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In addition to the classic and well-established “feedback control” of potassium balance, increasing

investigative attention has focused on a novel and not widely recognized complementary regulatory

paradigm for maintaining potassium homeostasis—the “feed-forward control” of potassium balance. This

regulatory mechanism, initially defined in rumen, has recently been validated in normal human subjects.

Studies are being conducted to determine the location for this putative potassium sensor and to evaluate

potential signals, which might increase renal potassium excretion. Awareness of this more updated

integrative control mechanism for potassium homeostasis is ever more relevant today, when the medical

community is increasingly focused on the challenges of managing the hyperkalemia provoked by renin–

angiotensin–aldosterone system inhibitors (RAASis). Recent studies have demonstrated a wide gap be-

tween RAASi prescribing guidelines and real-world experience and have highlighted that this gap is

thought to be attributable in great part to hyperkalemia. Consequently we require a greater knowledge of

the complexities of the regulatory mechanisms subserving potassium homeostasis. Sodium polystyrene

sulfonate has long been the mainstay for treating hyperkalemia, but its administration is fraught with

challenges related to patient discomfort and colonic necrosis. The current and imminent availability of

newer potassium binders with better tolerability and more predictive dose–response potassium removal

should enhance the management of hyperkalemia. Consequently it is essential to better understand the

intricacies of mammalian colonic Kþ handling. We discuss colonic transport of Kþ and review evidence for

potassium (BK) channels being responsible for increased stool Kþ in patients with diseases such as

ulcerative colitis.
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T
he integrated mechanisms controlling the mainte-
nance of potassium homeostasis are well estab-

lished and are defined by the classic “feedback control”
of potassium balance. In recent years, increasing
investigative attention has focused on novel physio-
logical paradigms that increase the complexity but
also the precision of homeostasis. In this Review we
will briefly consider the classic and well-established
“feedback control” of potassium and then consider
subsequent investigations that inform on an intriguing
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and not widely recognized complementary paradigm—
the “feed-forward” control of potassium balance.
Awareness of this more updated integrative control
mechanism for potassium homeostasis is ever more rele-
vant today at a time when the medical community is
increasingly focused on the challenges of managing
the hyperkalemia provoked by renin–angiotensin–
aldosterone system inhibitors (RAASis).1–11

It is well established that RAASis confer substantive
benefits, such as reducing cardiovascular events and
retarding progression of renal disease in several disease
states, including congestive heart failure, chronic kidney
disease, and diabetes.12–23 Regretfully, treatment with
RAASis can be complicated by hyperkalemia, which is a
frequent side effect of RAASi therapy.1–4,9–11 Indeed, the
problem will only become increasingly prominent and
frequent, because hyperkalemia will remain an issue
with newly introduced drugs such as neprolysin
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inhibitors (LCZ-696)—as reported in the PARADIGM
Heart Failure Study.24 Furthermore, the wide gap be-
tween RAASi prescribing guidelines and reality is
widely thought to be attributable to hyperkalemia.1–4,9–
11 As a consequence, we require a greater knowledge of
the complexities of the regulatory mechanisms sub-
serving potassium homeostasis. Finally, with the immi-
nent availability of newer polymer resins to control
hyperkalemia,2,4–7,9 it is essential to understand how
these newer drug agents may interact with the new resin
binders. We require effective and safe treatments to
control hyperkalemia, which in turn will facilitate
treatment with optimal recommended doses of RAASis.
Such a treatment paradigm should preclude unwanted
down-titration and discontinuation of these life-saving
medications, which have recently been documented to
positively impact cardiorenal outcomes.3,9–11

Normal Potassium Balance and Renal

Potassium Excretion

In order to establish the context and foundation for
considering newer, albeit poorly recognized adaptive
mechanisms for subserving potassium homeostasis, we
will first summarize key concepts of steady-state po-
tassium handling. Normal persons who consume a
typical Western diet ingest approximately 70 to 80
mmol of potassium per day.25,26 The intestine absorbs
virtually all of the ingested potassium and delivers it to
the liver for processing by means of the hepatoportal
circulation. In normal circumstances, minimal amounts
of potassium are excreted in the feces.

The principal defense against chronic potassium
imbalances is renal potassium excretion, which de-
pends on free filtration at the glomerulus, extensive
proximal tubule reabsorption, and a highly regulated
secretory process in the distal convoluted tubule and
segments of the collecting duct in the cortex and outer
medulla (the cortical collecting duct and the outer
medullary collecting duct, respectively). Principal
cells, which constitute approximately 75% of collect-
ing duct cells, mediate sodium reabsorption and po-
tassium secretion and also constitute targets for
angiotensin II,27 aldosterone, mineralocorticoid recep-
tor antagonists, and potassium-sparing diuretics
(Figure 1).

Kþ Transport in the Proximal Tubule

Kþ reabsorption in the proximal tubule primarily oc-
curs through the paracellular pathway. Active Naþ

reabsorption drives net fluid reabsorption across the
proximal tubule, which, in turn, promotes Kþ reab-
sorption by a solvent drag mechanism. As fluid flows
down the proximal tubule, the luminal voltage shifts
from slightly negative to slightly positive. The shift in
44
transepithelial voltage provides an additional driving
force favoring Kþ diffusion through the low-resistance
paracellular pathway. Kþ uptake through the Naþ-Kþ-
ATPase pump can exit the basolateral membrane
through a conductive pathway or coupled to Cl�. An
apically located Kþ channel functions to stabilize the
cell negative potential, particularly in the setting of
Naþ-coupled cotransport of glucose and amino acids,
which has a depolarizing effect on cell voltage.

