
����������
�������

Citation: Kullaa, J. Damage

Detection and Localization under

Variable Environmental Conditions

Using Compressed and

Reconstructed Bayesian Virtual

Sensor Data. Sensors 2022, 22, 306.

https://doi.org/10.3390/s22010306

Academic Editors: Genda Chen,

Donya Hajializadeh, Boulent Imam

and Ying Wang

Received: 8 November 2021

Accepted: 28 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Damage Detection and Localization under Variable
Environmental Conditions Using Compressed and
Reconstructed Bayesian Virtual Sensor Data
Jyrki Kullaa

Department of Automotive and Mechanical Engineering, Metropolia University of Applied Sciences, Leiritie 1,
01600 Vantaa, Finland; jyrki.kullaa@metropolia.fi

Abstract: Structural health monitoring (SHM) with a dense sensor network and repeated vibration
measurements produces lots of data that have to be stored. If the sensor network is redundant, data
compression is possible by storing the signals of selected Bayesian virtual sensors only, from which
the omitted signals can be reconstructed with higher accuracy than the actual measurement. The
selection of the virtual sensors for storage is done individually for each measurement based on the
reconstruction accuracy. Data compression and reconstruction for SHM is the main novelty of this
paper. The stored and reconstructed signals are used for damage detection and localization in the
time domain using spatial or spatiotemporal correlation. Whitening transformation is applied to the
training data to take the environmental or operational influences into account. The first principal
component of the residuals is used to localize damage and also to design the extreme value statistics
control chart for damage detection. The proposed method was studied with a numerical model of a
frame structure with a dense accelerometer or strain sensor network. Only five acceleration or three
strain signals out of the total 59 signals were stored. The stored and reconstructed data outperformed
the raw measurement data in damage detection and localization.

Keywords: data compression; data reconstruction; virtual sensing; damage detection; damage
localization; optimal sensor placement; environmental effects; whitening; spatiotemporal correlation;
time domain

1. Introduction

Structural health monitoring (SHM) is based on frequent vibration measurements
using a sensor network with a large number of sensors. As a result, the amount of data is
tremendous. An increasing number of sensors is anticipated in future applications—for
example, sensing skins [1]. The advantage of a dense sensor network is more reliable
damage identification. A disadvantage is higher hardware and data management costs.
Historical data must be stored for several years. These training data are used to capture
the dynamic characteristics of the undamaged structure under variable environmental or
operational conditions. The future measurements will be compared with the training data
in order to detect and localize damage.

Data storage may be costly or the amount of data may exceed the storage capacity.
Therefore, data reduction is necessary. One method for data reduction is to extract and
store only selected features from the time records. Features are dynamic characteristics of
the structure, which are expected to be sensitive to damage. Such features are, for example,
natural frequencies and mode shapes, which can be extracted from the measurement data
using system identification techniques [2]. Significant data compression is possible, because
each measurement yields a single data point. However, the original time histories will be
lost and cannot be recovered. Therefore, it may be necessary to save everything, resulting
in terabytes of data every day [3].
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The most common dimensionality reduction method is principal component analysis
(PCA) [4], which is a linear method that maximizes the variance in the data by projecting
the multidimensional data onto directions, principal components (PC) that account for
the largest variability. If only a few PCs are retained, some loss of data results in the
reconstruction. PCA has been applied, e.g., to image compression [5]. A disadvantage of
PCA is that the reconstruction error is not available. Therefore, it may be difficult to select
the number of PCs for storage. If the chosen number of PCs exceeds the optimum, the
reconstruction error increases, because the PCs start to model the noise [6].

It is also possible to select a limited number of sensor signals that are permanently
stored so that the omitted signals can be accurately reconstructed [6]. The selection is related
to optimal sensor placement (OSP), which has been investigated in many applications [7].
Although the objective in those applications is to place a limited number of physical sensors
in optimal positions, the same approach can be used to select a subset of signals for storage.
The selection in this paper is based on the maximum accuracy of the reconstructed signals.

Some review papers and comparisons of different optimal sensor placement (OSP)
algorithms exist [8–11]. They present the most commonly applied algorithms and criteria.
The sensor placement is a discrete optimization problem for which genetic algorithms
have been proposed [12–14]. Alternatively, a computationally efficient and widely used
algorithm is to start with a large set of candidate sensor locations and remove one sensor
in each round based on the selected cost function until the stopping criterion is met.
This backward sequential sensor placement (BSSP) algorithm has been used in many
studies [15–17]. Another iterative method is to add one sensor in turn to the sensor network
until the stopping criterion is met. The algorithm is called the forward sequential sensor
placement (FSSP) algorithm [12,17]. BSSP is used in this study, because experiments have
shown its better performance over FSSP.

Data compression results in a decrease in accuracy of the reconstructed signals. Since
the signal-to-noise ratio (SNR) is important for damage detection [18], data compression
may also decrease the performance of the SHM system. The main novelty of the present
paper is to introduce a data compression technique so that the data compression ratio is
large and the reconstructed data are so accurate that they can be applied to SHM. With
empirical Bayesian virtual sensing, the measurement error can be decreased before data
compression so that the stored and reconstructed signals are more accurate than the original
measurements. Proof is given that it is more beneficial to store selected virtual sensor signals
than the corresponding physical sensor signals [6].

The objective of the present study is to detect and localize damage using the stored and
reconstructed virtual sensor data. Damage detection is based on changes in the dynamic
characteristics of the structure. Records of structural motion, for example, acceleration or
strain, are measured simultaneously at selected degrees of freedom. First, a training data
set is acquired from the undamaged structure under different environmental or operational
conditions. These data are used to build a statistical data model of the undamaged structure.
Next, the structure is monitored with repeated measurements in order to have an early
warning of structural failure. The new data are compared to the training data using novelty
detection techniques, and a statistically significant change in the dynamic characteristics is
an indication of damage. Particular attention is needed to take different environmental or
operational conditions into account, because they can have a considerable influence on the
very same dynamic characteristics. Several techniques have been proposed to eliminate
the environmental or operational influences on the data, even without measuring the
underlying quantities; see, e.g., [19,20] and the references therein. Another novelty of this
paper is the application of whitening transformation [21] to the training data in order to
consider different environmental or operational influences in the data. Although whitening
is a well-known transformation, the author is not aware of its wide application to this end.
Damage localization can also be attempted if the changes in the data can be associated with
a particular sensor.
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In this paper, damage detection and localization are performed in the time domain.
Time-domain and feature-domain methods for damage detection were compared [22], and
it was found that the selected features were more sensitive to damage than the physical or
virtual sensor data. This was probably due to the fact that the features had a higher SNR
than the sensor data. However, damage detection in the time domain has certain advantages
compared to that in the feature domain. For example, the data dimensionality is often lower
and the number of data points larger, which is advantageous in statistical analysis. The
algorithm can also be fully automated, as system identification is not necessary. In addition,
each time history can be associated with a single sensor to localize damage. Therefore, if
measurement error can be decreased, the performance of time-domain methods is expected
to improve.

