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Abstract

Network density is an important attribute that affects the efficiency of innovation networks.

However, the understanding of how network density affects the innovation efficiency of inno-

vation networks is still unclear and even controversial. This paper uses a multiagent simula-

tion method to study this problem. First, an innovation simulation model is established to

describe the generation process of innovations in the context of network innovation, and a

classical random network model is used to generate a test set of structures with different

network densities. Then, the innovation model is run on the test set of networks to obtain the

innovation efficiency of the structures with different network densities. The result shows that

for explorative innovation, high network density is more conducive to improving innovation

efficiency, and for exploitative innovation, low network density is more conducive to improv-

ing innovation efficiency. However, when network density is small enough to destroy net-

work connectivity, it will lead to a large risk of innovation failure. Finally, the reasons for the

results are further analyzed, and the theoretical and practical significance of the conclusions

are discussed.

1 Introduction

The complexity and risk of innovation make innovation activities increasingly depend on col-

laboration among innovation subjects. Individuals form innovation networks with different

structures through various economic and social connections, thus making innovation in the

network context the main form of innovation. Firms frequently engage in bi- or multilateral

cooperation to exchange knowledge, learn from each other and innovate [1]. As an innovation

network is the carrier of the innovation process, it goes without saying that its structural con-

figuration is likely to affect knowledge diffusion process at both the micro level and the sys-

temic level [2], therefor has an important impact on innovation efficiency.

The question of what network structure is the most conducive to innovation has long been

of great interest to scholars. Literatures from various disciplines have addressed this question

through different perspectives of network change process [3], structural characteristics (e.g.

core-periphery structures [4], degree distribution [5], and small-world network properties
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[6]), individual behavior process (e.g. broad casting [7, 8], free diffusion by random interac-

tions [9, 10], and barter trade [9, 11]), network position of individuals [12–16], ability of actors

affected by the knowledge diffusion process [17], and so on.

The agent-based modeling (ABM) approach is one of the most suited techniques to study

this question. In ABMs, the agent is mainly characterized by a given set of goals and actions,

and a given set of rules of social engagement, driving the interactions with other agents and

the environment [18]. This allows investigation of the relationship between the behaviors of

the agents at the individual level and the dynamics of the overall network at the systemic level

[19].

The ABMs in this field often work in two interrelated ways: creating different network

topologies and simulating the knowledge diffusion process within the networks. In this stream

of research, there are many structurally distinct algorithms to construct different network

topologies, such as the Erdös-Rényi (ER) random network [20], the Barabási-Albert (BA) net-

work [5], the Watts-Strogatz (WS) network [6], and the Evolutionary (EV) network [2]. Each

of them captures different characteristics of the corresponding network topology. There are

also some different knowledge transferring mechanisms employed to simulate the interactions

between the individuals within the network. For example, Cowan et al. [7] and Cowan and

Jonard [11] employ the WS network to explore the impacts of structural characteristics of path

lengths and clustering coefficient on the efficiency of knowledge diffusion processes with both

broadcasting and barter trade mechanisms of knowledge flow. Cowan and Jonard [9] employ

the BA network to explore the impacts of the structural holes on the efficiency of knowledge

diffusion by random interaction process with both free diffusion and bater trade transactions.

Hua et al. [10] employ the BA network algorithm to explore the impact of preferential attach-

ment on the efficiency of innovation networks with a process of free diffusion by random

interactions. Lovejoy and Sinha [8] construct a presentative test set of all possible structures

with 10 nodes to explore the efficiency of different structures with both free diffusion by ran-

dom interactions and broadcasting mechanisms of knowledge flow. Mueller et al. [2] employ

four different structural algorithms (i.e., ER, BA, WS and EV) to explore the effect of structural

disparities on barter trade knowledge diffusion process in networks, and highlight the relation-

ship between degree distribution and network performance.

Among the many indicators used to measure network structure, network density is a consid-

erably basic and important indicator. Network density refers to the number of connections

between nodes within a network. Gnyawali and Madhavan [21] suggest that the number of net-

work connections will greatly affect the communication and cooperation between individuals,

so network density is an important factor affecting individual behaviors and effects. Jackson

and Watts [22] also point out that individuals form and sever links connecting themselves to

other individuals in evolving networks, and there is a clear difference between the behavior of

individuals in networks with large densities and those in networks with smaller densities. More

specifically, network density has an important impact on the diffusion process of the network.

For instance, Nadini et al. [23] studied the epidemic spreading and vaccination strategies in an

urban-like environment, and the result shows that the density of the network plays a critical

role on the diffusion of both SIS and SIR epidemic processes. Also, changing the number of

links has important influence on interconnection between the components of the system, which

can be modeled as a percolation process. Percolation theory is an approach to study vulnerabil-

ity of a system [24]. Callaway et al. [25] studied percolation on graphs with completely general

degree distribution, giving exact solutions for a variety of cases, including site percolation, bond

percolation, and models in which occupation probabilities depend on vertex degree.

Then, how does network density affect the efficiency of innovation networks? One view is

that a greater density of the innovation network is more conducive to the generation of
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innovation. Saxenian [26] conducted an in-depth study of innovation activities in Silicon Val-

ley and suggested that a dense network is an important foundation for Silicon Valley enter-

prises to continuously generate innovation. Ahuja et al. [27] suggest that dense networks can

promote innovation in a mature and stable environment. Rost [28] suggests that a high-density

enterprise network is conducive to learning among enterprises and cluster innovation because

a higher network density is conducive to obtaining useful information for enterprises. The

other view is that sparse networks are more conducive to innovation. Burt [29] points out that

low network density is conducive to the generation of innovation because high network den-

sity easily causes redundancy of information and knowledge inside the network, thus resulting

in a low efficiency of knowledge flow. Cowan and Jonard [11] point out that efficient innova-

tion networks often have small-world characteristics, and small-world networks themselves

are a structure with low network density. According to Nerkar and Parachuri [30], an efficient

innovation network consists of adding a few central nodes to a sparse network for pooling

knowledge. Scholars have also tried to find a boundary between the two. Zhang et al. [31] indi-

cate that network density will promote knowledge increase when it is high or low, while the

inhibition of knowledge diffusion and knowledge innovation will appear when network den-

sity is moderate.

