethics Committee of the
Saint-Pierre Hospital waived ethical approval for the use of residual human body material
for evaluation purpose.

3. Results
3.1. Population

In total, 632 patients were included with 605 NPS and 144 saliva of which 117 were
paired samples. The details of the repartition between in- and outpatients for negative
samples and DSO for positive samples are summarized in Table 2.

3.2. Threshold Determination
3.2.1. NPS

A total of 502 samples were selected: 102 positive samples with ≤7 DSO and 400 nega-
tive samples. ROC curve analysis yielded an area under the curve (AUC) at 0.973 ± 0.023
(Figure 1). The highest Youden index was at a threshold of 2.47 pg/mL (sensitivity 93.1%,
specificity 99.0%). Analytical performance and their confidence interval at this threshold
are summarized in Table 3.
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Table 2. Study population (N: total number of samples, Ag: antigen quantification, NPS: nasopharyn-
geal swabs, DSO: days since symptom onset).

Samples Collected N Ag (NPS) Ag (Saliva)

Overall 632 605 144
Negative RT-PCR 408 400 83

Outpatients 304 300 76
Inpatients 104 100 7

Positive RT-PCR 224 205 61
≤7 DSO 116 102 35

>7 DSO or unknown 108 103 26

Diagnostics 2022, 12, 447 4 of 8 
 

 

Positive RT-PCR 224 205 61 
≤7 DSO 116 102 35 

>7 DSO or unknown 108 103 26 

3.2. Threshold Determination 
3.2.1. NPS 

A total of 502 samples were selected: 102 positive samples with ≤7 DSO and 400 neg-
ative samples. ROC curve analysis yielded an area under the curve (AUC) at 0.973 ± 0.023 
(Figure 1). The highest Youden index was at a threshold of 2.47 pg/mL (sensitivity 93.1%, 
specificity 99.0%). Analytical performance and their confidence interval at this threshold 
are summarized in Table 3. 

 
Figure 1. Receiver Operating Curve (ROC) analysis of antigen quantification (Ag) on nasopharyn-
geal swabs (NPS) vs. RT-PCR on NPS as gold standard. 

Table 3. Analytical performance of the Lumipulse® G SARS-CoV-2 assay on nasopharyngeal swabs 
(NPS) and saliva vs. RT-PCR on NPS. T: positivity threshold, CI: confidence interval, DSO: days 
since symptom onset. 

Samples Collected 
Ag (NPS, T = 2.47 pg/mL) Ag (Saliva, T = 0.60 pg/mL) 

N % (Wilson 
95% CI) 

N % (Wilson 
95% CI) 

Sensitivity (DSO ≤ 7) 95/102 93.1 (86.5–96.6) 25/35 71.4 (54.9–83.7) 
Specificity (overall) 396/400 99.0 (97.5–99.6) 82/83 98.8 (93.5–99.8) 

Outpatients 298/300 99.3 (97.6–99.8) 75/76 98.7 (92.9–99.8) 
Inpatients 98/100 98.0 (93.0–99.4) 7/7 100 (64.6–100) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
ns

iti
vi

ty

1 - Specificity

No discrimination

Ag
(0.973)

Figure 1. Receiver Operating Curve (ROC) analysis of antigen quantification (Ag) on nasopharyngeal
swabs (NPS) vs. RT-PCR on NPS as gold standard.
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Table 3. Analytical performance of the Lumipulse® G SARS-CoV-2 assay on nasopharyngeal swabs
(NPS) and saliva vs. RT-PCR on NPS. T: positivity threshold, CI: confidence interval, DSO: days since
symptom onset.

Samples Collected
Ag (NPS, T = 2.47 pg/mL) Ag (Saliva, T = 0.60 pg/mL)

N % (Wilson 95% CI) N % (Wilson 95% CI)

Sensitivity (DSO ≤ 7) 95/102 93.1 (86.5–96.6) 25/35 71.4 (54.9–83.7)
Specificity (overall) 396/400 99.0 (97.5–99.6) 82/83 98.8 (93.5–99.8)

Outpatients 298/300 99.3 (97.6–99.8) 75/76 98.7 (92.9–99.8)
Inpatients 98/100 98.0 (93.0–99.4) 7/7 100 (64.6–100)

3.2.2. Saliva

In total, 118 samples were selected: 35 positive samples with ≤7 DSO and 83 negative
samples. ROC curve analysis yielded an area under the curve (AUC) at 0.973 ± 0.023
(Figure 2). The highest Youden index was at a threshold of 0.55 pg/mL (sensitivity 71.4%,
specificity 98.8%). To respect the quantification limit, the positivity threshold was set at
0.6 pg/mL. Analytical performance and their confidence interval at this threshold are
summarized in Table 3.
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Figure 2. Receiver Operating Curve (ROC) analysis of antigen quantification (Ag) on saliva vs.
RT-PCR on nasopharyngeal swabs (NPS) as gold standard.

3.3. Detection Limit Assessment

The sensitivity of antigen quantification was better for higher estimated viral loads
with an overall sensitivity of 96.4% on NPS and of 69.6% on saliva when excluding the
low positive samples (estimated viral load < 103 RNA copies/mL, Ct > 29.9), whereas the
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sensitivity for the low positive samples was 10.5% on NPS. The detailed performance at
four different levels of RT-PCR semi-quantification on NPS is summarized in Table 4.

Table 4. Analytical performance of the Lumipulse® G SARS-CoV-2 assay on nasopharyngeal swabs
(NPS) and saliva vs. RT-PCR on NPS at different levels of viral loads (T: positivity threshold,
CI: confidence interval, Ct: cycle threshold value).