It should be noted that there are several techniques for damage detection and localiza-
tion using vibration measurements. In addition to time domain or feature domain methods,
the techniques can be categorized as physics-based or data-based approaches. The present
paper is restricted to data-based methods so that no numerical model, for example, a finite
element model, is needed.

It is by no means claimed that the proposed method is optimal, but a single algorithm
was selected to study whether data compression and reconstruction can be successfully
applied to detect and localize damage in the time domain. In fact, several techniques
were compared to eliminate environmental or operational influences, resulting in very
similar performance as whitening transformation. A number of statistical novelty detection
methods were also tested, and the one with the most robust behavior was selected. A
comparison of different techniques to detect and localize damage is out of the scope of this
study. The user can actually choose any algorithm once the reconstructed data are available.
Nevertheless, it is believed that the results presented in this paper are representative for
many time-domain methods. Feature-domain methods are also beyond the scope of this
paper, because many feature-extraction techniques already include noise reduction due to
averaging and may not benefit from the proposed data compression and reconstruction. In
fact, the reconstructed signals become correlated and are no longer independent. This may
cause challenges in system identification.

The paper is organized as follows. Virtual sensing using Bayesian estimation is
outlined in Section 2. Optimal sensor placement for data storage and reconstruction is also
discussed. An algorithm for damage detection and localization follows in Section 3. In
Section 4, the proposed method is studied with numerical simulations of ambient vibration
measurements under variable environmental conditions. Concluding remarks are given in
Section 5.

2. Data Compression and Reconstruction Using Bayesian Virtual Sensing

The objective is to store only a small percentage of the dense sensor network data so
that the full data can be accurately reconstructed and used for damage detection. Different
environmental conditions between measurements must be considered. It is assumed
that the environmental conditions remain nearly constant during a single measurement.
This can be justified because the measurement period is typically much shorter than the
variations in the environment—for example, outdoor temperature.

The dynamic characteristics of the structure can change between measurements due to
environmental or operational variability as well as due to damage. It is important to retain
those variations during data compression and reconstruction. Therefore, each measurement
is processed independently in this stage. Different measurements are pooled only in the
damage-detection stage to distinguish between those two aforementioned influences.

Figure 1 shows the flowchart of the whole process from vibration measurement
to damage identification. Each vibration measurement acquired with a sensor network
is processed as follows. First, Bayesian virtual sensors [23] are designed to reduce the
measurement error. Then, a limited number of virtual sensor signals are selected for
storage based on the optimal sensor placement algorithm (Figure 1b). The excluded signals



Sensors 2022, 22, 306 4 of 27

can be reconstructed using the stored signals and a coefficient matrix. The stored and
reconstructed signals are finally used for damage detection and localization. To this end,
training data from the undamaged structure under different environmental or operational
conditions are used.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 28 
 

 

processed as follows. First, Bayesian virtual sensors [23] are designed to reduce the meas-
urement error. Then, a limited number of virtual sensor signals are selected for storage 
based on the optimal sensor placement algorithm (Figure 1b). The excluded signals can 
be reconstructed using the stored signals and a coefficient matrix. The stored and recon-
structed signals are finally used for damage detection and localization. To this end, train-
ing data from the undamaged structure under different environmental or operational con-
ditions are used. 

Acquire measurement
All virtual 
sensors

Yes

No

Estimate virtual sensors

Optimal sensor 
placement

Storage

Reconstruction

Remove one sensor 
with replacement

Evaluate cost function

Permanently remove 
sensor resulting in the 

smallest cost

Is cost acceptable?

Signals of 
virtual sensors 
v and matrix A

(b)

Damage detection and 
localization

Training data 
under different 
environmental 

conditions

(a)  
Figure 1. Flowcharts of (a) the whole process and (b) the optimal sensor placement (OSP) function. 

This section discusses data compression and reconstruction, while the next section 
covers damage detection and localization. The main theoretical novelty of this paper is 
included in Sections 2.2–2.4. 

2.1. Empirical Bayesian Virtual Sensing 
The objective of empirical virtual sensing is to decrease the measurement error of all 

sensors. The derivation of Bayesian virtual sensors [20] is briefly repeated for complete-
ness. Consider a sensor network measuring p simultaneously sampled response variables 𝐲 = 𝐲(𝑡) ∈ ℝ௣ at time t. Each measured data point y includes measurement error 𝐰 =𝐰(𝑡) ∈ ℝ௣: 𝐲 = 𝐱 + 𝐰, (1) 

where 𝐱 = 𝐱(𝑡) ∈ ℝ௣ are the exact values of the measured degrees of freedom. Equation 
(1) can be written in the following form at time t [24]. ቄ𝐱𝐲ቅ = ቂ𝐈 𝟎𝐈 𝐈 ቃ ቄ 𝐱𝐰ቅ, (2) 

where I is the identity matrix of size p and 0 is the null matrix of size p × p. For simplicity 
but without loss of generality, assume zero-mean variables x and y. The partitioned co-
variance matrix is 

Figure 1. Flowcharts of (a) the whole process and (b) the optimal sensor placement (OSP) function.

This section discusses data compression and reconstruction, while the next section
covers damage detection and localization. The main theoretical novelty of this paper is
included in Sections 2.2–2.4.

2.1. Empirical Bayesian Virtual Sensing

The objective of empirical virtual sensing is to decrease the measurement error of all
sensors. The derivation of Bayesian virtual sensors [20] is briefly repeated for complete-
ness. Consider a sensor network measuring p simultaneously sampled response variables
y = y(t) ∈ Rp at time t. Each measured data point y includes measurement error
w = w(t) ∈ Rp:

y = x + w, (1)

where x = x(t) ∈ Rp are the exact values of the measured degrees of freedom. Equation (1)
can be written in the following form at time t [24].{

x
y

}
=

[
I 0
I I

]{
x
w

}
, (2)

where I is the identity matrix of size p and 0 is the null matrix of size p× p. For simplicity but
without loss of generality, assume zero-mean variables x and y. The partitioned covariance
matrix is



Sensors 2022, 22, 306 5 of 27

[
Σxx Σxy
Σyx Σyy

]
= E

({
x
y

}[
xT yT ])

=

[
I 0
I I

]
E
({

x
w

}[
xT wT ])[ I 0

I I

]T

=

[
I 0
I I

][
Σxx 0

0 Σww

][
I I
0 I

]
=

[
Σxx Σxx
Σxx Σxx + Σww

] (3)

where E( ) denotes the expectation operator and the measurement error w is assumed to be
zero-mean Gaussian, independent of x, with a covariance matrix Σww.

