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ABSTRACT

Alu retrotransposons account for more than 10% of
the human genome, and insertions of these elements
create structural variants segregating in human pop-
ulations. Such polymorphic Alus are powerful mark-
ers to understand population structure, and they rep-
resent variants that can greatly impact genome func-
tion, including gene expression. Accurate genotyp-
ing of Alus and other mobile elements has been chal-
lenging. Indeed, we found that Alu genotypes previ-
ously called for the 1000 Genomes Project are some-
times erroneous, which poses significant problems
for phasing these insertions with other variants that
comprise the haplotype. To ameliorate this issue, we
introduce a new pipeline – TypeTE – which genotypes
Alu insertions from whole-genome sequencing data.
Starting from a list of polymorphic Alus, TypeTE iden-
tifies the hallmarks (poly-A tail and target site dupli-
cation) and orientation of Alu insertions using local
re-assembly to reconstruct presence and absence al-
leles. Genotype likelihoods are then computed after
re-mapping sequencing reads to the reconstructed
alleles. Using a high-quality set of PCR-based geno-
typing of >200 loci, we show that TypeTE improves
genotype accuracy from 83% to 92% in the 1000
Genomes dataset. TypeTE can be readily adapted to
other retrotransposon families and brings a valuable
toolbox addition for population genomics.

INTRODUCTION

Mobile element insertions (MEIs) are ubiquitous and im-
portant contributors to genomic variation between and
within species (1–3). Active ME families continuously
generate new insertions which segregate among individu-
als. Individual MEI results in structural variants between
genomes that can lead to more complex chromosomal re-
arrangements through non-homologous recombination be-
tween parts or copies of the same ME family (4–7). Both
MEI and ME-mediated rearrangements represent a sub-
stantial source of genomic instability, which has been im-
plicated in more than 100 human cases (8). Conversely, ME
activity also contribute to the emergence of adaptive genetic
novelties (9–13).

In humans, recently mobilized MEs mostly include mem-
bers of the LINE-1, Alu, and SVA families. Together these
elements make up over a quarter of the human genome,
but few remain polymorphic, i.e. being either present or ab-
sent between two genomes (14,15). Such polymorphic MEIs
(pMEIs) account for hundreds to thousands of loci per indi-
vidual (2,15–16). The extent of pMEIs segregating in the hu-
man population is yet to be determined, but Alu is known to
be the most common source of human pMEIs. For instance,
close to 20 000 Alu copies have been identified as segregating
among 2504 humans sampled as part of the 1000 Genomes
Project (1000 GP) (2,17).

Alu elements are powerful markers for genetic and evolu-
tionary studies of human populations. As non-autonomous
retrotransposons, Alus amplify through a copy-and-paste
mechanism utilizing LINE-1 machinery (18) and are inher-
ently incapable of precise excision, providing identical-by-
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descent loci virtually free of homoplasy (19). Accordingly,
Alus have been shown to track human population history
(16,20–22). Like most MEIs, Alu insertions in humans are
usually thought of as neutral variants that achieve fixation
in the population mostly through genetic drift (23,24). Alus
are known to contribute to both Mendelian and complex
diseases (8,25–26), in fact, >70 de novo Alu insertions are
identified as causal variants. Furthermore, polymorphic Alu
insertions have been identified as candidate causative vari-
ants in common polygenic diseases (27), and a handful have
been shown to alter mRNA splicing (28). Finally, worldwide
reference pMEI datasets such as those produced by 1000
GP (2) can be used in conjunction with gene expression data
(e.g. RNA-seq) to identify loci associated with changes in
gene expression (29,30). Together these studies suggest that
pMEIs, and Alus in particular, play an important, yet still
underappreciated role in human phenotypic variation.

Recognizing the abundance and biological significance of
MEIs, a growing number of software packages have been
developed in the past few years to detect and map pMEIs
in whole-genome resequencing (WGS) data relative to a
reference genome (31). For studies of human pMEIs, Tea
(32), Retroseq (33), Mobster (34), Tlex2 (35), RelocaTE2
(36), STEAK (37), MELT (17), TranSurVeyor (38), poly-
Detect (39), ERVcaller (40), TEBreak (41) and AluMine
(42) are among the most recent software tools available.
The algorithmic refinement dedicated to accurately detect-
ing pMEIs, and Alus in particular, in WGS data has led to
an increase of the quality of the calls. Notably, the accu-
rate detection of the presence or absence of a specific Alu
at a precise breakpoint has improved substantially in recent
years (17,40,43).

Although the discovery of Alu and other pMEI alleles
is generally benchmarked extensively when these methods
are evaluated, far less attention has been paid to individ-
ual biallelic genotyping, i.e. determining whether the inser-
tion is a homozygote or heterozygote for each pMEI locus.
Genotyping accuracy is critical for phasing insertion poly-
morphisms with single nucleotide polymorphisms (SNPs),
relating insertions with expression quantitative trait loci
(eQTL) and identifying disease-risk loci using genome-
wide association studies (GWAS). Similarly, accurate geno-
types are necessary to infer the effects of drift and selec-
tion on allele frequencies. However, genotyping accuracy of
pMEI released with the 1000 GP dataset (2) was solely es-
timated comparing calls to 250-bp reads (concordance es-
timated to 98%), which are too short to capture a typical
Alu insertion (∼300 bp). To our knowledge, only a hand-
ful pipelines, including MELT (17), polyDetect (39), ERV-
caller (40), TEBreak (41) and AluMine (42) are the only
maintained tools that directly allow genotyping for non-
reference pMEIs. Moreover, MELT and AluMine appear
to be the only software currently offering the option to di-
rectly genotype reference pMEIs (i.e. elements present in the
reference genome but segregating in the population, often
at higher frequencies than non-reference pMEIs). However,
neither MELT nor other tools have been subject to a sys-
tematic assessment of their genotyping performance. Given
the ever-growing number of resequencing efforts, there is a
pressing need to develop highly accurate genotyping tools
to enhance the diverse methods available to detect pMEIs.