These viewpoints are of great significance for understanding the influence of network den-

sity on the innovation process, but previously published works have not yet reached a consen-

sus on this issue. The differences are mainly caused by the following aspects. First, innovation

efficiency is affected by many factors. Scholars start from different theoretical perspectives and

adopt different research methods, and their conclusions are often based on specific research

backgrounds, which lack universality to a certain extent. Second, innovations can be divided

into different types. For example, innovation could be divided into explorative innovation and

exploitative innovation from the perspective of ambidextrous innovation [32], and innovation

networks show different knowledge dynamics under different types. The lack of clear differ-

ences between different types of innovation in research design is an important reason for the

controversial conclusions of some studies. Third, various structural characteristics of innova-

tion networks are often interrelated, and many research methods have difficulty separating the

influence of network density on innovation from other influencing factors to a certain extent.

Will et al. [33] noted that computational experiments are an effective method to solve this kind

of problem, while Lovejoy and Sinha [8] adopted the method of network simulation to carry

out this kind of research. Therefore, this study uses this research paradigm to explore this

problem.

This paper uses a multiagent simulation method to study the effect of network density on

innovation efficiency. First, from the perspective of knowledge management, an innovation

simulation model is constructed to describe the process of innovation, and two kinds of inno-

vations, namely, explorative and exploitative innovation, are distinguished by adjusting the

parameter settings of the model. Second, a network test set with different densities is generated

based on a famous random network model proposed by Erdös and Rényi [20]. Third, the

innovation simulation model is run on different networks in the network test set to observe

the efficiency of different kinds of innovations. Finally, the influence of network density on

innovation efficiency is analyzed by adjusting the type of innovation and network density.

2 The innovation process model

2.1 The innovation process computational representation

According to Joseph Alois Schumpeter, innovation puts together existing elements into “new

combinations”, and this new combination should be able to be introduced into the production
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system and create new values [34]. Based on this famous concept, scholars in the field of

knowledge management define innovation as a new combination of existing knowledge [35,

36], and this new combination must be superior to the current situation and conform to the

goal of innovation [37, 38]. Therefore, innovation is regarded as a process of searching, reorga-

nizing, and selecting existing knowledge [39, 40]. Based on this idea, this paper constructs a

model of the innovation process from the perspective of the knowledge dynamics of the inno-

vation process.

First, assume that all the knowledge needed to realize a specific innovation constitutes a

knowledge vector L = {k1, k2,. . .kl}. Each dimension represents a specific type of knowledge,

and each value ki represents the amount of specific type of knowledge accumulated to achieve

innovation. Without loss of generality, set ki = k in the simulation process.

Then, consider an innovation network consisting of N nodes. Each node is defined by a vec-

tor vi = {vi1, vi2,. . .,vil} with the same dimension as L. The number of vi denotes the amount of

knowledge required for innovation in the corresponding dimension. At the beginning, the

knowledge needed by the innovation is distributed in different nodes in the network. Here to

model this idea, we randomly select l nodes, set their knowledge vectors as {k, 0, . . ., 0}, {0, k,

. . ., 0}, . . ., {0, 0, . . ., k} respectively. At the same time, set the knowledge vectors of other

nodes all equal 0. As time goes by, the nodes communicate with each other within the con-

straints of the network structure and constantly update their knowledge vectors, thus generat-

ing “new combinations” of knowledge. This innovation occurs once there is a node in the

network that integrates all the knowledge needed for innovation, in other words, its knowledge

vector is identical to the innovation vector L,.

Specifically, the communication rules between nodes are set as follows: at each time t, every

node randomly selects another node from its neighbors in the network and communicates

with it. The two interacting nodes, denoted by i and j, randomly select a dimension c as the

current topic for discussion. If node j has more knowledge than node i on this dimension, that

is, vic<vjc, then node i will learn from node j through this conversation so that vic will obtain

an incremental dv. In contrast, vjc gets an incremental dv. With the limit of their ability, it is

assumed that each node can communicate only once on a single topic at any given time. It

means that each couple of nodes, at each time step t, can communicate only on a specific topic.

Additionally, only idle nodes could be selected as partners. If node i selects one of its neighbors

j to interact, then both i and j are occupied at this time step. Both of them are not able to inter-

act with another of their neighbors until next time step t+1. If there is no idle node in the net-

work, time t ends.

We use the methodology proposed by Lovejoy and Sinha [8] to measure innovation effi-

ciency. Let NCTF (number of conversations to finish) denote the number of all the communi-

cations between all the nodes before innovation happens, which measures the innovation cost.

Let TTF (time to finish) denote the time consumed to generate the innovation, that is, the

number of simulation steps from the initial state to the generation of the innovation, which

measures the speed of innovation. In addition, if the knowledge in the network cannot be com-

municated adequately due to structural limitations, innovation may also fail to occur. This is

usually caused by the lack of connectivity of the network structure and causes the failure of the

knowledge required for innovation to be fully integrated. Let PF (percentage of failures) denote

the proportion of innovation failures among all the iterations of the simulation process with a

specific network structure, which measures the risk of the innovation. Thus, an efficient inno-

vation network refers to structures that can carry out innovation with less cost, less time, and a

higher success rate.
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2.2 Two different types of innovation