A linear minimum mean-square error (MMSE) estimate for x|y (x given y) is obtained
by minimizing the mean-square error (MSE) [24]. The expected value, or the conditional
mean, of the predicted variable is

x̂ = E(x|y) = Σxx(Σxx + Σww)
−1y = ΣxxΣ−1

yy y, (4)

and the covariance matrix of the estimation error is

Σpost = cov(x|y) = Σxx − Σxx(Σxx + Σww)
−1

Σxx = Σxx − ΣxxΣ−1
yy Σxx. (5)

It was shown that the virtual sensors (Equation (4)) are more accurate than the actual
measurements [23].

2.2. Storing Physical Sensor Data

Let us assume that channels v of the physical measurement are stored. The objective
is to reconstruct the signals of the whole sensor network. For simplicity but without loss
of generality, assume zero-mean variables. The stored signals are the actual measure-
ments yv. Then, E(x|yv) and cov(x|yv) are estimated using the partitioned mixed-data
covariance matrix

E
({

x
yv

}[
xT yT

v
])

=

[
Σxx Σxxv

Σxvx Σyvyv

]
, (6)

because E
(
xyT

v
)
= E

(
xxT

v
)
. The conditional mean (the reconstructed data) and the error

covariance matrix are respectively obtained using MMSE:

E(x|yv) = Σxxv Σ−1
yvyv yv = Byv (7)

and
cov(x|yv) = Σxx − Σxxv Σ−1

yvyv Σxvx, (8)

where B = Σxxv Σ−1
yvyv is the coefficient matrix that has to be stored along with the stored

signals yv.

2.3. Storing Virtual Sensor Data

Once a limited number of virtual sensor signals are stored, the omitted signals must
be reconstructed. In the following, formulas for the reconstruction and its estimation error
are derived.

Let us assume that the signals of channels v of the virtual sensors are stored, whereas
the omitted signals of channels u must be reconstructed. The error variances of the stored
signals are the diagonal elements of Σpost,vv, which is a submatrix of Σpost (Equation (5))
consisting only rows v and columns v. When reconstructing the omitted signals using
the stored virtual sensors’ data x̂v, the conditional mean E(xu|x̂v) and covariance matrix
cov(xu|x̂v) must be derived. The Bayesian virtual sensors are not exact, but follow the
error model

x = x̂ + e, (9)
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where e is the posterior error having a zero mean and covariance matrix Σpost (Equation (5)).
Thus,

E(xu|x̂v) = E(x̂u|x̂v) = Σx̂u x̂v Σ−1
x̂v x̂v

x̂v = Ax̂v, (10)

where A = Σx̂u x̂v Σ−1
x̂v x̂v

is the coefficient matrix that has to be stored along with the stored
signals x̂v. The data covariance matrix Σx̂x̂ is estimated using the full virtual sensor data.
According to MMSE, the two terms in the right-hand side of Equation (9) are orthogonal [25].
Therefore, the covariances are related as

cov(xu|x̂v) = cov(x̂u|x̂v) + Σpost,uu = Σx̂u x̂u − Σx̂u x̂v Σ−1
x̂v x̂v

Σx̂v x̂u + Σpost,uu. (11)

The diagonal elements of this matrix are the variances of the reconstruction errors.
Notice that the reconstruction error is higher than the error of the virtual sensor Σpost,uu.

2.4. Comparison of the Two Storage Strategies

The question may arise as to whether the actual measurements yv or the Bayesian
estimates x̂v (Equation (4)) of the selected channels v should be stored. The choice depends
on the accuracy of the reconstruction. Intuitively, more accurate signals should be used
for the reconstruction of signals of the sensors u. It is now proved that using x̂v instead of
yv results in a smaller reconstruction error. The reconstructed signals are either E(xu|yv)
or E(xu|x̂v) in Equations (7) and (10), respectively. The corresponding error covariance
matrices are given in Equations (8) and (11), respectively. In order to compare the error
variances, some manipulation of Equation (11) is needed. Using Equation (4),

Σx̂x̂ = E
(

x̂x̂T
)
= ΣxxΣ−1

yy E
(

yyT
)

Σ−1
yy Σxx = ΣxxΣ−1

yy Σxx. (12)

Therefore,
Σx̂u x̂u = ΣxuxΣ−1

yy Σxxu . (13)

Substituting Equations (5) and (13) into Equation (11) results in

cov(xu|x̂v) = cov(x̂u|x̂v) + Σpost,uu = (ΣxuxΣ−1
yy Σxxu − Σx̂u x̂v Σ−1

x̂v x̂v
Σx̂v x̂u )+

(Σxuxu − ΣxuxΣ−1
yy Σxxu ) = Σxuxu − Σx̂u x̂v Σ−1

x̂v x̂v
Σx̂v x̂u .

(14)

This is compared with the error covariance cov(xu|yv). Consider any single sensor in
the set u. Then the covariance matrix becomes the variance. The difference is

cov(xu|yv)− cov(xu|x̂v)

= Σxuxu − Σxuxv Σ−1
yvyv Σxvxu − (Σxuxu − Σx̂u x̂v Σ−1

x̂v x̂v
Σx̂v x̂u )

= Σxuxv (Σ
−1
x̂v x̂v
− Σ−1

yvyv )Σxvxu

> Σxuxv (Σ
−1
yvyv − Σ−1

yvyv )Σxvxu = 0.

(15)

The following facts were used in the derivation: (1) The Bayesian virtual sensors are
more accurate than the physical sensors, (2) all the covariance matrices are positive definite,
and (3) the cross-correlations are equal:

Σxuxv = Σx̂u x̂v . (16)

The proof of Equation (16) is derived using Equation (9):

Σxuxv = E
(
xuxT

v
)
= E

[
(x̂u + eu)(x̂v + ev)

T
]

= E
(

x̂ux̂T
v

)
+ E

(
x̂ueT

v
)
+ E

(
eux̂T

v

)
+ E

(
eueT

v
)

= Σx̂u x̂v ,

(17)
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because the last three terms in the middle row are zero.
From Equation (15), it can be concluded that the stored Bayesian virtual sensors x̂v

instead of the corresponding raw measurements yv result in a smaller reconstruction error
and should be preferred for storage. This will also be shown in the numerical experiments.