To fill this gap, we have developed a new bioinformatics
pipeline, TypeTE, which improves the genotyping of pMEIs
discovered by tools like MELT in whole genome resequenc-
ing data. Our method is based on the accurate recreation
of both the presence and absence of pMEI alleles before
the remapping of reads for genotyping. We apply TypeTE
to both low- and high-coverage sequence data from the
phase 3 of the 1000 GP (2) and the Simons Genome Di-
versity Project (SGDP) (44), respectively. We benchmarked
the results against a unique collection of more than 200
PCR-based genotyping assays, which shows that applying
TypeTE significantly improves genotype accuracy. By ap-
plying TypeTE to all polymorphic Alu insertions discov-
ered in 445 human samples used for the 1000 GP phase 3
(low-coverage WGS) and the Genetic European Variation
in Disease Consortium (GEUVADIS) (45), we provide a
new genotype dataset in the VCF format (variant call for-
mat; see Data Availability section) that will facilitate the
functional and evolutionary analysis of polymorphic Alu in-
sertions.

MATERIALS AND METHODS

Pipeline implementation

Non-reference MEI. TypeTE-non-reference is designed to
genotype insertions absent in the reference genome (Fig-
ure 1A, Supplementary Figure S1). Based on the informa-
tion provided in a VCF file (and based on the format pro-
duced by MELT), the location and orientation of each Alu
insertion are first collected. For each breakpoint, reads that
are mapped in a window of 500 bp (250 bp upstream and
downstream of the breakpoint) are extracted for each sam-
ple from its alignment file (BAM). The mates of discordant
reads (mapping somewhere else in the genome) are also ex-
tracted from the BAM file of each individual. The reads
from all individuals at each studied locus are then com-
bined, and a local de-novo assembly with all the reads is at-
tempted using SPAdes v3.11.1 (46). Minia (v2.0.7) (47) is
used as an alternate assembler when SPAdes fails to gen-
erate an assembly of the sequences (‘scaffolds.fasta’). If the
locus do not provide enough reads for a complete assem-
bly of the Alu insertion, the genomic locations where the
discordant read mates are mapped are identified and inter-
sected with the respective RepeatMasker track (we used the
coordinates version hg19 for 1000 GP data and hg38 for the
SGDP data; RepeatMasker track generated using Repbase
version 20140131 for the UCSC genome browser). Using a
majority rule, the most likely Alu subfamily consensus for
the copy inserted at that locus is identified. To verify orien-
tation and identify target site duplications (TSDs), a hall-
mark of Alu insertions, homology-based searches are per-
formed. First, the identified Alu consensus of a given locus is
searched with blastn (v. 2.6.0+) against the assembled con-
tigs. Then, a second blastn is performed using the sequence
of the reference genome (500 bp window centered on the
pMEI breakpoint) against the assembled contigs. The con-
tig with the highest score when searched against the Alu and
the reference sequence is selected and searched for target site
duplications flanking the MEI. To identify the strand of the
MEI, the sequence flanking the insertion in the contig is fur-
ther compared with the reference sequence. For each MEI,
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Figure 1. Overview of the TypeTE pipeline. TypeTE is divided in two main scripts. The first (A) genotypes non-reference insertion (TypeTE-nonref) and
the second (B) genotypes reference pMEI (TypeTE-ref). (A) TypeTE-ref creates the reference allele (REF) by extracting ±500 bp from the Alu predicted
breakpoint. The alternate allele (ALT), corresponding to the pMEI presence is made by (1–2) removing the predicted TSD from the ±500 bps extracted
sequence. Then, for each locus, read pairs (including discordant mates) are extracted from the individual bam files and are pooled for local assembly (3). If
TSDs are identified in the assembly, the sequence is then inserted onto the flanking (4). In case the assembly is incomplete, the Repbase consensus for the
predicted TE family is inserted instead (4). (B) The REF allele is created after extraction of ±500 bp from the 5′ and 3′ ends of the adjusted Alu position
(including TSDs). The ALT allele is then created removing the Alu sequence and 1 TSD from the same extracted sequence. (C) Genotyping. For each locus,
read-pairs of each sample are extracted in a 500 bps window centered on the predicted breakpoint. For each sample, these reads are then mapped to the
two alleles and genotype likelihood are computed.

the two alleles are reconstructed as follows: a new, larger
window of ±500 bp is extracted upstream and downstream
of the breakpoint predicted by MELT. This represents the
‘absence’ allele. To recreate the ‘presence’ allele, TypeTE
first removes the predicted TSDs from the extracted refer-
ence sequence and inserts the fully assembled MEI with its
two TSDs in the correct orientation. If the assembly fails
to generate a complete sequence of the MEI with flanking
TSDs, the TSD predicted by the transposable element (TE)
detection program (in our case MELT) is duplicated and
placed at the 5′ and 3′ end of the consensus MEI in the com-
posite allele.