Kþ Transport in the Thick Ascending Limb of

Henle

Kþ reabsorption occurs by both paracellular and
transcellular mechanisms. The basolateral Naþ-Kþ-
ATPase pump maintains intracellular Naþ low, thereby
producing a favorable gradient to drive the apically
located Naþ-Kþ-2Cl� cotransporter (an example of
secondary active transport). The apically located renal
outer medullary Kþ (ROMK) channel provides a
pathway for Kþ to recycle from cell to lumen, and
ensures an adequate supply of Kþ to sustain Naþ-Kþ-
2Cl� cotransport. This movement through ROMK cre-
ates a lumen-positive voltage, providing a driving force
for passive Kþ reabsorption through the paracellular
pathway. Some of the Kþ entering the cell through the
cotransporter exits the cell across the basolateral
membrane, accounting for transcellular Kþ reabsorp-
tion. Kþ can exit the cell through a conductive
pathway or in cotransport with Cl�. ClC-Kb is the
primary pathway for Cl� efflux across the basolateral
membrane.

Kþ Transport in the Distal Convoluted Tubule

In the early distal convoluted tubule (DCT), luminal
Naþ uptake is mediated by the apically located
thiazide-sensitive Naþ-Cl� cotransporter. This trans-
porter is energized by the basolateral Naþ-Kþ-ATPase,
which maintains intracellular Naþ concentration low,
thereby providing a favorable gradient for Naþ entry
into the cell through secondary active transport.
Whereas the cotransporter is abundantly expressed in
the DCT1, it declines progressively along the DCT2.

ROMK is expressed throughout the DCT and into the
cortical collecting duct. Expression of the epithelial
Naþ channel (ENaC), which mediates amiloride-
sensitive Naþ absorption, begins in the DCT2 and is
expressed throughout the downstream connecting
tubule and cortical collecting duct.

The DCT2 is the beginning of the aldosterone-
sensitive distal nephron (ASDN) as identified by the
presence of both the mineralocorticoid receptor and the
enzyme 11b-hydroxysteroid dehydrogenase II. Impor-
tantly, this enzyme maintains the mineralocorticoid
receptor free to only bind aldosterone by metabolizing
Kidney International Reports (2016) 1, 43–56



Figure 1. Summary of potassium transport along the nephron. Following filtration, potassium is extensively reabsorbed along the proximal
tubule and the loop of Henle. Potassium is secreted along the initial and cortical collecting tubules. Net secretion can be replaced by net
reabsorption in states of potassium depletion. Also shown are the 2 cell types lining the distal tubule and cortical collecting duct. (a) A cell
model for Kþ transport in the proximal tubule. Kþ reabsorption in the proximal tubule primarily occurs through the paracellular pathway. Active
Naþ reabsorption drives net fluid reabsorption across the proximal tubule, which, in turn, drives Kþ reabsorption through a solvent drag
mechanism. As fluid flows down the proximal tubule, the luminal voltage shifts from slightly negative to slightly positive. The shift in trans-
epithelial voltage provides an additional driving force favoring Kþ diffusion through the low-resistance paracellular pathway. Experimental
studies suggest that there may be a small component of transcellular Kþ transport; however, the significance of this pathway is not known. Kþ

uptake through the Naþ-Kþ-ATPase pump can exit the basolateral membrane through a conductive pathway or coupled to Cl–. An apically
located Kþ channel functions to stabilize the cell negative potential, particularly in the setting of Naþ-coupled cotransport of glucose and amino
acids, which has a depolarizing effect on cell voltage. (b) A cell model for Kþ transport in the thick ascending limb of Henle. Kþ reabsorption
occurs by both paracellular and transcellular mechanisms. The basolateral Naþ-Kþ-ATPase pump maintains intracellular Naþ at a low level,
thus providing a favorable gradient to drive the apically located Naþ-Kþ-2Cl– cotransporter (an example of secondary active transport). The
apically located renal outer medullary Kþ (ROMK) channel provides a pathway for Kþ to recycle from cell to lumen, and ensures an adequate
supply of Kþ to sustain Naþ-Kþ-2Cl– cotransport. This movement through ROMK creates a lumen-positive voltage, providing a driving force for
passive Kþ reabsorption through the paracellular pathway. Some of the Kþ entering the cell through the cotransporter exits the cell across the
basolateral membrane, accounting for transcellular Kþ reabsorption. Kþ can exit the cell through a conductive pathway or in cotransport with
Cl–. ClC-Kb is the primary pathway for Cl– efflux across the basolateral membrane. (c) A cell model for Kþ transport in the distal convoluted
tubule (DCT). In the early DCT, luminal Naþ uptake is mediated by the apically located thiazide-sensitive Naþ-Cl– cotransporter. The transporter
is energized by the basolateral Naþ-Kþ-ATPase, which maintains low intracellular Naþ concentration, thus providing a favorable gradient for
Naþ entry into the cell through secondary active transport. The cotransporter is abundantly expressed in the DCT1 but progressively declines
along the DCT2. ROMK is expressed throughout the DCT and into the cortical collecting duct. Expression of the epithelial Naþ channel (ENaC),
which mediates amiloride-sensitive Naþ absorption, begins in the DCT2 and is robustly expressed throughout the downstream connecting
tubule and cortical collecting duct. The DCT2 is the beginning of the aldosterone-sensitive distal nephron as identified by the presence of both
the mineralocorticoid receptor and the enzyme 11b-hydroxysteroid dehydrogenase II. This enzyme maintains the mineralocorticoid receptor
free to only bind aldosterone by metabolizing cortisol to cortisone, which has no affinity for the receptor. Electrogenic-mediated Kþ transport
begins in the DCT2 with the combined presence of ROMK, ENaC, and aldosterone sensitivity. Electroneutral Kþ-Cl– cotransport is present in the
DCT and collecting duct. Conditions that promote a low luminal Cl– concentration increase Kþ secretion through this mechanism, which occurs

(Continued)
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cortisol to cortisone; the latter has no affinity for the
receptor. Electrogenic-mediated Kþ transport begins in
the DCT2 with the combined presence of ROMK, ENaC,
and aldosterone sensitivity. Electroneutral Kþ-Cl�

cotransport is present in the DCT and collecting duct.
Conditions that cause a low luminal Cl� concentration
increase Kþ secretion through this mechanism, which
occurs with delivery of poorly reabsorbable anions,
such as sulfate, phosphate, or bicarbonate.