2.5. Optimal Sensor Placement

The stored signals are selected using an optimal sensor placement algorithm (Figure 1b).
It is an iterative procedure starting with an initial large sensor network including all mea-
sured degrees of freedom (DOF). Each virtual sensor in turn is removed with replacement,
and the error variances of all reconstructed signals are computed, which are the diagonal
terms of the error covariance matrix (Equation (11)). The cost function for these reduced
sensor networks is evaluated. The minimum cost is found and the reduced sensor network
corresponding to this minimum becomes the new candidate set for the next round. In other
words, the removed sensor corresponding to this minimum cost is permanently discarded.
The process is repeated until the desired number of sensors or the allowed error limit
is reached. Finally, the data from the remaining virtual sensors are stored together with
matrix A in Equation (10) for reconstruction of the discarded sensors.

The objective function f used in this study is

f (k, i) = {σcr,i − σi|sensor k removed} (18)

where σcr,i is the critical reconstruction error of sensor i defined by the user, and σi is the
current reconstruction error of sensor i. Notice that each sensor can be given a different
threshold. The cost function R is the negative objective function:

R(k, i) = {σi − σcr,i|sensor k removed} (19)

The decision rule is the minimax criterion—that is, sensor k that minimizes the worst-
case loss can be permanently removed:

argmin
k

max
i

R(k, i) (20)

or using the objective function f,

argmax
k

min
i

f (k, i) (21)

As an illustrative example, consider a sensor network with 10 sensors on a structure.
Assume that the OSP algorithm has proceeded to the point where sensors 2, 4, and 7 are
stored, whereas sensors 1, 3, 5, 6, 8, 9, and 10 must be reconstructed. The next round of
the BSSP algorithm investigates whether one of sensors 2, 4, or 7 can be removed. To this
end, sensor k = 2 is first removed, and all sensors except 4 and 7 are reconstructed. The
estimated standard deviations of all sensors are plotted in Figure 2a. The errors of sensors
4 and 7 are posterior variances (Equation (5)), whereas the other errors are reconstruction
errors (Equation (11)). The minimum distance from the threshold is found for sensor i = 8.
The same procedure is performed by removing sensor k = 4 (Figure 2b) and sensor k = 7
(Figure 2c) and recording the minimum distances shown in the figures, from which the
maximum is found (Figure 2a). The decision rule then says that sensor 2 can be permanently
removed. By storing only sensors 4 and 7, the remaining signals can be reconstructed with
tolerable error. The removal continues until all trials result in a similar case as in Figure 2c,
where the error threshold is exceeded. In that case no more sensors can be removed and
the procedure is terminated.



Sensors 2022, 22, 306 8 of 27Sensors 2022, 22, x FOR PEER REVIEW 8 of 28 
 

 

   
(a) (b) (c) 

Figure 2. Reconstruction errors of each sensor when one sensor in turn out of sensors 2, 4, and 7 is 
removed. The remaining seven sensors were removed earlier and must be reconstructed. (a) Sensor 
2 removed; (b) Sensor 4 removed; (c) Sensor 7 removed. The minimum distances from the threshold 
are also shown. The largest minimum distance from the threshold is in plot (a), indicating that sen-
sor 2 can be permanently removed. 

3. Damage Detection and Localization 
Processing a single measurement yields both data compression and noise reduction. 

The next step is to use the full data (stored and reconstructed signals) of all measurements 
in damage detection. The flowchart for damage detection and localization is plotted in-
Figure 3. Notice that one possible algorithm is only introduced, but the user is free to 
apply any other method once the stored and reconstructed data are available. 

New measurement

Whitening 
transformation

Residual generation

PCA

EVS

Damage localization

Control chart

Training data 
under different 
environmental 

conditions

Covariance 
matrix R

Whitening 
matrix

 
Figure 3. Flowchart of damage detection and localization. 

The stored and reconstructed data are used for damage detection in the time domain. 
First, the mean vector and the covariance matrix are estimated using training data from 
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removed. The remaining seven sensors were removed earlier and must be reconstructed. (a) Sensor 2
removed; (b) Sensor 4 removed; (c) Sensor 7 removed. The minimum distances from the threshold
are also shown. The largest minimum distance from the threshold is in plot (a), indicating that sensor
2 can be permanently removed.

Notice that the threshold cannot be given an arbitrary low value, but it must be greater
than the posterior variance for all sensors. This is because the reconstruction error is always
greater than the posterior error.

3. Damage Detection and Localization

Processing a single measurement yields both data compression and noise reduction.
The next step is to use the full data (stored and reconstructed signals) of all measurements
in damage detection. The flowchart for damage detection and localization is plotted in
Figure 3. Notice that one possible algorithm is only introduced, but the user is free to apply
any other method once the stored and reconstructed data are available.

The stored and reconstructed data are used for damage detection in the time domain.
First, the mean vector and the covariance matrix are estimated using training data from the
undamaged structure under different environmental or operational conditions. Whitening
transformation is applied to the training data [26]. This transformation is then fixed and
applied to the test data. The transformed data are subjected to principal component analysis
(PCA). Retaining the first principal component only, the data dimensionality is decreased to
one. An extreme value statistics (EVS) control chart is then designed for the first PC scores
with appropriate control limits and subgroup size [20,27–29]. In this paper, the probability
of false alarms equal to 0.001 was used.

Damage location is assumed to correspond to the direction of the first principal
component of the residuals. The largest projection of the first PC on the sensor coordinates
reveals the sensor closest to damage.

It is essential to model the data of each measurement independently for compression
and reconstruction so that the environmental, operational, or damage effects are retained
during this first phase. Elimination of the environmental or operational influences is
performed in the second phase, in which several measurements are pooled to build a data
model of the undamaged structure under different environmental or operational conditions.
Novelty detection is then applied to the test data using the data model of the second phase.
Each step is discussed in more detail in the following.
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3.1. Spatial and Spatiotemporal Correlation

Covariance-based methods in vibration-based structural health monitoring are effective
and quite common. The covariance matrix is estimated as follows. Simultaneous time
series of the sensor network are formed by combining the stored and reconstructed signals.
Training data are formed by pooling several measurements from the undamaged structure.
If the process can be assumed stationary with zero mean, temporal correlation can also be
utilized [30]. The time-shifted covariance matrix estimate, with a time shift i, is computed by

R̂i =
1

N − i

N−i

∑
k=1

[
x(k)x(k + i)T

]
, (22)

where x(k) = x(k∆t) is the kth sample at a time instant k∆t where ∆t is the sampling period
and N is the number of samples. If m is the model order, the covariance matrix is

R =


R0 R1 · · · Rm
RT

1 R0 · · · Rm−1
...

...
. . .