Reference TE. TypeTE-reference determines genotypes of
Alus present in the reference genome that are absent in other
individuals (Figure 1B, Supplementary Figure S2). In this
case, no read extraction is necessary to reconstruct the in-
sertion allele. However, the exact coordinates and TSDs of
each pMEI present in the reference genome are reassessed
as follows: the breakpoints identified from MELT for the
location of the reference TE are further refined using the
corresponding RepeatMasker annotation track to identify
the exact location and orientation of each TE inserted in
the reference genome. At first, the Alus sequences found
within ±50 bp of the predicted MELT breakpoints are ex-
tracted from the reference genome. If none is found within
that boundary, Alus within ±110 bp of the predicted break-

points are collected. However, we did not find any differ-
ence in the number of elements identified after increasing
the boundary up to 200 bp. The flanking sequence of the
Alu insertion is also extracted and the TSDs’ coordinates
are identified whenever possible. Then, based on these new
coordinates, a region of ±500 bp upstream and downstream
of the 5′ and 3′ end of the Alu locus is extracted from the
reference genome to represent the ‘presence’ allele. The ‘ab-
sence’ allele is defined by removing the Alu sequence as well
as one TSD from the extracted locus.

Genotyping. TypeTE automatically generates input files
and parallelizes the method developed by Wildschutte et al.
(48), called insertion-genotype, to genotype each Alu inser-
tion in every individual. Briefly, read-pairs with at least one
read mapping to the target locus are extracted and mapped
against the reconstructed ‘presence’ and ‘absence’ alleles us-
ing bwa (v. 0.7.16a) (49). The number of reads that align
to each allele, and their associated mapping quality values
are tabulated and likelihoods for the three possible geno-
type states are calculated (50). Reads that map equally well
to the empty and insertion alleles are assigned a mapping
quality of 0 by bwa (49) and do not contribute to this cal-
culation. Additionally, read pairs are required to partially
align to the repeat sequence and pairs that align entirely
within the target repeat sequence are ignored, since these
reads may not be specific to the targeted locus. By default,
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the genotype with the highest likelihood is chosen, but the
resulting likelihoods may optionally be used as inputs to
downstream programs which estimate genotypes based on
patterns across multiple samples and sites. After genotyp-
ing, individual per-sample VCFs are concatenated.

Evaluation of the 1000 GP genotypes quality and TypeTE
performance

Genotype calling. In order to evaluate the quality of the
Alu genotype calls available in the 1000 GP phase 3 struc-
tural variants (SV) dataset ([(2)], average depth of cover-
age 7.4X), we gathered the genotypes available for both
non-reference (indicated by ‘<INS:ME:ALU>’ in the avail-
able VCF file) and reference (tagged with ‘SV TYPE =
DEL ALU’). We ran TypeTE-reference and TypeTE-non-
reference on the same loci as well as MELT-discovery (non-
reference) and MELT-deletion (reference) using its ver-
sion 2.1.4 (referred to as MELT2 for the remainder of the
manuscript) in order to take into account, the most recent
changes added to its genotyping module. Additionally, we
tested the performances of TypeTE with samples from the
SGDP (44), which has higher coverage (average 42X).

With the 1000 GP data, we ran TypeTE and MELT2 on
445 CEU, TSI, GBR, FIN and YRI individuals also present
in the GEUVADIS dataset (RNA-seq) (45). In the 1000 GP
VCF file released by Sudmant et al. (2), Alu genotypes were
produced by MELT (version 1) for non-reference inser-
tions. However, polymorphic reference Alu insertions were
first discovered along with other genomic deletions with a
set of SV detection tools (BreakDancer, Delly, CNVnator,
GenomeSTRiP, Variation-Hunter, SSF and Pindel), then
genotyped with the same algorithm as any other SV (2).
Because the sample size used in this study is smaller than
the 1000 GP original (n = 445 versus n = 2504), MELT2 –
which first need to identify pMEI hallmarks before geno-
typing them – did not re-identify all the loci genotyped
by the 1000 GP and TypeTE. Also, probably because of
changes in the newer version, some Alu breakpoints were
slightly different between the Sudmant et al. (2) dataset and
the MELT2 output. Thus, in order to reconcile and com-
pare the three datasets (1000GP, MELT2, TypeTE), bed-
tools intersect (v.1.5) (51) was used with a window of ±30 bp
around each original 1000 GP Alu breakpoint. Finally, the
predicted genotypes were compared to PCR assays of 108
non-reference and 43 reference loci in 42 individuals from
the CEU population (see next section).

For the SGDP data, reference and non-reference poly-
morphic Alu insertions were called using MELT2 in 14 pub-
licly available individuals from the South Asian population
for which we had access to DNA. The genotypes of the loci
discovered were then determined using TypeTE and a sub-
set was compared to PCR-based genotypes previously ob-
tained for the same 14 individuals (9 non-reference and 67
reference loci) (20).

PCR typing in a subset of 1KGP and SGDP dataset. Non-
reference (108) and reference (43) Alu loci identified by the
1000 GP were tested in 42 CEU individuals represented in
a 30-trio reference panel of the CEPH (Centre d’Étude du
Polymorphisme Humain; HAPMAPPT01, Coriell Institute