Principal cells exploit the electrochemical gradient
established by sodium entry into the cell through a
sodium channel at the luminal membrane (the molec-
ular target of amiloride) and the basolateral membrane
Na-K-ATPase to drive potassium secretion through 2
classes of luminal membrane potassium channels.28

One of these, the renal outer medullary potassium
(also termed ROMK) channels, secrete potassium
under normal tubular fluid flow conditions and are
inserted into or internalized from the luminal mem-
brane, depending on the demand for potassium
secretion. The other class of potassium channels is the
so-called “big” conductance channels (known as BK
channels), which are relatively inactive under normal
conditions but exhibit increased activity during high
tubular flow or high-potassium conditions.28 The
factors that regulate principal cell potassium secretion
include previous potassium intake; intracellular
potassium level; sodium delivery to the cells; urine
flow rate; and hormones, such as aldosterone and
catecholamines.29 In contrast, the other collecting
duct cell type, intercalated cells, mediate acid–base
transport but upregulate expression of luminal
H-K-ATPases during potassium depletion to enhance
potassium reabsorption25,30 (Figure 1).

To summarize, the kidney excretes sufficient milli-
equivalents of potassium to maintain total body ho-
meostasis. Although the proximal nephron reabsorbs
the bulk of the potassium filtered at the level of the
glomerulus, it is a distal site, the collecting duct, that
ultimately fine-tunes potassium excretion, thereby
Figure 1. (Continued) with delivery of poorly reabsorbable anions, such as
Kþ secretion in the initial collecting duct and the cortical collecting duct is
that is responsible for the active transport of Kþ from the blood into the
diffusion gradient for movement of Kþ from the cell into the lumen. In addi
of this pump lowers intracellular Naþ concentration, thereby maintaining
into the cell. The movements of both Naþ and Kþ across the apical
Reabsorption of HCO3 in the distal nephron is mediated by apical Hþ se
vacuolar Hþ-ATPase and an Hþ-Kþ-ATPase. The Hþ-K-ATPase uses the e
reabsorb Kþ in an electroneutral fashion. The activity of the Hþ-Kþ-ATPase
Kþ depletion enhances both collecting duct Hþ secretion and Kþ ab
aldosterone-sensitive distal nephron; ATPase, adenosine triphosphatase; C
Kb; DCT, distal convoluted tubule; ENaC, epithelial sodium channel; HCO3, b
duct; PT, proximal tubule; R, reabsorption; ROMK, renal outer medullary po
Epstein.
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determining the final amount of potassium excreted in
the urine. Consequently the collecting duct is the major
site that responds to increased potassium intake, and in
turn is subject to several regulatory influences.

Feedback Control of Potassium Balance

The classic feedback control of potassium is an exemplar
of a homeostatic system that uses the consequence, or
output, of a process to “feed back” and regulate the
process itself. The feedback control of potassium is
defined by the following stepwise cascade: In response
to a high-potassium meal that includes glucose, pancre-
atic insulin secretion activates skeletal muscle and liver
Na-K-ATPase, which moves potassium (Na/K exchange)
from the plasma to the intracellular fluid of these cells.
This mechanism minimizes the postprandial increase in
plasma potassium concentration.31 With muscle activity,
potassium is released into the plasma and filtered at the
glomerulus. In order to maintain balance, the amount of
potassium consumed in the meal (minus the small
amount lost in the feces) is excreted into the urine.

When an increase in potassium consumption in-
creases plasma potassium concentration sufficiently, it
triggers aldosterone synthesis and release from the
adrenals, which stimulates the activity and synthesis of
Na-K-ATPase and luminal potassium channels in col-
lecting duct principal cells to secrete the excess po-
tassium32 (Figure 1). Aldosterone also enhances
potassium excretion in the distal colon.33 This latter
function can be extremely important in the adaptation
that occurs when renal function is compromised.

Conversely, if potassium intake is very low or urinary
potassium excretory losses are excessive, plasma potas-
siumconcentrationdecreases and the feedback regulation
is invoked, redistributing potassium from intracellular
fluid to plasma thereby minimizing hypokalemia.
Concomitantly skeletal muscle becomes insulin-resistant
to potassium (but not glucose) uptake even before
plasma potassium concentration decreases, which acts to
blunt the shift of potassium from plasma into the cell.34
sulfate, phosphate, or bicarbonate. (d) The cell that is responsible for
the principal cell. This cell possesses a basolateral Naþ-Kþ-ATPase
cell. The resultant high cell Kþ concentration provides a favorable
tion to establishing a high intracellular Kþ concentration, the activity
a favorable diffusion gradient for movement of Naþ from the lumen
membrane occur through well-defined Naþ and Kþ channels. (e)
cretion by the a-intercalated cell. Two transporters secrete Hþ, a
nergy derived from ATP hydrolysis to secrete Hþ into the lumen and
increases in Kþ depletion and thus provides a mechanism by which

sorption.33 ADH, antidiuretic hormone; ALDO, aldosterone; ASDN,
CT, cortical collecting tubule; Cl, chloride; ClC-Kb, chloride channel
icarbonate; ICT, initial connecting tubule; MCD, medullary collecting
tassium; S, secretion; TAL, thick ascending limb. Courtesy of Murray
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After hypokalemia ensues, the expression of skeletal
muscle Na-K-ATPase a2 isoform decreases, which fa-
cilitates a net potassium “leak” from intracellular fluid
to the plasma.35 The low plasma potassium concentra-
tion suppresses adrenal aldosterone release; as a result
the kidney can reclaim essentially all but about 1% of
the filtered potassium (Figure 1). This renal potassium
conservation involves downregulation of potassium
secretion by means of the ROMK channels in cortical
collecting duct principal cells. In conditions of potas-
sium depletion, potassium reabsorption can occur in
the collecting duct. This appears to be mediated by
upregulation in the apically located H-K-ATPase on
intercalated cells.30

What is of great interest is the realization that this
intricate feedback mechanism for potassium regulation
is not the sole mechanism for compensatory renal po-
tassium excretion. Rather there is a complementary
regulatory mechanism, a “feed-forward” control of
potassium regulation, which acts in a complementary
manner to subserve potassium homeostasis.