In addition, this model can distinguish between two different types of innovation, namely,

explorative innovation and exploitative innovation. Exploration and exploitation are a pair of

important concepts in organizational learning [41], innovation [42], entrepreneurship [43],

and many other areas. March [44] divides the process of organizational learning into explora-

tion and exploitation. He and Wong [45] draw from March’s analytical framework and divide

innovation into explorative innovation and exploitative innovation. Explorative innovation

emphasizes acquiring new kinds of knowledge and strives to leave and go beyond the existing

knowledge base [41], mainly through expanding the width of knowledge, which increases

types of knowledge. The main feature of explorative innovation is that the innovation subject

should collect a variety of different types of knowledge, and the amount of each type of knowl-

edge is not necessarily large. Exploitative innovation emphasizes the extraction and improve-

ment of existing knowledge [41], mainly through expanding the depth of knowledge, which is

to increase the amount of knowledge of specific types. The main feature of exploitative innova-

tion is that the innovation subject should accumulate an amount of knowledge, and the diver-

sity of knowledge is less required. Benner and Tushman [46] pointed out that, on the one

hand, enterprises need to acquire new knowledge, develop new products, and open new mar-

kets through explorative innovation. On the other hand, enterprises need to integrate existing

knowledge and expand the functions of existing products through exploitative innovation to

provide better services to customers in the existing market. In some cases, companies need to

strike a balance between the two types of innovation, either by carrying out both types of inno-

vation activities at the same time or by alternately adjusting the resources allocated to both

types of innovation.

The setting of the innovation vector L enables the model to distinguish the two different

types of innovation. There are two important parameters in vector L, l and k, which represent

the number of knowledge types and the amount of knowledge in each type, respectively.

When the value of l is relatively large and the value of k is relatively small, it means that there

are many kinds of knowledge needed by this innovation, but the requirement of the amount of

each kind of knowledge is not high. Innovation could be realized by searching and acquiring

new kinds of knowledge. Therefore, this setting represents explorative innovation. In contrast,

when the value of l is relatively small and the value of k is relatively large, there are fewer types

of knowledge needed by the innovation but higher requirements for knowledge of specific

types. Innovation could be realized through the accumulation and in-depth utilization of spe-

cific types of knowledge. Therefore, this setting represents exploitative innovation.

3 The test set of network structures

3.1 The test set based on the random network model

The Erdös-Rényi random network model was used to generate a network set for testing. Erdös

and Rényi [20, 47] provide pioneering research on random networks, and here, we adopt one

of their key models. The network generation rule of this model is described as follows: for a

network composed of N nodes, an edge is formed between every two nodes with a probability

p, and the generation of any two edges is independent of each other.

When the size of the network is fixed, the value of probability p determines the number of

edges in the network, so it also determines the density of the network. Network density is usu-

ally defined as the ratio between the actual number of edges and the maximum possible num-

ber of edges in the network [48]. The maximum number of possible edges in a network of N
nodes is C2

N ¼ NðN � 1Þ=2. Assuming that the actual number of edges in the network
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generated by this model under the control of probability p is m, the network density is 2m/N
(N−1). Since m is a random variable determined by p and N, it is not difficult to prove that the

expected value of network density is E(2m/N(N−1)) = p. Therefore, in the process of repeated

simulation experiments, the probability p can be used as the proxy for the network density.

When p = 0, no edges are formed between any two nodes, and the actual number of edges in

the network is 0, so the density of the network is also 0. When p = 1, there are edges connected

between any two nodes in the network. In this case, the actual number of edges in the network

is the maximum possible number of edges, so the density of the network is 1. Let the probabil-

ity p vary from 0 to 1. A group of random networks with different network densities can be

obtained, which is the network test set adopted in this research.

The main reasons for selecting this network set as the test set of this research are as follows.

First, the model realizes direct control of network density. Second, the influence of other net-

work structure characteristics can be well controlled by this model. Generally, there is a high

correlation between different network structure characteristics. However, in this model, the

existences of any two edges are independent of each other. Therefore, the influence of other

structural characteristics is eliminated through sufficient randomization, and the effect of net-

work density is separated from many other factors.

3.2 Three important features of the test set

In this model, the network structure is only determined by two parameters, N and p. There are

already many known properties of this model, and three important conclusions that are related

to the subsequent research in this paper are summarized as follows.

First, the initial linkage appears at the threshold of 1/N2 [49]. The network is likely to have

no edges for p less than 1/N2, while for p greater than 1/N2, the probability of having at least

one edge approaches 1.

Second, a loop appears at the threshold of 1/N, accompanied by a large branch. When

defining the size of a branch of a network, the convention is that a branch is called a large

branch if it has at least N2/3 nodes, and a large branch is the only large branch in the network.

When p is greater than 1/N, the random network will have a large branch with a probability of

approaching 1 [49].

Third, the network becomes connected at the threshold of log (N)/N. One of the important

discoveries of Erdös and Rényi is that random networks have a transition stage from con-

nected to disconnected phases [47]. They show that when p is greater than log (N)/N, the net-

work will be connected with a probability approaching 1, and when p is less than log (N)/N,

the network will be disconnected with a probability approaching 1.

Interested readers will find further details on thresholds and phase transitions of Erdös and

Rényi random network in the work of Jackson [49], where also presents the snapshots of corre-

sponding structures near the different thresholds of p value. It will be useful in the discussion

of the model results, while here we proceed with the operation of the model.

4 Parameter settings and simulation results

4.1 Parameter settings

The effect of network density on innovation efficiency can be observed when the innovation

simulation model is run on the network test set. The following is the setting of experimental

values used in the simulation process.

In the network model, only the network size needs to be preset. Let the network size be

N = 100 throughout all the experiments. In the innovation model, the two parameters k and l
involved in the innovation vector L, the knowledge increment dv in the communication
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process, and the knowledge distribution in the initial state need to be preset. The setting of the

innovation vector L determines the specific types of innovations. According to the foregoing

analysis, in the case of explorative innovation, let l = 20 and k = 1, and then the innovation vec-

tor L becomes a 20-dimensional vector {1, 1, . . ., 1}. In the case of exploitative innovation, let

l = 2 and k = 20, and then the innovation vector L becomes a 2-dimensional vector {20,20}. In

addition, without losing generality, let the knowledge increment in communications be dv = 1.

We used the simulation software NetLogo [50] to write the code and Origin [51] to carry

out the data processing and graphic editing. Each experiment was repeated 10,000 times to

produce sufficient statistical significance.