for Medical Research). Primers flanking the Alu insertion
sites were selected using Primer3 (52). PCR amplifications
were performed using OneTaq Hot Start Quick-Load 2x
Master Mix (New England BioLabs) using 3-step PCR (ini-
tial denaturation: 94◦C, 15′, (94◦C, 15′′; 57◦C, 15′′; 68◦C,
30′′) for 30 cycles; final extension 68◦C, 5′). Sequences for
20 new primer pairs are available in Supplementary Table
S1; the remainder are available in (27). Accuracy was eval-
uated by replication in duplicate samples and by evaluating
the number of Mendelian errors in related individuals of
the trios. In the SGDP dataset, non-reference (9) and ref-
erence (67) Alu loci were previously genotyped by PCR in
14 South Asian samples (20). Primers around each Alu in-
sertion were selected using Primer3 (52). PCR amplification
was performed using three-step PCR (initial denaturation:
94◦C, 3′; (94◦C, 15′′; 60◦C, 15′′; 72◦C, 30′′) for 30 cycles; final
extension 72◦C, 5′) in 1X PCR buffer (10 mM Tris, pH 8.3,
50 mM KCl, 1.5 mM MgCl2) with 200 uM dNTPs, 10 pmol
each primer, and 1 U Taq polymerase. Annealing tempera-
ture was adjusted for each primer set. DMSO (5–10%) was
used to improve amplification for some loci. Three detailed
examples of the PCR genotyping are given in Supplemen-
tary Figure S6 and the details about all loci genotyped by
PCR are available in the Supplementary Table S2.

Effect of genotype corrections on per sample Alu insertion
discovery

In some cases, new genotyping changed the
presence/absence status of an Alu insertion for a given
genome. Only considering pMEI presence/absence, we
define a false positive call (FP) as a case in which an Alu
copy is called present, either homozygote or heterozygote
in one sample, while the PCR reports it absent. A false
negative (FN) is recorded when an Alu is called absent
(homozygote absent) while it is called as either homozygote
present or heterozygote by PCR. True positive (TP) and
true negative (TN) are the same calls (presence/absence),
respectively, being validated by PCR. For each dataset
and method, we calculated the sensitivity (ability of the
method to discover a pMEI: TP/(TP + FN)), the precision
(or positive predictive value: TP/(TP + FP)) as well as
the F1 score as described by Rishishwar et al. (43), which
corresponds to the harmonic mean of sensitivity and
precision and summarizes the overall performance of each
method.

Estimation of mappability scores

The mappability scores are downloaded for the
GRCh37/hg19 version of reference assembly for
100mers (ftp://hgdownload.soe.ucsc.edu/gbdb/hg19/
bbi/wgEncodeCrgMapabilityAlign100mer.bw). The down-
loaded file is processed (53) and is converted to bed format
(54). These data are stored in an indexed mysql table. The
mappability scores for genomic regions in the flanking
region (±250 bp) of the predicted Alu breakpoint for
non-reference insertions and flanking region (±250 bp) of
the reference Alu insertions are extracted from the table,
and the mean of the mappability scores is recorded in a
dedicated table and is provided with the output files.

ftp://hgdownload.soe.ucsc.edu/gbdb/hg19/bbi/wgEncodeCrgMapabilityAlign100mer.bw
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Calculation of local read depth

The average read depth at genomic regions in the flanking
region (±250 bp) of the predicted Alu breakpoint for non-
reference insertions and flanking region (±250 bp) of the
reference Alu insertions is calculated using samtools (Ver-
sion: 1.4.1). Only reads with a mapping quality of 20 or
more (mapped with > 99% probability) and bases with a
quality of 20 or more (base call accuracy of > 99%) are
counted.

Inbreeding coefficient (Fis) estimates

In order to assess how genotype quality affects common
population genetics summary statistics, we computed the
per locus inbreeding coefficient (Fis) for the loci assayed by
PCR. Fis is a common metric used in population genetics to
assess the excess (Fis < 0) or the depletion (Fis > 0) in het-
erozygotes relative to the expected genotypes proportion at
Hardy-Weinberg equilibrium. Allele frequencies were cal-
culated using the genotypes produced by each method (1000
GP, MELT2, TypeTE and PCR) as follows:

Fis = Hexp − Hobs

Hexp

with Hexp = 2pq, p = presence allele insertion frequency, q
= (1− p)Hobs is the observed number of heterozygotes.

All statistical analyses were carried out with R version
3.5.1 (R Core Team 2018).

RESULTS

Concordance of the 1000 GP phase 3 genotypes with PCR
assays

Alu genotype predictions of the 1000 GP phase 3 release,
called using MELT (version 1) for non-reference loci and a
combination of SV tools for reference insertions were col-
lected (2). To assess the accuracy of the genotypes, we com-
pared the 1000 GP genotype predictions to a dataset of 108
non-reference and 43 reference Alu loci genotyped by PCR
in 42 individuals (Figure 2A, Table 1, see also Materials and
Methods). Presence of both ‘presence’ and ‘absence’ alle-
les (with and without Alu) were confirmed by the presence
of bands of expected size in the agarose gel electrophore-
sis and in most cases further validated by Sanger sequenc-
ing of PCR amplicons (see Materials and Methods). To fur-
ther ensure genotype accuracy, PCR assays were performed
for all trios of the CEPH CEU panel (n = 30). In every
case, we observed genotypes consistent with the Mendelian
transmission of alleles from parents to offspring (see Ma-
terials and Methods). Thus, the PCR-based assays provide
highly reliable genotypes. Upon comparing the PCR-based
results to the genotype predictions provided by the 1000 GP
phase 3 release, we found an overall concordance rate (to-
tal number of individual genotype predictions identical to
the PCR-based genotypes/total number of predictions) of
83.31% (3649/4380) for non-reference Alu insertions and of
80.72% (1248/1590) for reference Alu insertions. Consider-
ing the PCR-based assays as the most reliable genotypes,
these observations suggest that the genotypes predicted for

the phase 3 of the 1000 GP suffer from a substantial level of
errors.