“Feed-Forward” Control of Potassium Balance

Although feedback loops are commonly recognized as
regulators of biological systems, “feed-forward” loops
of various sorts are also important biologic regulators.
“Feed-forward” control refers to a pathway in a ho-
meostatic system that responds to a signal in the
environment in a predetermined manner, without
responding to how the system subsequently reacts
(that is, without responding to feedback). A widely
recognized example of “feed-forward” control is the
conditioned salivation of Pavlov’s dogs in anticipation
of food.36 The Pavlovian conditioned salivary reflex is
an example of a “feed-forward” regulatory loop in that
a stimulus temporally associated with food (input)
triggers salivation (output) in advance of presentation
of food.36

Another intriguing example that has recently been
proposed is closed “feed-forward” loops in which
outputs that upregulate inputs also occur, leading to
self-sustaining loops as in the case of a variety of
intracrines.37 Intracrine action permits the develop-
ment of an active form of differentiation by which
intracrines can spread from 1 cell to a target cell,
upregulate intracrine action in that cell, and thereby
establish a self-sustaining intracrine loop in that cell—a
loop that will persist even when the extracellular
intracrine is removed. An example is the recent
observations that support the formulation of a “feed-
forward” mineralocorticoid receptor–intracrine renin–
angiotensin system interaction irrespective of whether
aldosterone or another moiety activates the mineralo-
corticoid receptor in diverse disease states.37
Kidney International Reports (2016) 1, 43–56
With this theoretical construct as context, we will
now consider the formulation of another recent
example of “feed-forward” control that is highly rele-
vant and of great immediacy—the “feed-forward”
control of potassium. By analogy, a similar “feed-
forward” control mechanism is involved in potassium
homeostasis. In describing this regulatory loop, a
caveat is in order. It is a truism that any mechanism for
homeostatic regulation cannot be called “feedback” or
“feed-forward” until the details of regulation have
been delineated. In the case of the feedback system for
Kþ regulation, which has been described above, these
details are well defined. As will be apparent in the
following sections, the details of the “feed-forward”
regulatory mechanism have not been fully defined;
neither the locus nor the molecular nature of the
receptors nor even the signals between the kidney and
the gastrointestinal (GI) tract have been elucidated.
Consequently, for the purposes of our discussion in
describing the phenomenology, we will refer to this
homeostatic mechanism as “feed-forward” (with
quotes), fully conceding that the mechanistic details
await elucidation.

The “feed-forward” control mechanism subserving
potassium homeostasis posits that even minor changes
in dietary potassium intake, which are insufficient to
alter plasma concentrations of either potassium38 or
aldosterone,39 and consequently insufficient to activate
feedback control, are capable of evoking rapid changes
in renal potassium excretion through “feed-forward”
mechanisms (Figure 2).

Thirty years ago, Rabinowitz and associates40 con-
ducted a serious of elegant experiments in sheep,
which demonstrated that potassium intake in food or
potassium placed into the rumen (sheep stomach) was
associated with a large and significant increase in
urinary potassium excretion. Although others41,42 had
earlier demonstrated that feeding was associated with
an increase in urinary potassium excretion, Rabinowitz
et al.40 designed a series of 13 experiments to explore
the known factors that regulated urinary potassium
excretion to determine which of them might
contribute to this effect. They showed that the in-
crease in urinary potassium excretion was not related
to an increase in serum potassium or glomerular
filtration rate and thus the increase in urinary potas-
sium excretion was not a consequence of an increase in
filtered potassium, but rather tubular potassium
excretion. They demonstrated that aldosterone was not
responsible for this by either (i) showing there was no
change in plasma aldosterone concentration, (ii)
infusing aldosterone and showing it did not alter the
effect, or (iii) giving an early aldosterone antagonist
(potassium canrenoate), which also did not alter the
47



Figure 2. A schematic depicting the complementary roles of the classic feedback and “feed-forward” control mechanisms for maintaining
potassium homeostasis. An increase in plasma potassium evokes an array of responses that promote a kaliuresis. In contrast, the “feed-
forward” control mechanism is engaged when dietary potassium is sensed by Kþ sensors in the gastrointestinal tract in the absence of
perceptible changes in plasma potassium. Courtesy of Murray Epstein.

Figure 3. Summary of the integrated roles of the kidney, extrarenal
mechanisms, and gastrointestinal effectors in modulating potassium
homeostasis. It demonstrates that the undamped increase in plasma
Kþ in response to potassium administration is progressively attenu-
ated by the adaptive responses by the kidney, by a hierarchy of
nonrenal mechanisms including participation by insulin and glucose,
and by gastrointestinal mechanisms evoked by gastrointestinal po-
tassium sensors.33 Courtesy of Murray Epstein. Adapted with
permission from Youn JH. Gut sensing of potassium intake and its
role in potassium homeostasis. Semin Nephrol. 2013 May;33:248–256.
Copyright ª 2013, Elsevier Inc.
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effect. Similarly, when urine flow rate or sodium
excretion was altered or urine pH was altered, the
effect persisted. They concluded as follows: “The
efferent factors involved in this regulation remain to
be determined. They do not appear to be aldosterone,
urine flow, sodium excretion, or acid/base status, nor
do changes in plasma potassium appear to be necessary
or sufficient to produce the changes in potassium
excretion associated with meal intake or fasting.” They
stated “that there was a correlation between changes in
rumen fluid potassium concentration and renal potas-
sium excretion.” They concluded that their studies
were “compatible with the presence of receptors
located at some point prior to the systemic circulation,
which sense enteric potassium levels and influence
renal potassium excretion” (Figure 3).