...

RT
m RT

m−1
... R0

 (23)

If spatial correlation is only studied, the correlation matrix is simply R0. Spatial
correlation is related to mode shapes, whereas temporal correlation also takes the frequency
information into account. The covariance matrix is estimated using the training data.
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3.2. Data Normalization Using Whitening Transformation

Environmental or operational variability often affects the dynamic characteristics of
the structure, which can mask the effects of damage. Fortunately, in a multivariate case, the
variables are often highly correlated, which affects the covariance structure of the training
data (see an example in Figure 4a). Once damage occurs, the covariance structure also
changes. Consequently, the new data points are assumed to stand out like the two isolated
data points in Figure 4.
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Figure 4. An illustrative example of whitening. (a) Original variables; (b) whitening transformation
using W1; (c) whitening transformation using W2. The two isolated points represent outliers in the
signal space (red square) and in the noise space (green circle).

Whitening transformation is applied to the training data to consider the environmental
or operational influences without measuring the underlying quantities. The objective of
whitening or “sphering” is to linearly transform the data vector into another vector such
that the elements of the new vector are uncorrelated and have unit variances. The whitening
transformation therefore results in a unit data covariance matrix. For example, let us have
a two-dimensional variable with a multivariate Gaussian distribution (Figure 4a). After
whitening, the distribution looks like a hypersphere (Figure 4b). The transformation is,
however, not unique, as the axes in Figure 4b can be rotated, resulting in another possible
transformation (Figure 4c). Two isolated data points, not included in the training data set,
are highlighted to distinguish between these two different whitening transformations. The
choice of transformation is important in damage localization, discussed in Section 3.7.

The symmetric data covariance matrix of the training data is first decomposed using
spectral decomposition:

R = E
(

xxT
)
= UDUT , (24)

where D is a diagonal matrix with eigenvalues, and U is an orthogonal matrix:

UTU = UUT = I, (25)

where I is the identity matrix.
Whitening is a linear transformation from the original variables x into z:

z = W1x, (26)

in which the whitening matrix W1 is

W1 = D−
1
2 UT , (27)

To show that Equation (26) is a whitening transformation, the covariance matrix of z
should be the identity matrix:

E
(

zzT
)
= W1E

(
xxT
)

WT
1 = D−

1
2 UTUDUTUD−

1
2 = I (28)
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Whitening does not result in dimensionality reduction, and further processing is
typically needed.

Notice how whitening transformation differs from the subspace methods that project
the data onto the signal space and the noise space. As an example, Figure 4a illustrates two
points, from which the red square lies in the signal space and the green circle in the noise
space. Subspace methods can only detect damage in the noise space, whereas a data point
in the signal space remains undetected. The whitening transformation instead does not
divide the data into two subspaces, which can in some cases be advantageous. In other
cases, it may not be desirable to have alarms when the data points lie in the signal space,
e.g., in cases where extreme temperature causes the data to fall outside the training data.
In the present example, the user has to decide whether the red square in Figure 4a is an
indication of damage or merely an extreme environmental or operational condition.

3.3. Residual Generation

The variable z in Equation (26) can serve as a residual without further processing. It
has a unit covariance matrix in the undamaged case. The correlation structure is expected
to change due to damage because of changes in the mode shapes (spatial correlation) or
additionally in the natural frequencies (spatiotemporal correlation). If the structure is
damaged, the whitening transformation (Equation (26)) does not necessarily transform the
new data points inside the hypersphere. Instead, it is expected that the transformed data
points are located further away from the center of the hypersphere (see Figure 4). If the
distance from the center is statistically significant, it is an indication of damage.

3.4. Principal Component Analysis

Whitening transformation of the training data results in data points that fall inside a
hypersphere with a unit covariance matrix. Once damage occurs, it is expected that the
new data points are located outside this hypersphere after the same transformation. It is
also probable that the new data points are located in a certain direction from the center of
the hypersphere. This direction can be found using principal component analysis (PCA) [4].
Therefore, PCA is applied to all of the data, both training and test data. The first principal
component (PC) is only chosen for dimensionality reduction, which is expected to remove
the curse of dimensionality. The PC scores of the first PC are used for damage detection
and the first PC for damage localization.

3.5. Extreme Value Statistics

After principal component analysis, the dimensionality of the residuals is reduced to
one. The distribution of this one-dimensional feature is not known, or more specifically,
normal distribution may not be assumed. To this end, an extreme value distribution can be
utilized [27]. The maxima or minima of a large set of independent, identically distributed
random variables can be modelled with a generalized extreme value (GEV) distribution [28].
The data are divided into subgroups of n data points. The minimum and maximum from
each batch are recorded, resulting in data called block minima and block maxima. The
parameters of the two GEV distributions are identified for the block minima and block
maxima of the data from the undamaged structure [20].

3.6. Control Chart

Control charts, designed for the extreme values, are used for novelty detection with the
control limits computed according to the in-control data from the undamaged structure [29].
The control limits are computed from the GEV distributions by choosing the probability
of exceedance (here 0.001). If the plotted new data points exceed the control limits, it is a
possible indication of damage.
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3.7. Damage Localization

As mentioned before, the whitening matrix (Equation (27)) is not unique. Multiplica-
tion with an orthogonal matrix also results in a whitening transformation [21]. A special
whitening matrix is the inverse square root of R:

W2 = UD−
1
2 UT , (29)

which is advantageous in damage localization, as it preserves the orientation in the original
variable space (Figure 4c). The transformed variable with the largest value in the first
principal component is assumed to reveal the sensor closest to damage.

Notice that for damage detection, it makes no difference which whitening matrix is used.

4. Numerical Experiment

Damage detection and localization were studied using simulated data. A two-dimensional
finite element model of a steel frame with an additional spring element was subjected to
three uncorrelated random excitations (Figure 5). The density of the steel was ρ = 7850 kg/m3

and the spring constant was k = 2.0 MN/m. The relationship between temperature and
the Young’s modulus of steel was stepwise linear, as shown in Figure 6a. The frame was
modelled with 176 simple beam elements, with a cross-section shown in Figure 5. The first
seven modes were used in the simulation. Modal damping was assumed with damping
ratios of ζ1–2 = 0.01, ζ3 = 0.015, and ζ4–7 = 0.02.
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Figure 5. Frame structure with 59 accelerometers. Every other sensor number is displayed. Strain
sensors were located almost at the same points. The intact cross-section is also shown.