TypeTE pipeline overview

In order to improve the quality of Alu genotyping by short
read sequencing analysis, we developed TypeTE, which al-
lows the re-genotyping of both reference and non-reference
Alu insertions. The pipeline is divided into two main mod-
ules. The non-reference module predicts genotypes of Alu
insertions absent from the reference genome, while the ref-
erence module predicts genotypes of Alu insertions present
in the reference genome (Figure 1). Details about the im-
plementation of each module are given in the Materials and
Methods section as well as in Supplemental Figure S1 and
Supplemental Figure S2. The basic principle of TypeTE is
to recreate the most accurate sequences for both the ‘pres-
ence’ and ‘absence’ alleles and remap reads to these recon-
structed alleles to infer genotypes. TypeTE currently uses as
input a VCF file such as that typically produced by TE dis-
covery tools like MELT to locate each individual TE inser-
tion. Inorder to reconstruct the pMEI alleles, the pipeline
performs an independent analysis of each predicted TE in-
sertion breakpoint, retrieve a consensus sequence for the TE
inserted, identifies its target site duplication and the strand
of insertion. After allele reconstruction (see Materials and
Methods), reads mapping to each insertion locus are ex-
tracted from individual alignment file (BAM) and mapped
against the reconstructed alleles for genotyping, using an
automated and parallelized version of the method devel-
oped by Wildschutte et al. (48). Upon completion of the
pipeline, a new VCF file with the corrected pMEI position,
genotypes and genotypes likelihoods is then produced as an
output.

Benchmarking TypeTE

In order to assess the accuracy of the predictions made by
TypeTE, we ran the pipeline on a subset of 445 individuals
of European and African ancestry included in the 1000 GP
dataset (see Materials and Methods). These samples were
selected because they are both represented in the 1000 GP
(WGS) and GEUVADIS (RNA-seq) datasets, which we rea-
soned would be particularly useful for functional and evo-
lutionary analyses of pMEIs. We also compared the per-
formance of TypeTE with a recent version of MELT (ver-
sion 2.1.4, hereafter abbreviated as MELT2) using the pack-
ages MELT-discovery (non-reference pMEI) and MELT-
deletion (reference pMEI) on the same dataset. TypeTE
and MELT2 genotypes were then compared to 108 non-
reference and 43 reference pMEI for which we collected or
generated PCR genotypes.

For non-reference insertions, we found that the genotypes
predicted by MELT2 were more concordant with the PCR-
based genotypes than those originally produced by the 1000
GP (obtained with MELT1), reaching a concordance rate
of 87.95% due to an additional 131 individual genotypes
matching PCR results (versus 83.31% for 1000GP/MELT1;
+131/4298 accurate genotypes). Note that the total number
of genotypes considered correspond to the total number of
predictions available and does not take into account missing



e36 Nucleic Acids Research, 2020, Vol. 48, No. 6 PAGE 6 OF 13

Figure 2. Comparison of the predicted genotypes in the 1000 GP dataset with PCR-assays in 42 CEU individuals. Each vertical bar represents one locus,
and match or error regarding the genotype for each individual are piled up on the Y axis and color coded according to the legend. NA values (no genotype
predicted or failed PCR) are removed from the plot).

Table 1. Genotype prediction accuracy (%) for each category of insertions when compared with PCR generated genotypes

1000 GP

Non-reference insertions (n = 108 × 42) Reference insertions (n = 43 × 42)

hom ref (0) het (1) hom alt (2) NAs overall hom ref (2) het (1) hom alt (0) NAs Overall

1000 GP 98.92% 98.28% 23.49% -* 83.31% 97.71% 90.00% 41.84% -* 80.72%
MELT 2.1.4 99.02% 92.27% 68.01% 1.90% 87.95% 98.63% 37.97% 26.62% 5.37% 71.00%
TypeTE 98.44% 89.28% 93.61% 1.54% 92.14% 91.46% 84.54% 87.82% 1.04% 91.56%

SGDP

non-reference insertions (n = 9 × 14) reference insertions (n = 67 × 14)
MELT 2.1.4 92.31% 94.87% 9.09% 0.00% 79.57% 97.93% 88.26% 2.95% 0.00% 70.13%
TypeTE 92.31% 94.87% 100.00% 0.00% 94.44% 91.19% 87.58% 91.14% 0.00% 91.01%

NA: Not applicable as no genotypes reported.
*No NA genotype are recorded in the Sudmant et al. (2015) dataset.

genotypes (unascertained genotypes based on the genotype
likelihoods). TypeTE further increased the concordance
of the genotype predictions, achieving a rate of 92.14%
(+325/4313 accurate genotypes compared to original 1000
GP release). For reference insertions, MELT2 showed the
lowest concordance rate of all methods tested, with only
71% of the genotypes matching the PCR results (versus
80.72% 1000GP/SV-dedicated tools; −374/1504 individ-
ual genotypes). TypeTE performed better with reference

insertions than it did with non-reference pMEI, achiev-
ing 91.56% concordance (+141/1575 genotypes). Based on
these results, we consider that TypeTE delivers consistently
the most accurate pMEI genotypes regarding the different
methods tested.