Numerous studies have subsequently been con-
ducted (i) to confirm these findings in additional spe-
cies, including humans, (ii) to try to determine the
location for this putative potassium sensor, and (iii) to
evaluate potential signals that might increase renal
potassium excretion.

Studies in Different Species to Confirm That an

Effect of Potassium Administration Into the GI

Tract Directly Leads to an Increase in Renal

Potassium Excretion

Lee et al.,43 Oh et al.,44 and Morita et al.45 conducted
studies in anesthetized rats with findings consistent
with those of Rabinowitz et al.40 Calo et al.38 found
qualitatively similar findings in humans. In these hu-
man studies, during a water diuresis, intake of potas-
sium led to an increase in urinary potassium excretion
within 20 minutes, at a time when neither plasma po-
tassium nor aldosterone had increased.

Recently Preston et al.46 conducted studies to
further delineate this GI–renal kaliuretic signaling axis
48
in 32 normal subjects in a clinical research unit while
on a 20-mmol sodium and 60-mmol potassium diet. The
serum potassium concentration, potassium excretion,
aldosterone, and insulin were measured following
either a 35-mmol oral potassium load, a potassium- and
sodium-deficient complex meal, or a potassium-
deficient complex meal plus 35 mmol potassium. This
experimental design facilitated determination of the
Kidney International Reports (2016) 1, 43–56
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component effects on potassium handling of the meal
and potassium load separately. The meal plus potas-
sium test was repeated following aldosterone blockade
achieved with eplerenone treatment in order to spe-
cifically evaluate the role of aldosterone. In response to
the potassium-deficient meal plus 35 mmol potassium,
the serum potassium did not increase but the hourly
mean potassium excretion increased sharply. This
kaliuresis persisted following aldosterone blockade
with eplerenone, thereby suggesting independence
from aldosterone. The authors concluded that this
experiment further substantiated the existence of a GI–
renal kaliuretic signaling axis in humans that is capable
of mediating potassium excretion independent of
changes in the serum potassium concentration and
aldosterone.

Studies Designed to Determine the Location for

the GI Potassium Sensor

The original studies by Rabinowitz and colleagues39,40

involved direct administration of potassium into the
rumens of sheep. Morita and colleagues45,47 suggested
the sensor might be in the hepatoportal area, whereas
Lee et al.43 indicated that the stomach and not the
portal circulation was more important. In Morita’s
studies, intraportal infusion of potassium led to a
greater renal potassium excretion than did an i.v.
infusion. Cutting the periarterial hepatic nervous
plexus diminished the increase in urinary potassium
excretion. In addition, potassium infused directly into
the hepatoportal circulation stimulated hepatic afferent
nerve activity and increased urinary potassium excre-
tion without changes in plasma potassium.

Studies Designed to Determine the Potential

Signal(s) That Might Increase Renal Potassium

Excretion

Oh et al.44 evaluated a number of GI hormones to test
whether they might be responsible for the increase in
renal potassium excretion. They evaluated guanylin,
uroguanylin, glucagon-like peptide, and extraintestinal
hormones such as arginine vasopressin, a- and
g-melanocyte-stimulating hormone, and aldosterone.
Their data do not support a role for these hormones in
this phenomenon, leading them to suggest that there
might be “previously unknown humoral factors that
stimulate renal Kþ excretion during dietary Kþ intake.”

Although not a GI hormone, the renal kallikrein–
kinin system is activated by high-Kþ diet or acute Kþ

loading leading to an increase in urinary tissue kalli-
krein.48 El Moghrabi et al.49 showed, in mice, that renal
tissue kallikrein can lead to an increase in renal po-
tassium excretion by both activating the epithelial Na
channel to increase Kþ excretion by principal cells and
Kidney International Reports (2016) 1, 43–56
inhibiting H-K-ATPase in intercalated cells to decrease
Kþ reabsorption. Renal Kþ excretion increased in
concert with tissue kallikrein excretion following a
single meal. They further showed that in tissue kalli-
krein knockout mice there was a greater increase in
serum potassium following a meal, suggesting that
tissue kallikrein plays a role in renal potassium excre-
tion. Thus, although renal tissue kallikrein is not a
GI-derived signal, it could play a role in this phe-
nomenon at the level of the kidney.

The studies of Sorensen et al.50 may be relevant in
further considering mechanisms that are operative at
the level of the kidney. They studied mice and found
that an acute intragastric potassium load led to rapid
dephosphorylation of the renal sodium chloride
cotransporter (NCC), which was associated, as would be
predicted, with an increase in sodium and potassium
excretion. Sorensen et al.50 showed that this effect was
independent of aldosterone.

Although glucagon is also a circulating hormone
that acts on the kidney to increase electrolyte excre-
tion, including potassium, it is unlikely to play a role.
Glucagon acts at the level of the proximal tubule, and
its potential role as a mediator of the kaliuresis
invoked by an oral potassium load has not been
delineated.

Physiological Observations of Sodium That May

Serve as an Analogous Template for Kþ

Several lines of experimental evidence, focusing on
sodium homeostasis, constitute a template for the
concept that a “feed-forward” mechanism with sensors
in the GI area, the hepatosplanchnic area, or both areas
participates in potassium homeostasis. Sensing the
amount of ingested sodium is 1 mechanism by which
sodium balance is regulated. In a seminal paper pub-
lished almost 40 years ago, Carey51 reported that the
rapidity of renal sodium excretion in response to an
administered sodium load differs depending on the
route of administration; an oral sodium load is excreted
more rapidly than an identical sodium load adminis-
tered intravenously. Neural mechanisms52 and gut
hormones (e.g., uroguanylin [Guca2b], cholecysto-
kinin) have been proposed to mediate the natriuresis of
an oral sodium load.