4.2 Results of explorative innovation

Figs 1 and 2 show the cost (NCTF), speed (TTF), and risk of failure (PF) of explorative innova-

tions as a function of the network density controlled by variable p. The curve in the figure is

the mean value of the corresponding index, and the line segment in the vertical direction rep-

resents the standard deviation at that point. For the convenience of analysis, two key positions

of the p value corresponding to the network size (N = 100) are also marked in the figures:

p = 1/N = 0.01 and p = log (N)/N = 0.02. According to the description of the structural charac-

teristics of the random network in the previous section, when p = 0.01, loops and large

branches begin to appear on the network. When p = 0.02, the global connectivity of the net-

work begins to emerge. In Figs 1 and 2, both the metrics NCTF and TTF are not plotted for the

entire interval of p, which means that the cost and the time before innovation goes to infinity,

i.e., the system never reach innovation. This is coherent with the fact the PF is equal to 1, as

this means that the innovation process fails in all of the 10000 times of repeated experiments.

According to Figs 1 and 2, both NCTF and TTF of explorative innovation decrease with the

increase in p. In other words, for explorative innovation, the increase in network density is not

Fig 1. NCTF and PF of explorative innovation as a function of p.

https://doi.org/10.1371/journal.pone.0270087.g001
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only beneficial to improve the innovation speed but also beneficial to reduce the innovation

cost.

Figs 1 and 2 also show that explorative innovation will not occur if network density is

remarkably low. This is because the connected branches of the network are relatively small,

leading to the dispersed distribution of different types of knowledge required for innovation in

different branches of the network so that the knowledge required for innovation cannot be

fully realized. When the network density is remarkably high, the rate of innovation failure

decreases because the connectivity of the whole network rises. Given enough time, the knowl-

edge needed for innovation can be fully integrated. At the same time, the risk of failure has a

state transition with increasing network density, and the reason behind this state transition is

that the network structure changes from connected to disconnected stages with increasing net-

work density [47].

In general, an increase in network density is beneficial to explorative innovation. Higher

network density is beneficial not only to improve the speed of innovation and reduce the cost

of innovation but also to avoid the risk of failure.

4.3 Results of exploitative innovation

Figs 3 and 4 show the cost (NCTF), speed (TTF), and risk (PF) of exploitative innovation as a

function of the network density manipulated by p. Two key positions of p values are also indi-

cated in the figures: p = 1/N = 0.01 and p = log (N)/N = 0.02. In addition, another point

p = 0.05 is also indicated in the figures. Both the NCTF and TTF curves present an inflection

point here, especially that of the TTF curve, which is a local extreme point. Different from

p = 1/N = 0.01 and p = log (N)/N = 0.02, the position of this point depends not only on the

structure parameters (N and p) but also on the parameters of the innovation model (l and k),

so it cannot be expressed as a function of network size N with a relatively simple formula. This

Fig 2. TTF and PF of explorative innovation as a function of p.

https://doi.org/10.1371/journal.pone.0270087.g002
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location is rather easy to identify both theoretically and practically. In this model, this point is

bound to appear on the right side of p = log (N)/N, where PF approaches zero. In other words,

this is the critical point of global connectivity of the network. In management practice, partici-

pants of the network can easily determine whether they are linked to others.

Fig 3. NCTF and PF of exploitative innovation as a function of p.

https://doi.org/10.1371/journal.pone.0270087.g003

Fig 4. TTF and PF of exploitative innovation as a function of p.

https://doi.org/10.1371/journal.pone.0270087.g004
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As seen from Figs 3 and 4, the failure risk of exploitative innovation here has similar trends

to that of explorative innovation shown in Figs 1 and 2, but there are also two differences. One

is that even if p is remarkably small, exploitative innovation can still occur, but explorative

innovation cannot occur at this stage. Correspondingly, the value of PF here is not equal to 1,

although it looks very close to 1. This means that although the incidence is rather low, there

are still a certain number of finite values of these metrics out of the 10000 repeated runs of the

experiments. The second difference is that in exploitative innovation, the transition stage of

innovation failure appears at smaller p. This suggests that the success of exploitative innovation

is less dependent on network connectivity. Because exploitative innovation requires fewer

types of knowledge, all the knowledge needed for innovation is provided by fewer participants.

The cost of exploitative innovation (NCTF) increases with increasing network density, as

shown in Fig 3. Therefore, a lower network density is beneficial to reduce the cost of innova-

tion. However, the TTF of exploitative innovation changes in a more complex way. Although

the changing mode of TTF is similar to that of NCTF, it is no longer monotonous. Instead,

there is an upward pulse in the middle part of the figure. When p<0.01 and p>0.05, TTF of

exploitative innovation increases with network density. Therefore, the lower the network den-

sity is, the faster the innovation process. However, when the network density is approximately

p = log (N)/N = 0.02, there is a special region that leads to poor innovation efficiency. The loca-

tion of this special region is also determined by the transition stage of global connectivity of

the network. A deeper explanation of this region will be provided below, along with further

discussion of the mechanisms of the results.

In general, a high density of networks inhibits the efficiency of exploitative innovation.

Higher network density not only leads to a higher cost of innovation but also leads to lower

speed. A sparse network corresponds to a lower cost and faster speed, but when the network

density is too low to maintain global connectivity of the network, the risk of failure of the inno-

vation will increase sharply.

5 Further discussions on the simulation results

According to the three key points of the p value, the discussion is divided into three scenarios.

For clarity, we first discuss the scenarios of p<0.01 and p>0.05 and then discuss the scenario

of 0.01<p<0.05.

5.1 The scenario of p< 0.01

According to the proof in the literature [49], p = 1/N = 0.01 is the threshold of the emergence

of loops and large branches in the network. When p is less than this value, the network density

is remarkably low, the network is made up of several small branches, and each small branch

has a tree structure. With the increase in the p value, the number of branches will gradually

decrease, and the size of branches will gradually increase.