The three loads in the simulations were pseudorandom periodic excitations in the fre-
quency range between 0 and 53.33 Hz with random amplitudes and phases [5]. All analyses
had different loading functions. Steady-state analyses were performed in the frequency do-
main using modal superposition. Lateral accelerations at 59 points (every third node) and
strains in the middle of 59 beam elements (every third element) were recorded (Figure 5). The
measurement period was 32.77 s with a sampling frequency of 250 Hz. Each measurement
consisted of 8192 samples per channel. Independent and identically distributed Gaussian
random noise was added to each sensor. The average SNR was 30 dB for accelerometers and
10 dB for strain gauges. The standard deviations of the noise in all sensors were assumed to
be known. They can also be approximated from the measurement data [23].
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Figure 6. (a) Young’s modulus versus temperature; (b) sample distributions of the Young’s modulus.

A rather complex but also fairly realistic temperature distribution was assumed. The
temperature of the upper left (UL) corner, TUL, varied randomly between −25 ◦C and
+40 ◦C. The temperature at the upper right (UR) corner was TUR = TUL ± 5 ◦C, at the
bottom left (BL) support was TBL = TUL ± 3 ◦C, and at the bottom right (BR) support
was TBR = TUR ± 3 ◦C. Temperature variation between the aforementioned points was
assumed to be linear, except that Gaussian random noise with a standard deviation of
0.2 ◦C was added to each element. Temperature within a single element was constant.
Sample distributions of the Young’s modulus in the elements are plotted in Figure 6b. The
distribution did not change during a single measurement.

The variations of the lowest natural frequencies between measurements due to temper-
ature or damage are shown in Figure 7. A measurement with incipient damage is indicated
with a vertical line. The natural frequencies were not used for data analysis, and were only
plotted to illustrate how damage was masked by the temperature influence.
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Figure 7. Variation of the seven lowest natural frequencies due to temperature and damage. Fre-
quencies on the right of the vertical line are from the damaged structure. Different damage levels are
also indicated.

If modal parameters were used for damage identification, the following considerations
should be made. Only three natural frequencies exist in the frequency range of the excitation.
Three features are not enough to remove the environmental effects. If mode shapes were
also used, the resulting dimensionality of the feature vector would be 3 + 3 (59 − 1) = 177
for real modes and 3 + 3 (59 − 1) 2 = 351 for complex modes (−1 is due to the scaling
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of the mode shape vectors). These large numbers would probably result in the curse
of dimensionality, because one measurement yields only a single data point in the high-
dimensional space. Some other issues in system identification were already mentioned in
the introduction.

Visually unobservable damage at the support of the left leg was modelled with the
removal of material inside the cross-section of the bottom element. The length of the
element was 62.5 mm. Five different damage levels were studied with wall thicknesses
of 4.5, 4.0, 3.5, 3.0, and 2.5 mm (Table 1). Notice that as material was removed, both the
stiffness and mass decreased.

Table 1. Damage scenarios in a single beam element along a length of 62.5 mm. The measurement
numbers are also given.

Damage Level Plate Thickness
mm

Thickness Decrease
mm

Measurements

D0 5.0 0 1–100
D1 4.5 0.5 101–106
D2 4.0 1.0 107–112
D3 3.5 1.5 113–118
D4 3.0 2.0 119–124
D5 2.5 2.5 125–130

The first 100 measurements were acquired from the undamaged structure and each
damage level was monitored with six measurements under random and unknown envi-
ronmental conditions. Training data were the first 70 measurements. The extreme value
statistics (EVS) control charts were designed using the same training data.

4.1. Bayesian Virtual Sensing and Selection of Sensors for Storage

Each vibration measurement was individually processed, as illustrated in Figure 1.
Bayesian virtual sensing resulted in noise reduction. A detail of the measured and estimated
accelerations of sensor 2 in measurement 1 (undamaged) is plotted in Figure 8. The exact
values are also shown. It can be seen that the Bayesian virtual sensor was more accurate
than the corresponding physical sensor. The same applied to the other sensors.
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Figure 8. Detail of time history of accelerometer 2 in measurement 1 (undamaged): measured data,
virtual sensor data, and noiseless data.

The estimation errors of each virtual sensor in all measurements are plotted in Figure 9.
The variability between measurements was quite small. Although the measurement errors
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were equal (blue horizontal line), the virtual sensor errors differed between sensors. All
virtual sensors were more accurate than the hardware.
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Figure 9. Measurement errors (blue horizontal line) and Bayesian virtual sensor errors of all sensors
in each measurement (all damage levels).

Next, a subset of the Bayesian virtual sensors was selected separately for each mea-
surement by applying the backward sequential sensor placement (BSSP) approach [17]. The
requirement was that the standard deviation of the measurement error had to be decreased
at least 50% in all sensors.

The negative cost function was the minimum difference between the allowed and current
reconstruction errors in any sensor in the network. The reduced network with the maximum
distance (minimum cost) was selected for the next round. As a result, a single sensor was per-
manently removed from the network. Sensor removal continued until the accuracy criterion
was violated. The required number of virtual sensors was five for most measurements.

Once a single sensor was permanently removed, the errors of the stored and recon-
structed virtual sensors were evaluated. The mean error of the full data as a function of
the number of stored sensors is plotted in Figure 10 for measurement 1 (undamaged). It
can be seen that storing only five virtual sensors instead of all 59 virtual sensors did not
significantly increase the average noise level. When the number of stored sensors was
further decreased below five, the reconstruction error increased considerably. On the other
hand, when raw data were stored, the mean reconstruction error was larger. This was also
theoretically proven (see Equation (15)).
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Figure 10. Mean reconstruction error as a function of the number of stored physical or virtual sensor
signals in measurement 1. The blue horizontal line is the measurement error.
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The standard deviations of the measurement error, Bayesian virtual sensor error, and
reconstruction error of all sensors in measurement 1 are plotted in Figure 11a. It can be
seen that the reconstruction error was only slightly larger than that in the Bayesian virtual
sensors. Sensors, for which the two errors were equal, corresponded to the stored signals,
which were not reconstructed. They are indicated with black dots. The allowable error is
also shown. The reconstruction errors were clearly smaller than requested. When raw data
were stored, 22 signals were needed for reconstruction (Figure 11b), and for the most part,
the reconstruction errors were larger than when five virtual sensor signals were stored.
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Figure 11. (a) Measurement error, virtual sensor error, and reconstruction error of all sensors in mea-
surement 1, when five virtual sensor signals were stored. (b) Measurement error and reconstruction
error of all sensors in measurement 1, when 22 physical sensor signals were stored. The allowable
error is also shown. The stored sensors are indicated with dots.