The natriuresis following ingestion of a certain
amount of sodium may be due to the enterokine
gastrin, which is secreted by G cells in the stomach and
duodenum and released into the circulation.53,54

Gastrin is taken up by renal cortical tubules to a
greater extent than the other enterokines released after
a meal.55 Gastrin then acts on its receptor, the chole-
cystokinin B receptor (CCKBR), expressed in several
nephron segments54,56 to alter sodium transport.
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Additional Determinants of Renal Potassium

Excretion

Circadian Rhythm of Potassium Excretion

The presence of circadian rhythms that characterize
renal function and excretion has been documented for
over 60 years.57,58 Kidney parameters with such
rhythms include glomerular filtration rate, renal
plasma flow, and tubular reabsorption and secretion
for most of the major urinary electrolytes. Of interest
for the focus of this Review is the demonstration of a
circadian rhythm that characterizes renal potassium
excretion in humans, with a peak in the middle of the
day.59 This pattern is independent of activity, posture,
and dietary intake; this circadian rhythm persists for
days in individuals, and it is isolated from most
external cues.

Originally this pattern of renal potassium excretion
was thought to be driven by factors mainly external to
the kidney. Recent studies, however, have demon-
strated rhythms within the tubule, which would ac-
count for many of these changes. Steele et al.60

suggested that transtubular potassium gradients
could be the driving force for the cycles in potassium
excretion. Zuber et al.61 demonstrated rhythmicity in
transcripts from cells of the rat distal nephron (distal
convoluted tubule/connecting tubule and cortical
collecting duct) in potassium channels such as
ROMK1, KCNK1, and KCNJ10. Their finding of
ROMK1 cycling by about 30% at the mRNA level
might explain part of the circadian variation observed
in renal potassium excretion. Finally, since aldosterone
is acknowledged to play a critical role in renal po-
tassium excretion, the demonstration of a circadian
rhythm in aldosterone secretion62 and its consequent
effects at the level of the tubule63 allow for the pos-
sibility that cycles in renal potassium excretion could
be controlled both by cycles outside the kidney such
as aldosterone and by cycles within the kidney tu-
bules themselves.

Posture and Potassium Excretion

Several studies conducted 60 years ago found little or
no effect of posture on renal potassium excretion.64

“Posture had comparatively little prolonged effect on
absolute potassium excretion when allowance was
made for diurnal rhythmic variations.”65 “Change of
posture usually produced less disturbance of the
diurnal rhythm in potassium excretion, and changes in
potassium excretion (urinary Kþ) were usually small in
comparison with those in sodium output.”66 In sum-
mary, posture can exert a considerable effect on urine
flow rate and sodium excretion, but the available data
suggest that changes in potassium excretion are rela-
tively small.
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GI Potassium Absorption and Excretion

As indicated above, stool potassium usually averages
about 10% of ingested potassium. Thus, on a standard
Western diet with approximately 80 mEq of potassium,
this would regularly lead to approximately 8 mEq of
potassium in the stool.25,26 In normal individuals, the
large fraction of ingested potassium is absorbed by the
small intestine, and the contribution of the normal colon
to net potassium absorption or secretion is small.67 Po-
tassium transport in the duodenum, jejunum, ileum,
and colon has been characterized as passive absorption,
although the colon also demonstrates passive secre-
tion.53,67 Colonic potassium secretion exists in mam-
mals68 and has been shown to play a role in potassium
homeostasis in patients on dialysis.69 Administration of
mineralocorticoids leads to small but significant in-
creases in stool potassium excretion.67,70 Factors that
might lead to an increase in stool potassium have been
reviewed,71 and are briefly summarized.

The Role for the Liver in Subserving Potassium

Homeostasis

Recently Halperin’s group72 proposed an engaging new
formulation suggesting a pivotal role for the liver in
subserving potassium homeostasis. They suggested
that lactate augmented potassium uptake by the liver.
Studies were conducted in normal rats compared with
rats with acute hyperkalemia. There was a significant
fall in plasma Kþ in normal rats and an even larger fall
in plasma Kþ in both models of acute hyperkalemia
when the plasma L-lactate rose, caused by a shift of Kþ

from cells, or by a positive Kþ balance. A rise in the
plasma L-lactate in portal venous blood led to a fall in
the plasma Kþ, and insulin was permissive. Interest-
ingly, studies conducted to delineate the time course
for changes in the plasma Kþ in normal rats disclosed
that plasma Kþ fell significantly to its nadir within the
first 15 minutes, and it remained close to this level for
the next 30 minutes.

The investigators suggested that absorption of
glucose by the Naþ-linked glucose transporter permits
enterocytes to produce enough adenosine diphosphate
to augment aerobic glycolysis, raising the plasma
L-lactate in the portal vein, thereby preventing post-
prandial hyperkalemia. Overall, the integrative physi-
ology of this proposed regulatory process provides a
rationale for having SLGT-1 in enterocytes—the release
of L-lactic acid into the portal vein—and proposes a
central role for the liver to minimize the risk of having
a large rise in the plasma Kþ delivered to the heart
following the ingestion of Kþ.

Colonic Potassium Handling

Relatively recent studies in rodents, over the past 2
decades, have further defined the intricacies of
Kidney International Reports (2016) 1, 43–56
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mammalian colonic Kþ handling.71 One important basic
aspect of Kþ transport in the colon is its segmental
difference. Under normal conditions, the proximal co-
lon performs net Kþ secretion while net Kþ absorption
is observed in the distal colon. The proximal colon does
not absorb Kþ actively. Active Kþ absorption in the
distal colon occurs via the transcellular route and in-
volves a primary active Kþ entry step across the apical
membrane. In the mammalian distal colon this active
transport is conducted by the non-gastric H-K-ATPase
localized in surface cells of the distal colon. Mice with
this H-K-ATPase knocked out maintain a normal serum
Kþ when fed a normal diet, but become hypokalemic
on a low-Kþ diet. Thus, this H-K-ATPase plays a crit-
ical role in colonic Kþ absorption.