For explorative innovation, the generation process requires the integration of many differ-

ent types of knowledge, so innovators need to communicate with many other subjects. There-

fore, explorative innovation can only occur in large branches of the network. In such a

structure of this scenario, there are hardly any large branches, so explorative innovation usu-

ally cannot occur.

For exploitative innovation, the generation process requires less knowledge. It is mainly

realized by accumulating a few specific kinds of knowledge. What innovators need is not to

communicate with many other subjects but to communicate repeatedly with a small number

of individuals with needed knowledge. Therefore, exploitative innovation can occur in small

branches of the network. However, due to the novelty of innovation, it is usually impossible to
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know the exact location (which branch of the network) of needed knowledge, which leads to

high failure risk in this scenario. If the needed knowledge exists in the same branch, innovation

will potentially be realized. In such a circumstance, the smaller the branch is, the shorter the

distance between needed knowledge. Then, innovation will be realized faster and at a lower

cost.

5.2 The scenario of p> 0.05

In this scenario, the large branch of the network has absorbed most of the node, and the net-

work structure has basically reached global connectivity. With the increase in p, the branch

size has been basically fixed, so the risk of failure is extremely low, and innovation almost

always occurs with a relatively high p value.

In this case, the higher the network density is, the more neighbors each node has, which

makes the communications between different nodes very convenient. Intuitively, the innova-

tion network should be very efficient in this circumstance. However, the experimental results

show that the increase in network density has opposite effects on the two different types of

innovations. The concept of conversational churning emphasized by Lovejoy and Sinha [8]

provides important enlightenment for understanding the reasons for these effects. Conversa-

tional churning refers to whether the node in the network can change communication objects

frequently. A large network density means that the nodes in the network have many neighbors

to talk with and results in a high degree of conversational churning.

For explorative innovation, high conversational churning can make the innovation subject

have many communication objects to choose from, which will promote the integration of dif-

ferent types of knowledge to a large extent and improve the speed of innovation. At the same

time, it can avoid wasting too much time in communication with the same partner, thus

reducing the cost of innovation. Therefore, in this stage, the higher the network density is, the

more conducive it is to the generation of explorative innovation.

For exploitative innovation, what the innovation subject needs is the accumulation of

knowledge in specific fields. Frequent changes in communication objects will make the inno-

vation subject unable to repeatedly discuss and learn about topics of a certain few areas, which

will reduce the speed and increase the cost of innovation. Therefore, in this stage, the lower the

network density is, the more conducive it is to the generation of exploitative innovation.

5.3 The scenario of 0.01 < p < 0.05

In this scenario, when p>0.01, loops and a single giant branch begin to appear in the network,

and the number of loops and the size of giant branches gradually increase as the value of p
increases. At the same time, the threshold of global connectivity p = log (N)/N is also within

this interval. Therefore, this interval reflects the phase transition of the network from uncon-

nected to connected [47].

For explorative innovation, as innovation can only happen in large branches, innovations

start to appear only when there are large branches in the network. Because of the uniqueness

of large branches, the influence of network density on explorative innovation is relatively

straightforward. As the size of a large branch increases, the probability of innovation failure

(PF) drops rapidly. With increasing density, TTF and NCTF decrease, which means an

increase in innovation efficiency.

For exploitative innovation, the possibility of innovation failure is slightly lower than that

of explorative innovation because innovation is less constrained by the size of the branch

where it happens. In this stage, the relationship between network density and innovation effi-

ciency should be analyzed from the aspects of branch size and branch density.

PLOS ONE Impact of network density on the efficiency of innovation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0270087 June 17, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0270087


According to the discussion of scenario p<0.01, when the network density is remarkably

low, the branches in the network are mainly tree structures. Then, the size of the innovation

branch determines the efficiency of exploitative innovation. The larger the size of the innova-

tion branch is, the lower the innovation efficiency. According to the discussion of scenario

p>0.05, when the network density is relatively high, innovation mainly occurs in only the

giant branch, which has a small change in size. Then, the decisive role of branch size is replaced

by branch density. The higher the branch density is, the lower the innovation efficiency will

become. This scenario is in the middle of these two stages. As the loops started to appear and

the tree structure started to diminish, there was a tradeoff between the effects of branch size

and branch density.

To verify the above analysis, we trace the innovation branches that produce exploitative

innovations in the numerical experiments. Let BS denote the size of the innovation branch and

BL denote the number of edges in the innovation branch. The tree structure is the sparsest

connected graph and the number of edges of any tree structure is equal to the number of

nodes minus 1.BL�BS−1. Accordingly, let BT = (BS−1)/BL, then we have 0<BT�1. Therefore,

BT can be used as a measure of the degree of the tree structure of the innovation branch. The

larger the BT value is, the more similar the branch is, such as to a tree. Finally, to capture the

combined effect of the branch size and branch density, we multiply BS and BT to construct

indicator ST = BS(BS−1)/BL. Fig 5 shows the size of the innovation branch BS, the number of

edges in the innovation branch BL and the structural index ST as a function of p.

The results shown in Fig 5 support the discussion of the results. Compared with Figs 3–5

shows that in the p<0.01 scenario, the number of edges of innovation branches BL changes lit-

tle, and the innovation efficiency is mainly affected by the branch size BS of the tree structure.

When p>0.05, it is just the opposite. When 0.01<p<0.05, the peak value of ST explains the

corresponding inflection point of the NCTF and TTF curves in Figs 3 and 4. At the same time,

we can see that the influence of index ST is stronger on TTF (Fig 4) than on NCTF (Fig 3).

Fig 5. Innovation branch structure characteristics of exploitative innovation.

https://doi.org/10.1371/journal.pone.0270087.g005
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This is because the sparse nature of the tree structure greatly inhibits the redundant communi-

cations between nodes, which brings additional benefits to reduce the innovation cost, which

reduces the rising trend of the NCTF curve with the rise of branch size.

6 Robustness tests

To test the robustness of the results, we adjust the values of all exogenous variables involved in

the simulation model, mainly including the following three aspects.