The reconstruction errors of sensors near the supports were small. The reconstruction
error is, however, not the only important quantity. A high signal-to-noise ratio (SNR) is
crucial for detection [18]. The SNR of the stored and reconstructed data in measurement 1
is plotted in Figure 12a when five virtual sensors were stored, as well as the SNR of the
reconstruction when 22 physical sensors were stored. It can be seen that the sensors near
the supports actually had a very low SNR, which could have an adverse effect on damage
detection and localization. Nevertheless, the SNR of each stored and reconstructed virtual
sensor was larger than that of the corresponding physical sensor and, for the most part,
was also larger than the SNR when 22 physical sensors were stored.

A histogram of the selected virtual sensors for storage in all measurements is shown
in Figure 13. The most often selected sensors were located in six different regions of the
structure. The placement of the stored virtual and physical sensors in measurement 1 is
plotted in Figure 14a,b, respectively. Notice that no sensors were selected close to damage
location (sensor 1).
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Figure 12. (a) SNR of physical sensors, Bayesian virtual sensors, and stored and reconstructed virtual
sensors in measurement 1 when five virtual sensor signals were stored. (b) SNR of physical sensors
and stored and reconstructed sensors in measurement 1 when 22 physical sensor signals were stored.
The stored sensors are indicated with dots.
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Figure 13. Histogram of selected virtual sensors for storage in all measurements (all damage levels).
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The data compression ratio was computed as follows. If all data were stored, the
number of floating-point numbers in each measurement was 59 × 8192 = 483,328 numbers.
Storing five virtual sensor signals and the coefficient matrix A (Equation (10)) of size 54 × 5
resulted in 41,230 numbers. Consequently, only 8.5% of the total data had to be stored.

If raw signals were stored with the same requirement for the reconstruction accuracy, a
larger number of signals had to be stored and all signals had to be reconstructed. Therefore,
storing 22 signals and the coefficient matrix B (Equation (7)) of size 59 × 22 resulted in
181,522 numbers. Consequently, 37.6% of the total data had to be stored and the accuracy
was still lower that when five virtual sensors were stored, as seen in Figure 11.

4.2. Damage Detection and Localization Using Spatial Correlation

Damage detection was studied using four different data: raw measurements, all virtual
sensors without compression, stored and reconstructed signals, and stored signals only.
Spatial correlation was applied. EVS control charts were designed with a subgroup size of
1000 and are plotted in Figure 15. Notice that logarithmic scaling was applied to the vertical
axis for clarity. The data points to the left of the blue vertical line correspond to the training
data, whereas the black vertical lines indicate the onsets of the five damage scenarios.
Only the largest damage level was clearly detected using the actual measurement data
(Figure 15a). Classification of occasional out-of-control samples was difficult. All damage
cases were detected using all virtual sensors (Figure 15c) or the stored and reconstructed
data (Figure 15d). There is a slight difference between the two control charts, showing that
the detection performance increased due to compression. This was quite a surprise, because
the noise level in the reconstructed data was slightly larger than in the Bayesian virtual
sensor data. The reason for this behavior is not known, and it is questionable whether this
result can be generalized.

It may be argued that due to redundancy, only the selected virtual sensors would be
enough for damage detection. This argument was tested by storing the seven most selected
virtual sensors (sensors 10, 11, 22, 30, 38, 45, and 52; see Figure 13) from each measurement
and designing an EVS control chart for these data (Figure 15b). Only the largest damage
level was detected. Due to different environmental conditions between measurements,
more than seven signals would have been needed to remove the environmental influences.

Damage localization was done by plotting the squared projection of the first principal
component on each sensor (Figure 16). Using the actual measurement data, damage was
localized to sensor 5, and using the stored and reconstructed virtual sensors, damage was
localized to sensor 3. Notice that sensor 3 was not included in the stored sensors, but its
data were reconstructed. The correct position was closest to sensor 1. Neither analysis
pointed to the correct sensor, but in either case, the suggested damage location was in the
vicinity of the actual damage. The localization accuracy was slightly higher when the stored
and reconstructed virtual sensors were used. The SNR in sensor 1 was very small, which
probably resulted in the inaccuracy in damage localization. In many structures, damage
may be located close to the fixed support, where the stresses are large but the vibration
amplitude is very small, resulting in a small SNR. Therefore, strain measurements at these
locations could be considered.
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Figure 15. Damage detection using EVS control charts with spatial correlation: (a) all physical sensors;
(b) seven virtual sensors: 10, 11, 22, 30, 38, 45, and 52; (c) all Bayesian virtual sensors; (d) stored and
reconstructed virtual sensors. The vertical lines correspond to the end of training data (blue) and the
five damage levels (black).
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Figure 16. Damage localization: (a) all physical sensors; (b) stored and reconstructed virtual sensors.
The correct damage position was closest to sensor 1.
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4.3. Damage Detection Using Spatiotemporal Correlation

Damage detection was also investigated with a spatiotemporal correlation model. The
data and the algorithm remained the same. A model order equal to 30 was used. The size
of the data matrix including the shifted data was very large, and a recursive algorithm
was necessary to estimate the covariance matrices [31]. Covariance matrix estimates were
needed in two stages: first, the covariance matrix of the training data for whitening, and
second, the covariance matrix of all transformed data (residuals) for PCA.

Spatiotemporal correlation models yielded EVS control charts, shown in Figure 17,
which can be compared with the corresponding charts in Figure 15. Considerable improve-
ment resulted with the raw measurement data (Figure 17a). Almost all damage levels could
be detected. However, occasional false alarms emerged. Drastic improvement occurred
with the stored signals of the selected seven virtual sensors (Figure 17b). Nearly all damage
cases were detected, with occasional false indications of damage. Spatiotemporal correla-
tion was necessary to make the data redundant. Almost no effect was observed with the
virtual sensors (Figure 17c) or the stored and reconstructed virtual sensors (Figure 17d).
The detection performance slightly decreased, but was nevertheless almost perfect.
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Figure 17. Damage detection using EVS control charts with a model order equal to 30: (a) all physical
sensors; (b) seven virtual sensors: 10, 11, 22, 30, 38, 45, and 52; (c) all Bayesian virtual sensors;
(d) stored and reconstructed virtual sensors. The vertical lines correspond to the end of training data
(blue) and the five damage levels (black).