Net Kþ secretion is found in both the proximal colon
and distal colon in animals fed a high-Kþ diet. Present
evidence suggests that net Kþ secretion is carried out by
Kþ channels. Although there are several potential Kþ

channels that could perform this function, BK channels
seem to be the only functionally significant Kþ secretory
ion channel in the apical membrane of the distal colon.71

The role of the colon in clinically modulating Kþ

excretion is not adequately recognized. Early studies in
end-stage renal disease found that the colon was
responsible for a small but significant increase in Kþ

excretion.73 Over a number of years these findings have
been confirmed74,75 and in recent times have been
attributed to an increase in BK channel activity.76 This
being the case, it might seem attractive to try to develop
pharmacologic agents that could be used to stimulate BK
potassium channel activity. If such an agent were to
exist, it could have clinical utility in settings of hyper-
kalemia, particularly where oral intake might be limited
and thus potassium binding agents might not be useful.

In patients without renal disease, large-volume
diarrhea has historically been attributed to Cl secre-
tion with Na following the Cl, and little Kþ is found in
these stools.77 van Dinter et al., including John
Fordtran, reported on a well-studied woman with
secretory diarrhea in the setting of colonic pseudo-
obstruction in which Kþ secretion seemed to be
responsible for the diarrhea with stool Kþ averaging
154 mEq/l and serum Kþ frequently being below
3.5 mEq/l.78 In that same report they indicated that
they were aware of 3 other patients with similar find-
ings. Following this report, the group in Leeds,
Sandle’s group, reported a patient with secretory diar-
rhea following hemorrhagic shock79 with high levels
of Kþ in the stool and histologic evidence of “massive
over-expression of BK channel protein in colonic
crypts.” In a subsequent review this same group80

reported evidence for potassium (BK) channels being
responsible for increased stool Kþ in patients with
Kidney International Reports (2016) 1, 43–56
ulcerative colitis, colonic pseudo-obstruction, laxative
abuse with bisacodyl, and renal failure. Thus, they
suggest that in all these settings increased Kþ excretion
in the stool, including up to levels of over 150 mEq/l,
could all be mediated by increased BK channel activity.

As mentioned earlier, normal individuals on a
normal diet absorb virtually all ingested Kþ, and most
of this ingested Kþ is excreted in the urine. Impor-
tantly, in the setting of chronic kidney disease, and in
particular chronic dialysis patients, colonic Kþ secre-
tion is greatly enhanced and becomes an important
accessory Kþ excretory pathway.69 The imminent
clinical availability of 2 new polymer potassium
binders, patiromer and sodium zirconium cyclosilicate,
that modulate their effects in large part in the colon has
further emphasized the importance of increasing our
understanding of the physiology of colonic potassium
handling.

Potassium Binding in the GI Tract
The Evolving Role of Potassium-Binding Resins in

Hyperkalemia

Because of the widely documented array of complica-
tions of hyperkalemia, determination of hyperkalemia
constitutes an “action item” for the clinician. Most
clinicians feel compelled to respond vigorously to
hyperkalemia. As detailed in several recent reviews,
hyperkalemia may be an immediately life-threatening
condition.81–84 Severe hyperkalemia can cause ven-
tricular fibrillation or asystole, unless extracellular
potassium is reduced.81 Even relatively mild (5.5–6.0
mEq/l) hyperkalemia is associated with an increased
risk of mortality within the next 24 hours, even
without electrocardiogram changes.81 Because of these
well-recognized associations, clinicians feel compelled
to intervene and respond vigorously to hyperkalemia.

As detailed earlier, the majority of potassium is
renally excreted, but about 5% to 10% is secreted in
the colon. Because potassium is regularly excreted in
the stool and since that process could potentially be
augmented by cation exchange resins, such treatment
could lead to an increase in stool potassium excretion.
Treatment with exchange resins has been used in the
management of clinical hyperkalemia for over 60 years.
The most commonly used resin to date has been sodium
polystyrene sulfonate (SPS) (Kayexalate). However, the
utility and safety of SPS in the treatment of hyper-
kalemia is currently being challenged. Several in-
vestigators have questioned the effectiveness of SPS in
lowering serum potassium levels.85

As of the writing of this article (November 2015),
several of the agents that we currently use for the
treatment of acute hyperkalemia are unproven with
respect to efficacy as judged by currently mandated
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criteria—but it is reasonable to aver that the majority
clinical consensus is that they do work.86

SPS potassium-binding resins (Kayexalate, Kionex,
and others), with and without an associated cathartic
(usually sorbitol), have been in use for almost 60 years
and are approved by the US Food and Drug Adminis-
tration (FDA) for the treatment of hyperkalemia. In
September 2009, the FDA recommended against the
“concomitant use of sorbitol” with Kayexalate powder
because of associated cases of colonic necrosis and other
severe GI side effects.87 However, this warning did not
apply to premixed SPS in 33% sorbitol for oral use
(various manufacturers), the only SPS resin that is
currently available in many hospitals.

SPS potassium-binding resins work by increasing
colonic potassium excretion. In hyperkalemic patients,
oral SPS mixed in water significantly decreases serum
potassium within 24 hours. Colonic necrosis associated
with SPS and sorbitol is most commonly seen in patients
who have received enemas in the setting of recent
abdominal surgery, bowel injury, or intestinal dysfunc-
tion. The agentmost likely associatedwith colonic necrosis
is 70% sorbitol, and animal data support that etiology.
There are very fewdata to suggest that oral SPS givenwith
33% sorbitol (in the premixed form) or SPS powder in
water orally or as an enema causes colonic necrosis.