First, other values of network model parameters.

For the network model used in this research, there is only one exogenous variable, namely,

network size N. We run the model with network sizes of 50, 100, 150, and 200. The experimen-

tal results show that with an increasing network size, the three key points of the p value will

move towards the left in the original order. This is not difficult to understand because when p
is fixed, the expected number of edges in the network is pN(N−1)/2, resulting in the expected

value of the average node degree being p(N−1). The increase in node degree indicates the

improvement of connectivity between different nodes. Therefore, when p is fixed, the connec-

tivity of the entire network will increase with the increase of N, resulting in the shift of the posi-

tion where the structure of the network changes from disconnected to globally connected.

However, this does not change the stage division according to the three key values of p, nor

does it change the conclusions extracted from different stages. Fig 6 shows the model results

with different values of network size N, while other parameters remain as the base case model.

Second, other values of innovation model parameters.

For the values of l and k, different ratios determine the types of innovations. For explorative

innovation, the cases with l values of 10, 20, 40, and 80 are run under the condition of fixed k.

For exploitative innovation, the cases with k values of 10, 20, 40, and 80 are run under the con-

dition of fixed l. Fig 7 shows the model results with different values of k or l, while other

parameters remain as the base case model. The experimental results show that the changes in l
and k do not change the nature of the conclusions that are extracted from the base case model.

Therefore, it gives a deeper understanding of the relationship between the innovation parame-

ters and the probability of failure. As can be seen in Fig 7, the failure probability clearly

depends on the size of knowledge vector l, while this does not depend on the amount of neces-

sary knowledge k. This is because, in our model settings, innovation fails when the knowledge

needed for innovation is distributed among different branches of a globally disconnected net-

work, therefore the integration of different kinds of knowledge is ultimately impossible. For

any specific structure of the network, a lager l means that the innovation vector has more

dimensions, and so it has more risk of being distributed in different disconnected branches.

While the vector k does not affect the number of dimensions of knowledge vector, and so it

doesn’t affect the risk of failure of each specific network structure.

Third, other knowledge flow mechanisms in communications.

In the process of innovation, when knowledge flows between two nodes, it is assumed that

the knowledge increment of the node is dv = 1, which is consistent with the setting of the

model of Lovejoy and Sinha [8]. Here, we also test the situation in which dv is a certain propor-

tion of the knowledge difference between the two nodes (see Fig 8) and when dv varies with

the knowledge level of the receivers (see Fig 9), while other parameters remain as the base case

model. These results also do not change the nature of the conclusions that are extracted from

the base case model. However, by inspecting Figs 1, 8 and 9, one can notice some differences

in the values of both the NCTF and the TTF, for both explorative and exploitative innovation.

On one hand, when the value of PF is very high, the ratio of successful innovation in the 10000

repetitions is reduced significantly, which decreases the stability of the results to some extent.
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On the other hand, as the mechanisms of knowledge flow getting more complex in this part of

the test, it also decreases the stability of the results. So, the left part of each curve (correspond-

ing to low p value) shows a little more volatility than the base case model, but this doesn’t

change the overall trend of the curves. And as p value increases, all curves soon reach the

expected stability and consistency.

All the changes not only retain the nature of the conclusions of the base case model, which

indicates the robustness of this research in these tested aspects, but also bring some deeper

understanding of the research question.

7 Discussions and conclusions

The understanding that many real-world systems of interacting elements can be mapped into

graphs or networks has led to a surge of interest in the field of complex networks. When look-

ing at their large-scale topological properties, real networks are far more complex than classical

models of random graphs [52], and most of such models are rather abstract and often unable

to reproduce the structure of real-world networks in all aspects. However, these models could

capture some of the emerging properties not obvious at the level of their elementary

Fig 6. Robustness test of the network size N. (A) NCTF and PF of explorative innovations with different values of network size N. (B) TTF and PF of explorative

innovations with different values of network size N. (C) NCTF and PF of exploitative innovations with different values of network size N. (D) TTF and PF of exploitative

innovations with different values of network size N.

https://doi.org/10.1371/journal.pone.0270087.g006
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constituents, such as the small-world effect, scale-free connectivity, clustering, degree correla-

tions, etc., and further provide the opportunities to investigate their striking consequences on

the behavior of the system, such as absence of epidemic threshold, resilience to damage, etc.

Based on this understanding, this paper is devoted to the in-depth study of the important

property of network density, in particular its impact on the system behavior in the context of

innovation networks. In order to separate the contribution of network density from other net-

work features (e.g., degree heterogeneity, clustering, etc.), the Erdös-Rényi model is considered

to generate the test set of different structures.

On a higher level of abstraction, this study contributes to the network diffusion literature

by inquiring the relationship between network density and two different diffusion regimes:

exploration, in which knowledge demands are shallow but broad; and exploitation, in which

knowledge demands are deep but narrow. It is operationalized by controlling the number of

types of knowledge and how much of each type is needed. This study also contributes to the lit-

erature on Erdös-Rényi networks by analyzing how the branch formation in the Erdös-Rényi

model impacts the diffusion process, in particular the two regimes of exploration and

exploitation.

Fig 7. Robustness test of the innovation model parameters k and l. (A) NCTF and PF of explorative innovations with different values of l, which is the number of

dimensions of the innovation vector L. (B) TTF and PF of explorative innovations with different values of l. (C) NCTF and PF of exploitative innovations with different

values of k, which is the amount of knowledge in each dimension of the innovation vector L. (D) TTF and PF of exploitative innovations with different values of k.

https://doi.org/10.1371/journal.pone.0270087.g007
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Specifically, this study contributes to the stream of literature on innovation networks by

inquiring how network density affects the innovation efficiency of innovation networks.

Extant research has shown equivocal evidences on this topic. This study analyzes the possible

reasons behind the incoherent conclusions, and employs the multi-agent simulation method

to disentangle this problem. First, in the context of network innovation, we build a simulation

model to describe the generation process of innovation. Then, a network test is generated by a

classical random network model, which consists of a group of random networks with different

densities. By running the innovation model on the network test set, the innovation efficiency

under different network densities is obtained. The conclusions derived from the model results

shed light on the theory and practice of innovation management.