We further tested the genotyping performance of MELT2
and TypeTE using the SGDP data (44), which benefits from
deeper sequencing coverage than the 1000 GP data (average
read depth: 42X versus 7.4X). We tested the concordance
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of the predicted genotypes with 67 reference and 9 non-
reference Alu loci across 14 SDGP individuals previously
genotyped by PCR (20). MELT2 showed a concordance
rate of 70.13% for reference loci, while TypeTE matched the
PCR results for 91.01% of the predicted genotypes (+181
correct genotypes; Figure 3 and Table 1). For the nine
non-reference loci that were experimentally genotyped, the
concordance rate was 78.57% for MELT2 and 94.44% for
TypeTE (+20 correct genotypes). It is worth mentioning
that the sample size for non-reference SGDP pMEI is rather
small (N = 10) relative to the other comparisons (N > 60
in all other cases). Nevertheless, and as observed with the
1000 GP, TypeTE performed consistently well with both
non-reference and reference loci for the SGDP data.

In order to analyze in more details the genotyping perfor-
mance of each method, we calculated the concordance rate
by genotype category (0 or (0/0): homozygote absent, 1 or
(0/1): heterozygote, 2 or (1/1): homozygote present) corre-
sponding to the percent of correct genotypes in one cate-
gory to the total number of calls for this category (Table 1).
Additionally, we report the percentage of unascertained loci
(NA genotypes) for each method.

We then investigated how the concordance between pre-
dicted and PCR genotypes is distributed across loci and in-
dividuals by calculating the average concordance rate per
locus (total number of correct genotypes at a locus/total
number of individuals with a predicted genotype). Regard-
less of the genotype category (reference/non-reference),
TypeTE showed higher average concordance rate per lo-
cus, as well as lower variance for this value, than the other
methods (Figure 4). The greatest improvement was when
the genotypes of reference insertions were compared to
MELT2, where the concordance rate of TypeTE is always
significantly higher (Tukey’s HSD, P < 0.05).

For each locus assayed by PCR in the 1000 GP dataset,
we also examined whether read mappability and local read
coverage affected genotyping predictions for TypeTE. We
did not find a significant correlation between genotype con-
cordance and the mappability score (ranging: 0.1–1) com-
puted in a 500-bp window around the pMEI breakpoints
(Supplementary Figure S3. Pearson’s product–moment cor-
relation, r = 0.20, P = 0.281 for non-reference loci and
r = 0.13, P = 0.414 for reference loci). We also found
that the depth of coverage for a given locus, which ranged
from 4.7× to 10× across these loci, was not correlated to
genotype concordance for neither reference (r = 0.12, P =
0.4538) or non-reference insertions (r = –0.01, P = 0.957)
(Supplementary Figure S4). We conclude that at least for
the loci tested by PCR, the level of repetitiveness of the
flanking sequence of individual Alu insertions and the lo-
cal read depth do not appear to influence the genotyping
performance of TypeTE.

Effect of genotype corrections on variant discovery

Different methods can assign different genotypes for some
loci due to the inherent differences in their approach or due
to locus-specific features. For example, a heterozygous lo-
cus for the presence of Alu can be genotyped either as ho-
mozygous presence or absence by different methods. We
first converted the biallelic genotypes into presence/absence

calls in order to assess sensitivity, precision (positive pre-
dictive value), and the overall detection accuracy, summa-
rized by the F1 score (harmonic mean of sensitivity and pre-
cision, see Materials and Methods) for each method con-
sidering PCR results as delivering true genotypes. TypeTE
received the highest F1 score in each dataset (1000 GP or
SGDP) and for both types of insertion (reference or non-
reference) (Figure 5). The small number of loci tested for
the SGDP-non-reference dataset (n = 9) did not allow us
to find significant differences between the methods; how-
ever, we show that the increased F1 score of TypeTE with
the 1000 GP non-reference loci is due to a significant in-
crease of the sensitivity compared to the other methods. The
higher F1 score of TypeTE with reference insertions from
both 1000 GP and SGDP datasets is driven by higher preci-
sion (TP/(TP + FP)). In comparison with the existing meth-
ods, overall genotyping accuracy for TypeTE (F1 score) was
higher for both reference and non-reference Alu insertions.

Influence of re-genotyping on population genetics statistics

To illustrate the importance of accurately genotyping Alus,
we calculated the population-wise inbreeding coefficient
(Fis) for each locus in 42 individuals of the CEU cohort
(1000 GP) and 14 individuals of the South Asian cohort
(SGDP). Compared to the original 1000 GP and MELT2
genotypes, the Fis values calculated with TypeTE genotypes
are concordant with the ones based on PCR genotypes.
These results are even more striking when only reference
loci are considered: while TypeTE and PCR estimates of Fis
are centered at 0, MELT2 and 1000 GP genotypes suggest a
clear deviation of most loci from Hardy-Weinberg equilib-
rium (Figure 6). We note that estimates of the Fis are more
variable using the SGDP data, which can be explained by
its smaller sample size and a higher population substruc-
ture (e.g. Wahlund effect due to individuals from distinct
castes or tribes grouped together) than the 1000 GP dataset.
These examples further highlights the importance of accu-
rate genotyping for the correct inference of population ge-
netics parameters.

Influence of the dataset quality on genotype prediction

To discover factors specific to each dataset that influence
genotype prediction, we compared the results obtained in
the 1000 GP dataset (average depth of 7.4X) with the results
from analysis of the SGDP (average depth of 42X) to the re-
spective PCR genotypes. The provenance of the dataset did
not influence the variant discovery abilities (pMEI present
or absent in a given individual) of MELT2 and TypeTE
(Supplementary Figure S5). However, we found that the
percentage of unascertained loci differed between the 1000
GP and SGDP datasets. Between ∼1% and 5.4% of geno-
types were not ascertained by either MELT2 and TypeTE
in the 1000 GP dataset, probably due to low coverage. Con-
versely, all SGDP loci are called in every individual for the
SGDP dataset (Table 1). Even though the number of loci
and the sequencing coverage varied between datasets, influ-
encing MELT2 performances, the genotyping accuracy of
TypeTE was sustained across datasets.
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Figure 3. Comparison of the predicted genotypes in the SGDP dataset with PCR-assays in 14 South Asian individuals. Each vertical bar represents one
locus, and match or error regarding the genotype for each individual are piled up on the Y axis and color coded according to the legend. NA values (no
genotype predicted or failed PCR) are removed from the plot).