Estimated Viral Load
(RNA Copies/mL)

Ag (NPS, T = 2.47 pg/mL) Ag (Saliva, T = 0.60 pg/mL)

N % (Wilson 95% CI) N % (Wilson 95% CI)

<103 (Ct > 29.9) 4/38 10.5 (4.2–24.1) 5/8 62.5 (30.6–86.3)

≥103 (Ct ≤ 29.9) 141/167 96.4 (92.4–98.3) 32/46 69.6 (55.2–80.9)
103–<105 (Ct > 23.3–29.9) 36/41 87.8 (74.5–94.7) 8/19 42.1 (23.1–63.7)
105–<107 (Ct > 16.7–23.3) 70/71 98.6 (92.4–99.8) 12/15 80.0 (54.8–93.0)

≥107 (Ct ≤ 16.7) 55/55 100 (93.5–100) 12/12 100 (75.8–100)

3.4. Variants of Interest

A total of 93 (strong and very strong) positive samples were successfully sequenced
including 61 (65.6%) alpha variants, 8 (8.6%) gamma variants, 22 (23.7%) delta variants and
2 (2.2%) others (not variants of concern). All these samples yielded a positive antigen result
on NPS at the previously determined threshold; no variant effect was highlighted.

3.5. Modelling the Influence of Epidemic Trends on the Overall Performance of the Assay

The model showed that using the automated SARS-CoV-2 antigen quantification
on our day-to-day non-selected routine samples would exhibit important variation of
sensitivity and predictive positive value according to the dynamic of the epidemic at that
time (Figure 3). Indeed, during low circulation phases, sensitivity decreases sharply due
to a very high proportion of weak positive samples. Likewise, a higher proportion of
false positive penalizes the positive predictive value. Conversely, during epidemic peaks,
the positive predictive value increased above 90% in November 2020 while the negative
predictive value decreased slightly below 95% after the end of the first epidemic wave in
Belgium in May 2020.
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Figure 3. Modelling SARS-CoV-2 automated antigen detection performance on epidemic trends.
Data computed from 1 May 2020 to 30 October 2021 using a backward sliding window of 14 days
(14-day Se: 14-day sensitivity, 14-day PPV: 14-day Positive Predictive Value, 14-day NPV: 14-day
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4. Discussion

In a previous study [6], we proposed to position the different available assays for the
direct diagnostic of COVID-19 in a structured algorithm. Rapid antigen tests were dedi-
cated to the fast diagnostic of symptomatic patients and automated antigen quantification
assays were used as a screening method. This strategy allows the provision of a faster
and cheaper but reliable alternative to large molecular platforms. In the present study,
the Lumipulse® G SARS-CoV-2 assay yielded excellent analytical performance on NPS for
recently symptomatic patients with a sensitivity of 93.1% for patients with DSO ≤ 7 and
a specificity of 99.0%. Compared to our previous study [6], the AUC of the ROC curve
improved, which can be attributed to the use of SES instead of an in-house inactivation
method but also to the selection of positive samples from patients with DSO ≤ 7. Perfor-
mances of the Lumipulse® G SARS-CoV-2 on NPS were even closer to those of RT-PCR
when excluding low positive samples (Se = 96.4%), demonstrating its particular interest
to (i) diagnose recently ill patients and (ii) efficiently detect infectious people in a wider
screening strategy. As expected, saliva yielded less of a good performance and should be
restricted to settings with limited access to swabs or patients presenting contraindication
for nasopharyngeal sampling. Comparable results were previously obtained on saliva and
on other instruments [11–13].

Additionally, we modelled the estimated performance of this automated quantification
assay on our day-to-day routine (“all comers” non-selected samples). As expected, in our
hospital laboratory an important proportion (46.8%) of samples were weak positive samples,
which impaired in this model the overall sensitivity and positive predictive value of the
test as compared with results obtained during the analytical evaluation. However, using
this extrapolation could be of use to choose the best technique on the best target population
in their own setting. Despite this non-selection of samples, the negative predictive value
stayed over 95% during the epidemic peaks. This good negative predictive value and the
good sensitivity on samples with significant viral load confirm that the use of this technique
is interesting for the fast and large screening of asymptomatic patients in contexts such
as hospital admission, participation to a social event and travel. Indeed, this technique
was implemented at several airports in Germany to screen travelers using oropharyngeal
swabs [14], and in Italy in schools using saliva [15]. Only 9.1% (10/110) of the positive
samples from patients with DSO ≤ 7 had a weak positive RT-PCR result, whereas it
was the case for 29.9% (32/107) of patients with DSO > 7 or unknown. This difference
underlines the lower viral concentration at the late infection stage where the infectiousness
is lower. The lower performance of automated antigen quantification in this setting should
consequently have a limited impact on virus circulation. However, during periods of low
virus circulation, this technique should be used in a two-step strategy, with positive samples
checked by a reflex RT-PCR, to balance the lower positive predictive value observed during
these periods. From a public health perspective, such strategy would dramatically decrease
the costs of the screening for a limited risk and free the PCR instruments for more serious
cases and other uses.

Automation allows a higher throughput than manual antigen rapid testing (60–120 tests
per hour per instrument) and provides an automated, objective reading of the test. Fur-
thermore, the use of UTM also allows secondary PCR checks and sequencing on posi-
tive samples.

Our results provide evidence that the Lumipulse® G SARS-CoV-2 Ag assay is a robust
antigen quantification assay for the detection of SARS-CoV-2 on UTM preserved NPS
especially for recently ill patients and people with high viral loads. The use of this technique
could offer a fast and cost-efficient solution for diverse situations such as systematic or
targeted screening in specific situations (travelers, social events, nightlife etc.).
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