7.1 Main conclusions

For explorative innovation, the higher the network density is, the faster the innovation and the

lower the innovation cost. Because explorative innovation requires the integration of many

kinds of heterogeneous knowledge, it will occur on large branches of the networks. Due to the

Fig 8. The model results with dv as a certain proportion of the knowledge difference between the two nodes. (A) NCTF and PF of explorative innovation. (B) TTF
and PF of explorative innovation. (C) NCTF and PF of exploitative innovation. (D) TTF and PF of exploitative innovation. Specifically, the value of dv = 0.2|vi−vj| is used

in this experiment.

https://doi.org/10.1371/journal.pone.0270087.g008
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uniqueness of the large branch of the random network, the change rule of innovation effi-

ciency of explorative innovation is relatively straightforward, and both NCTF and TTF
decrease monotonically with increasing network density. At the same time, the lack of global

connectivity of the network is an important structural reason for the failure of innovation. If

the network density is too low, there will be no large branches in the network, so explorative

innovation cannot be produced. An increase in network density will inevitably lead to an

improvement in the global connectivity of the network. High-density innovation networks are

usually globally connected, so the risk of innovation failure is eliminated.

For exploitative innovation, low density is conducive to speeding up innovation speed and

reducing innovation costs. However, since exploitative innovation requires fewer types of

knowledge, it can be generated in both large and small branches. Therefore, compared with

explorative innovation, the impact of network density on innovation efficiency is more com-

plex. Therefore, we divide the analysis into three scenarios. First, when the network density is

extremely low, there are only small branches in the network, and the smaller the branch size is,

the higher the innovation speed and lower the innovation cost will be. However, the global

connectivity of the network is poor, so the risk of failure is particularly high. Second, with the

Fig 9. The model results with dv varies with the knowledge level of the receivers. (A) NCTF and PF of explorative innovation. (B) TTF and PF of explorative

innovation. (C) NCTF and PF of exploitative innovation. (D) TTF and PF of exploitative innovation. Specifically, the value of dv = 0.01(vi−vj)(vj+1) is used in this

experiment, as vj denotes the receiver of knowledge in this conversation.

https://doi.org/10.1371/journal.pone.0270087.g009
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increase in network density, large branches appear in the network and gradually transition to

global connectivity. The decrease in tree structure, the increase in loops and the increase in

branch size led to multiple inflection points in the NCTF and TTF curves in this process. In

this scenario, with the increase in network density, the risk of innovation failure decreases rap-

idly, but the cost of innovation increases, and the time needed to generate innovation reaches

a peak. Therefore, this interval is not conducive to the generation of exploitative innovation.

Third, when network density increases to the point where global connectivity can be main-

tained, the efficiency of exploitative innovation decreases with increasing network density.

This is because the conversational churning brought by the high network density makes the

innovation subject unable to focus on the acquisition of specific kinds of knowledge.

7.2 Theoretical and practical significance

In terms of theoretical significance, this study clarifies the role of network density in the pro-

cess of innovation. First, the multiagent simulation research method adopted in this paper has

a higher level of abstraction, and the conclusions have more general applicability than empiri-

cal research. Second, this research uses the random network model to construct the test set,

which realizes the direct manipulation of network density, and the influence of other charac-

teristics of the network is well controlled by the randomization process. Third, the innovation

model constructed in this paper distinguishes different types of innovation to identify the dif-

ferent influences of network density on different types of innovations. As a result, the conclu-

sions of this research explained some controversial views in the extant literature.

In terms of practical significance, this study sheds light on the choice of innovation strate-

gies of innovators and the formulation of innovation policies of innovation policy makers.

Organizations pursuing explorative innovations should increase the density of innovation net-

works as much as possible, which is not only conducive to the improvement of innovation

speed and cost but can also reduce the risk of innovation failure. For organizations pursuing

exploitative innovation, a lower network density will bring a higher risk of failure, but a higher

network density will lead to worse speed and cost. Therefore, a moderate network density

would be a better choice at which level the entire network could just achieve global connectiv-

ity. This optimal point is not difficult to identify in management practice. When a globally

connected network cannot maintain global connectivity by deleting a small number of edges

or a disconnected sparse network can achieve global connectivity by adding a small number of

edges, the network density is conducive to exploitative innovation. For the innovation subjects

in each innovation network, it is usually not difficult to identify whether there are unreachable

nodes in the network, so this conclusion is operable to a certain extent. In addition, if the par-

ticipants of the innovation network can identify the key nodes with the knowledge required

for innovation, it will greatly promote innovation efficiency and reduce innovation risks. Espe-

cially for exploitative innovation, it is easier and more important to identify the subject with

expertise in a corresponding field because of the relatively few types of knowledge required

and the need for a large amount of accumulation and in-depth development of specific kinds

of knowledge.

7.3 Future research prospects

First, after the generation phase of innovations, organizations take other steps, such as imple-

mentation [53] and diffusion of innovations [54]. Therefore, in the subsequent stages of the

innovation value chain [55], the role of network density remains to be further explored. Sec-

ond, some other structural characteristics, such as the size or the degree distribution of the net-

work, may have moderating effects on the results, which could be valuable of further
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exploration to fit more specific scenarios with heterogeneous characteristics. Third, there are

many other factors that affect innovation efficiency, such as resource endowment, institutional

environment, organizational culture, and other aspects in addition to the structure of the inno-

vation network. In this paper, the influence of network density on the innovation process is

separated from many other factors through the method of experimental research. Although it

contributes to innovation theory and practice, the interrelation among many factors should be

considered in practice. How these factors interact with network density under different types

of innovation needs further exploration. Fourth, more details in the conclusions of this

research still need further verification by empirical research. The above aspects provide oppor-

tunities for further research but do not affect the current conclusions of this paper.
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20. Erdös P, Rényi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci.1960; 5(1): 17–

60.