In 2010, Sterns et al.,85 in an editorial review, concluded
that SPS resins are “largely unproven and potentially
harmful,” especiallywhen administeredwith sorbitol, and
that clinicians should “exhaust other alternatives.” Some
investigators objected to the condemnation and stated that
these conclusions are immoderate.86,88 When indicated,
and in patients who have no contraindication to their use,
SPS resins are effective and reasonably safe.

In light of these considerations, what might consti-
tute the “therapeutic niche” for SPS? Watson et al.86

have appropriately highlighted an important role for
SPS in the treatment of acute hyperkalemia under dire
and challenging conditions after a natural or man-made
disaster.89,90 It may be used for trauma-associated
hyperkalemia and as prophylaxis in dialysis-
dependent patients who are not able to get to a dial-
ysis unit.89,90 Everyday examples that the readers can
readily relate to include the recent mid-Atlantic bliz-
zard of 5 to 6 February 2010, commonly referred to
as Snowmageddon or Snowpocalypse, a category 3
(“major”) nor’easter and severe weather event, when
many chronic dialysis patients were unable to be
transported to their dialysis units. Additional examples
include the aftermath of Hurricane Katrina and after
the Haitian earthquake.91 In such situations where
dialysis availability is limited, SPS may be the only
option for potassium removal in hyperkalemic patients,
especially chronic dialysis patients.
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We wish to stand back from this ongoing contro-
versy and share a few thoughts and recommendations.
Unrelated to the controversy of SPS’s efficacy, and how
frequently colonic necrosis may supervene, it is readily
apparent that the administration of SPS is fraught with
additional challenges related to its administration and
patient discomfort. These considerations set the stage
for the imminent availability of the newer efficacious
and “patient-friendly” potassium binders—patiromer
and sodium zirconium cyclosilicate (ZS-9).

Patiromer was approved by the FDA for the treat-
ment of hyperkalemia on 21 October 2015. ZS-9 is
currently in the late stages of clinical development and
is expected to be approved and in clinical use shortly.
These agents may offer advantages over existing ap-
proaches to hyperkalemia treatment. Both patiromer
and ZS-9 act to remove potassium by exchanging cat-
ions (calcium for patiromer and sodium for ZS-9) for
potassium in the distal colon, binding potassium, and
increasing its fecal excretion.4–7 Patiromer is an
organic, non-absorbed polymer that increases fecal
potassium excretion by exchanging potassium for cal-
cium primarily in the distal colon. It is a free-flowing,
insoluble powder of small (w100 mm) spherical beads
with low viscosity.6,7 ZS-9 is an inorganic polymer,
which selectively attracts potassium ions to its nega-
tively charged crystalline lattice structure and ex-
changes them for sodium and hydrogen. It is
formulated as a free-flowing, insoluble powder that is
not absorbed systemically.92

As of this writing, multiple clinical trials have
demonstrated the safety and efficacy of both binders in
diverse disease states including congestive heart fail-
ure, chronic kidney disease, diabetic nephropathy,
and, in a preliminary study, resistant hypertension.93

The reader is referred to the article by Weir in Kid-
ney International Supplements94 for a detailed summary
and analysis of these clinical trials.

In summary, it appears that therewill be 2newproducts
available in the near future to facilitate the management of
hyperkalemia in patients with chronic and recurrent
hyperkalemia. Patiromer (Valtessa) was approved by the
FDAfor abroad indicationof“treatment ofhyperkalemia.”
ZS-9 is in the latest stages of clinical development but not
yet approved. These agents may offer to serve as “en-
ablers” facilitating treatment with angiotensin-converting
enzyme inhibitors, angiotensin receptor blockers, and
mineralocorticoid receptor antagonists in optimal recom-
mended doses, obviating down-titration and discontinu-
ation of these life-saving treatments.

Conclusions

The integrated mechanisms controlling the mainte-
nance of potassium homeostasis are well established
Kidney International Reports (2016) 1, 43–56
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and are defined by the classic “feedback control” of
potassium balance. This “feedback control” of potas-
sium homeostasis has long constituted the platform for
defining therapeutic interventions for the management
of hyperkalemia. This relatively straightforward theo-
retical construct has recently been amplified by a wide
array of physiological studies. In recent years,
increasing investigative attention has focused on novel
physiological paradigms that increase the complexity
but also the precision of homeostasis—the “feed-for-
ward” control of potassium balance. The elegant studies
of Rabinowitz and associates over 3 decades ago have
very recently been confirmed in human subjects by the
well-defined studies of Preston and associates. Subse-
quent physiological studies have been conducted in an
effort to determine both the location for the GI potas-
sium sensor and the potential signal(s), which might
increase renal potassium excretion. Concomitant studies
in animal models have further defined the intricacies of
mammalian colonic Kþ handling. In concert these
investigative efforts have increased both the complexity
but also the precision of homeostasis, with a resultant
enhanced investigative interest in potassium.

These new insights are relevant to the future design
of clinical trials delineating renal potassium handling.
As an example, the insights regarding “feed-forward”
control of potassium mandate that the conditions of
study, especially attention to standardization of the
fasting or fed state of subjects, are a requisite for the
trial design. A recent study has demonstrated that
imposition of rigorous dietary potassium intake serves
to reduce variability in serum potassium levels.95

Finally, the demonstration of massive over-
expression of BK channel protein in “colonic crypts,”
and evidence for potassium (BK) channels being
responsible for increased stool Kþ in some patients
with diseases such as ulcerative colitis, introduce
interesting therapeutic speculations. As an example, it
may be attractive to attempt to develop pharmacologic
agents that could be used to stimulate colonic BK
potassium channel activity. If such an agent were to
exist, it could have clinical utility in settings of
hyperkalemia, particularly where oral intake might be
limited and thus potassium binding agents might not
be useful. The next few years should be rewarding
concerning the wide array of physiological and clin-
ical investigations of potassium homeostasis based on
the recent insights and discoveries detailed in this
Review.
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