Figure 4. Average error rate per locus across methods and datasets. *: significant difference, Tukey’s HSD, P < 0.05; NS: not significant.
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Figure 5. Effect of method and dataset on variant discovery performance. Sensitivity, precision and F1 score are compared for each dataset (1000 GP and
SGDP) according to the type of insertion (non-reference vs reference) and the genotyping method used (1000 GP, MELT2.1.4 and TypeTE). Error bars:
95% confidence interval. Non-overlapping intervals denotes a significant difference between scores.

DISCUSSION

The purpose of TypeTE is to provide automatic and reliable
genotyping of pMEIs using short paired-end reads from ei-
ther whole genome or targeted sequencing. To our knowl-
edge, MELT (17) is currently the only tool with continued
support and documentation that allows direct genotyping
of both reference and non-reference pMEI. While its per-
formance for variant discovery has made it a popular tool
for pMEI mapping, to our knowledge its performance at
genotyping has never been comprehensively tested. More-
over, there was no formal testing of the genotype quality of
the pMEIs reported in the phase 3 release of the 1000 GP
(2). Here, we collected the results of more than 150 locus-
specific PCR genotyping assays to test ∼ 1% of all Alus
(151/13 963) originally released by the 1000 GP, as well as

those produced by a recent version of MELT (v. 2.1.4) and
those inferred by TypeTE.

Combining reference and non-reference Alus, our results
indicate that ∼18% of the genotypes reported by the 1000
GP are different from PCR-derived genotypes we collected
and produced, and which we consider the most reliable,
based on duplicate samples and expected Mendelian segre-
gation in related individuals. These results are at odds with
a previous estimate of 98% genotype concordance observed
for the non-reference insertions using a PCR-free approach
based on 250 bp reads (2). However, we believe that this
method is less accurate than PCR genotyping to capture
a full-length Alu insertion, which is usually larger (∼300
bp) than the read size. Genotypes reported by the 1000 GP
were predicted using the first version of MELT for non-
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Figure 6. Per locus inbreeding coefficient (Fis). The Fis is estimated for each locus using the alleles frequencies given by each method (1000 GP: original
1000 GP genotypes, MELT2, TypeTE and PCR assays) and for each of the 1000 GP (n = 42 individuals) and SGDP (n = 9 individuals) datasets. Red
dashed-line: expected Fis at Hardy–Weinberg equilibrium (Fis = 0).

reference loci, but genotyping methods developed for other
structural variation (indels, inversions, etc.) were used for
reference insertions. While MELT2 appears to offer a no-
ticeable improvement over its first version for genotyping
non-reference Alus, its overall genotyping performance is
diminished when applied to reference loci, with genotyping
errors reaching more than 20% when compared to the PCR.
For both categories of loci, we observe that most errors
are caused by the underestimation of homozygous geno-
types carrying the alternative allele, relative to the reference
genome (Table 1). We also note that for non-reference in-
sertions, MELT’s genotyping algorithm benefited from im-
provements deployed in the version tested (v2.1.4) com-
pared to its original release, in particular to detect homozy-
gous insertion (1/1). However, this increased sensitivity to
detect pMEI alleles from read alignments seems to be ac-

companied by a reduced power to detect ‘absence’ alleles
for reference insertions (MELT-deletion module). Such er-
rors are consequential for population genetics analysis be-
cause they lead to inaccurate estimation of population ge-
netics parameters. For example, calculation of the inbreed-
ing coefficient (Fis) shows that the original release of the
1000 GP genotypes was overestimating heterozygotes, lead-
ing to negative and likely inaccurate values of Fis (Figure 6).
Genotypes obtained with MELT2 improve these estimates
for non-reference insertions, but the results appear less ac-
curate when computed from a small sample and they are
more inaccurate for reference insertions. This difference is
critical given that reference insertions are more likely to seg-
regate at higher frequencies than non-reference pMEI. The
aforementioned issues underscore the need for a tool specif-
ically dedicated to the genotyping of pMEI.
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Toward this goal, we have developed TypeTE and ap-
plied it to genotype both reference and non-reference Alu
insertions in a sample of the 1000 GP and SDGP datasets.
Our benchmarking results show that TypeTE has an aver-
age concordance rate of 91% or greater with PCR-based
genotyping. Importantly, TypeTE maintains a genotyp-
ing accuracy >84% under all genotyping scenarios. While
TypeTE performs better than MELT1 and MELT2 for non-
reference insertions, the most significant improvement is for
reference insertions. In particular, the genotypes predicted
by 1000 GP and MELT2 never reached >41.8% concor-
dance with the experimental results when the PCR called a
homozygote absence (0/0); by contrast, TypeTE predicted
these genotypes with >87% concordance in the two datasets
tested (1000 GP and SGDP). Consequently, calculation of
Fis based on TypeTE genotypes shows better concordance
with that based on PCR-derived genotypes, and fits the neu-
tral expectation as we observe no deviation from Hardy-
Weinberg equilibrium for a single human population (55).