21. Gnyawali DR, Madhavan R. Cooperative networks and competitive dynamics: A structural embedded-

ness perspective. Acad Manage Rev. 2001; 26(3): 431–445.

22. Jackson MO, Watts A. The evolution of social and economic networks. J Econ Theory. 2002; 106(2):

265–295.

23. Nadini M, Zino L, Rizzo A, Porfiri M. A multi-agent model to study epidemic spreading and vaccination

strategies in an urban-like environment. Appl Netw Sci. 2020; 5(1): 1–30.

24. Gao J, Buldyrev SV, Stanley HE, Xu X, Havlin S. Percolation of a general network of networks. Phys

Rev E. 2013; 88(6): 062816. https://doi.org/10.1103/PhysRevE.88.062816 PMID: 24483520

25. Callaway DS, Newman MEJ, Strogatz SH, Watts DJ. Network robustness and fragility: Percolation on

random graphs. Phys Rev Lett. 2000; 85(25): 5468. https://doi.org/10.1103/PhysRevLett.85.5468

PMID: 11136023

26. Saxenian AL. Regional advantage: Culture and competition in silicon valley and route 128, with a new

preface by the author. 1st ed. Cambridge: Harvard University Press; 1996.

27. Ahuja G, Coff RW, Lee PM. Managerial foresight and attempted rent appropriation: insider trading on

knowledge of imminent breakthroughs. Strateg Manage J. 2005; 26(9): 791–808.

28. Rost K. The strength of strong ties in the creation of innovation. Res Policy. 2011; 40(4): 588–604.

29. Burt RS. The social structure of competition. In: Cross R, Parker A, Sasson L, editors. Networks in the

knowledge economy. New York: Oxford University Press; 2003. pp. 13–56.

30. Nerkar A, Paruchuri S. Evolution of R&D capabilities: The role of knowledge networks within a firm.

Manage Sci. 2005; 51(5): 771–785.

31. Zhang D, Wang CH, Zheng D, Yu X, Chan HK. Process of innovation knowledge increase in supply

chain network from the perspective of sustainable development. Ind Manage Data Syst. 2018; 118:

873–888.

32. Guan J, Liu N. Exploitative and exploratory innovations in knowledge network and collaboration net-

work: A patent analysis in the technological field of nano-energy. Res Policy. 2016; 45(1): 97–112.

33. Will MG, Al-Kfairy M, Mellor RB. How organizational structure transforms risky innovations into perfor-

mance–A computer simulation. Simul Model Pract Theory. 2019; 94: 264–285.

34. Schumpeter J. Business Cycles. 1st ed. New York: McGraw-Hill; 1939.

35. Henderson RM, Clark KB. Architectural innovation: The reconfiguration of existing product technologies

and the failure of established firms. Adm Sci Q. 1990; 35: 9–30.

36. De Silva M, Howells J, Meyer M. Innovation intermediaries and collaboration: Knowledge–based prac-

tices and internal value creation. Res Policy. 2018; 47(1): 70–87.

37. Fleming L. Recombinant uncertainty in technological search. Manage Sci. 2001; 47(1): 117–132.

38. Stephan U, Andries P, Daou A. Goal multiplicity and innovation: how social and economic goals affect

open innovation and innovation performance. J Prod Innov Manage. 2019; 36(6): 721–743.

39. Baum JAC, Cowan R, Jonard N. Network-independent partner selection and the evolution of innovation

networks. Manage Sci. 2010; 56(11): 2094–2110.

40. Hua L, Wang W. The impact of network structure on innovation efficiency: An agent-based study in the

context of innovation networks. Complexity. 2015; 21(2): 111–122.

41. Vera D, Crossan M. Strategic leadership and organizational learning. Acad Manage Rev. 2004; 29(2):

222–240.

42. Jansen JJP, Van Den Bosch FAJ, Volberda HW. Exploratory innovation, exploitative innovation, and

performance: Effects of organizational antecedents and environmental moderators. Manage Sci. 2006;

52(11): 1661–1674.

43. Ireland RD, Webb JW. Strategic entrepreneurship: Creating competitive advantage through streams of

innovation. Bus Horiz. 2007; 50(1): 49–59.

44. March JG. Exploration and exploitation in organizational learning. Organ Sci. 1991; 2(1): 71–87.

45. He ZL, Wong PK. Exploration vs. exploitation: An empirical test of the ambidexterity hypothesis. Organ

Sci. 2004; 15(4): 481–494.

46. Benner MJ, Tushman ML. Exploitation, exploration, and process management: The productivity

dilemma revisited. Acad Manage Rev. 2003; 28(2): 238–256.

PLOS ONE Impact of network density on the efficiency of innovation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0270087 June 17, 2022 21 / 22

https://doi.org/10.1073/pnas.082080899
http://www.ncbi.nlm.nih.gov/pubmed/12011407
https://doi.org/10.1103/PhysRevE.88.062816
http://www.ncbi.nlm.nih.gov/pubmed/24483520
https://doi.org/10.1103/PhysRevLett.85.5468
http://www.ncbi.nlm.nih.gov/pubmed/11136023
https://doi.org/10.1371/journal.pone.0270087


47. Erdös P. On the strength of connectedness of a random graph. Acta Med Acad Sci Hung. 1964; 12:

261–267.

48. Wasserman S, Faust K. Social network analysis: Methods and applications. 1st ed. Cambridge: Cam-

bridge University Press; 1994.

49. Jackson MO. Social and economic networks. 1st ed. Woodstock: Princeton University Press; 2010.

50. Wilensky U. Netlogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Com-

puter-Based Modeling, Northwestern University, Evanston, IL, 1999.

51. Deschenes LA, David A. Vanden Bout University of Texas, Austin. Origin 6.0: Scientific Data Analysis

and Graphing Software Origin Lab Corporation (formerly Microcal Software, Inc.). Web site: www.

originlab.com. Commercial price: 595.Academicprice: 446, 2000.
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