The principal difference between TypeTE and MELT de-
rives from characteristics of the actual data on which the
genotyping is performed. While both methods implement
the core genotyping algorithm described by Li et al. (50),
TypeTE relies on a strategy based on re-alignment of the
reads against both presence and absence alleles before com-
putation of the genotype likelihoods, an approach initially
introduced by Wildschutte et al. (48). Furthermore, TypeTE
facilitates the genotyping with no user intervention by us-
ing as input the VCF file produced by MELT (or virtually
the output of any other pMEI detection software trans-
formed in VCF with the necessary loci information, see
online TypeTE manual) to generate a new VCF delivering
the predicted genotypes and their likelihood. TypeTE also
uses recently developed assemblers (SPAdes (46) and Minia
(47)) and use reads from all individuals for a locus for lo-
cal Alu assembly which, in our hands, showed a higher rate
of assembly than the CAP3 assembler (48,56). In addition,
TypeTE can still genotype pMEIs if a de-novo assembly
is impossible: if an incomplete Alu is assembled, TypeTE
substitutes it with the exact consensus sequence based on
the information provided by discordant and split reads as-
signed to that location (see Materials and Methods). This
step enables the reconstruction of alleles and possibly com-
pensate the genotyping errors associated with lack of cov-
erage. The reconstruction of alternative alleles (either by lo-
cal assembly or consensus-based)––a major difference with
MELT––appear to significantly improves the accuracy of
Alu genotyping. Finally, TypeTE predicts the TSD accom-
panying each insertion and the pMEI orientation, which en-
sures optimal reconstruction of the two alleles. Collectively
these implementations enable TypeTE to generate highly
accurate Alu insertion genotypes.

We further tested whether the quality of the start-
ing dataset, in particular its sequencing depth, influenced
TypeTE’s performance. By comparing results between the
1000 GP and SGDP datasets, which use different sequenc-
ing depth (on average 7.4X and 42X, respectively), we found
that TypeTE performs equally regardless of coverage depth,
at least for reference insertions, for which we had enough
loci to compare between datasets. Using both non-reference
and reference Alu insertions genotyped with TypeTE in the

1000 GP dataset, we also showed that the average sequence
coverage of the region flanking these loci does not seem to
influence genotyping accuracy. Thus, TypeTE can support
the analysis of large population dataset without stringent or
highly uniform coverage requirements.

While TypeTE offers significant improvements over
MELT, it failed to genotype accurately as small proportion
of the loci we experimentally assayed (16/227). Neither low
sequencing coverage nor mappability issues could be readily
implicated as hindering genotyping at these loci. We believe
that other locus-specific idiosyncrasies prevent the ability
of TypeTE to produce an accurate allele call for these par-
ticular elements. For instance, earlier tests on the pipeline
showed that a 1-bp insertion at the end of the element in
one allele or a slight error in the TSD prediction could dra-
matically affect the re-mapping and genotype predictions. A
specific assessment of the bioinformatic methods aimed to
identify TSDs should be able to improve this type of issues.
Identifying boundaries of Alu insertion in low complexity
(especially A-rich) regions is challenging due to individuals
and populations variations (57) in the length of the poly-
A tail of the element, and according to our tests, Repeat-
Masker often fails to identify the exact boundaries of such
reference elements. Even though our pipeline in principle
considers such subtle sequence variation, at least for one
locus, we found that the TSD was overlapping the anno-
tated poly-A region. Implementing changes to identify sim-
ilar instances could mitigate genotyping miscalls for those
loci. Additionally, our ability to evaluate the concordance
of genotype predictions in low-complexity and highly repet-
itive regions was restrained to PCR-accessible loci. Because
of this technical limitation, our analysis filtered out these
regions, that are also extremely difficult to map or geno-
type with short reads. We have also noticed that altering
the parameters or method for local de novo assembly can
improve the assembly of certain pMEI. An automated ap-
proach to customize the assembly parameters for each lo-
cus that failed with the standard approach would enhance
the reconstruction of non-reference TE sequences. Identi-
fying proper orientation of insertions is also crucial in ac-
curately genotyping the insertions and we are also contem-
plating a read-based approach to identify the orientation
of insertions in addition to the current assembly-based ap-
proach. Collecting more benchmarking data might allow
us to characterize more finely these issues and to adapt
the pipeline accordingly. Notwithstanding these peculiar in-
stances, TypeTE has the lowest error rate of all methods
tested and as such it represents a valuable advance in the
field.

The task and challenges of pMEI genotyping have been
largely overlooked in the literature. Yet we show here that
inaccurate genotyping of pMEIs can significantly bias pop-
ulation genetics inferences. It is presumably because of these
issues that reference pMEIs have been ignored altogether
in previous population genomics studies using pMEIs (58–
60). By improving genotyping accuracy for both reference
and non-reference insertions, TypeTE will enhance future
population genomics studies using pMEI as markers or
variants. Notably, our results now offer a dataset of geno-
typed Alu insertions for 445 samples of the 1000 GP that
is complemented by a wealth of functional data includ-
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ing RNA-seq (45), DNA methylation (61), DNase I ac-
cessibility (62) and ATAC-seq (63,64). We anticipate that
these resources will open new avenues to explore the cis-
regulatory influence of pMEIs in humans (30). The mod-
ularity of TypeTE allows one to easily combine new assem-
blers to improve the reconstruction of each pMEI, but it is
also possible to skip this step and only use consensus se-
quence of MEI to speed up the computation time. The de-
sign of TypeTE makes it compatible with any data produced
by pMEI detection tools and future updates are scheduled
to genotype insertions from any other retroelement families
in virtually any species.
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