4.4. Strain Measurements

Strain measurements yielded very similar results and conclusions as the acceleration
measurements. The main observations are briefly discussed. The most important result was
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that a strain sensor must be located very close to damage. Otherwise, detection may not be
possible. Only three virtual strain sensors were selected for storage from most measurements
(Figure 18). The number of physical sensors was considerably larger. The accuracy require-
ment was satisfied with just three virtual sensors (Figure 19a) or with 24 physical sensors
(Figure 19b). The virtual sensors were located at the supports and at the left corner of the frame
(Figure 20a), whereas the positions of the stored physical sensors are shown in Figure 20b.
The SNRs of the virtual strain sensors were more uniform than those of the accelerometers
(Figure 21). Spatial correlation analyses yielded the control charts shown in Figure 22. Notice
that seven stored signals were used for Figure 22b, whereas only three signals were stored
for Figure 22d. Three damage levels were detected using the raw data (Figure 22a) or seven
selected virtual sensors (Figure 22b). All damage levels were detected using all virtual sensors
(Figure 22c) or the stored and reconstructed virtual sensors (Figure 22d). The out-of-control
samples in Figure 22d, in which the block maximum is negative or the block minimum
is positive, can be ignored. Again, quite surprisingly, the stored and reconstructed virtual
sensors yielded a slightly better detection performance than when all virtual sensors were
stored. Damage was correctly localized to sensor 1. When sensor 1 was removed from the
measurements, the detection performance decreased drastically.
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Figure 18. Mean reconstruction error as a function of the number of stored physical or virtual sensor
signals in measurement 1. The blue horizontal line is the measurement error.
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Figure 19. (a) Measurement error, virtual sensor error, and reconstruction error of all sensors in
measurement 1 when virtual sensor signals were stored. (b) Measurement error and reconstruction
error of all sensors in measurement 1 when physical sensor signals were stored. The allowable error
is also shown. The stored sensors are indicated with dots.
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Figure 20. (a) Selected virtual sensors for storage in measurement 1: sensors 1, 22, and 59. (b) A total
of 24 selected physical sensors for storage in measurement 1.
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Figure 21. (a) SNR of physical sensors, Bayesian virtual sensors, and stored and reconstructed virtual
sensors in measurement 1 when three virtual sensor signals were stored. (b) SNR of physical sensors
and stored and reconstructed virtual sensors in measurement 1 when 24 physical sensor signals were
stored. The stored sensors are indicated with dots.
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Figure 22. Damage detection using EVS control charts with spatial correlation: (a) all physical sensors;
(b) seven virtual sensors: 1, 22, 31, 32, 38, 46, and 59; (c) all Bayesian virtual sensors; (d) stored and
reconstructed virtual sensors. The vertical lines correspond to the end of training data (blue) and the
five damage levels (black).

Storing three virtual sensor signals and the coefficient matrix A (Equation (10)) of size
56 × 3 resulted in 24,744 numbers. Consequently, only 5.1% of the total data had to be stored.

4.5. Different Damage Locations

Damage detection and localization were also studied with different locations of dam-
age. The same damage type and levels were assumed, as shown in Table 1. Both acceleration
and strain measurements were considered. Six damage locations were arbitrarily selected,
including the location presented earlier. They are plotted in Figure 23.
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Figure 23. Six damage locations.

The results of damage detection and localization are given in Tables 2–4 for raw data,
virtual sensor data, and stored and reconstructed virtual sensor data, respectively. Very
interesting observations can be made: (1) Virtual sensors outperformed raw data in damage
detection. (2) Damage detection performance was better when using stored and recon-
structed virtual sensor data than all virtual sensors. (3) Damage localization performance
was affected by the damage position and the sensor type. Either accelerometers or strain
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sensors, but not both, were able to localize damage in a certain position. This was espe-
cially true with the stored and reconstructed virtual sensor data (Table 4). (4) Detection of
damage at location 2 was difficult with accelerometers. (5) Detection of minor damage at
locations 2 and 5 was challenging using strain sensors.

Table 2. Damage detection and localization using raw data. The number in parentheses is the sensor
found by the algorithm.

Damage
Location

Nearest
Sensors

Acceleration
Detection

Acceleration
Localization

Strain
Detection

Strain
Localization

Loc 1 1 D5 Fail (5) D3–D5 OK (1)
Loc 2 15–16 Fail (22) Fail 23
Loc 3 21–22 Fail (26) D2–D5 OK (22)
Loc 4 28–29 OK (28) Fail 16
Loc 5 51–52 OK (51) Fail 1
Loc 6 22–23 OK (22) Fail 59

Table 3. Damage detection and localization using virtual sensor data. The number in parentheses is
the sensor found by the algorithm.

Damage
Location

Nearest
Sensors

Acceleration
Detection

Acceleration
Localization

Strain
Detection

Strain
Localization

Loc 1 1 D1–D5 Fail (3) D1–D5 OK (1)
Loc 2 15–16 OK (16) D3–D5 Fail (21)
Loc 3 21–22 D2–D5 Fail (25) D1–D5 OK (22)
Loc 4 28–29 D3–D5 OK (28) D4–D5 Fail (38)
Loc 5 51–52 D3–D5 OK (52) D5 Fail (58)
Loc 6 22–23 D3–D5 Fail (26) D3–D5 Fail (17)

Table 4. Damage detection and localization using stored and reconstructed virtual sensor data. The
number in parentheses is the sensor found by the algorithm.

Damage
Location

Nearest
Sensors

Acceleration
Detection

Acceleration
Localization

Strain
Detection

Strain
Localization

Loc 1 1 D1–D5 Fail (3) D1–D5 OK (1)
Loc 2 15–16 D5 OK (15) D3–D5 Fail (23)
Loc 3 21–22 D2–D5 Fail (19) D1–D5 OK (22)
Loc 4 28–29 D2–D5 OK (28) D2–D5 Fail (21)
Loc 5 51–52 D2–D5 OK (52) D3–D5 Fail (59)
Loc 6 22–23 D1–D5 Fail (19) D2–D5 OK (23)

4.6. Different Damage Detection Algorithms

As mentioned in the introduction, comparison of different damage detection algo-
rithms is out of the scope of this study. If restricted to data-based methods in the time
domain, two alternative methods were tested with the same data. Damage location 1 was
assumed (Figure 23) to have the damage severities shown in Table 1. The two algorithms
were Mahalanobis distance (MD) [32] and a regression-based minimum mean-square error
(MMSE) estimation method [20]. MMSE was also applied to damage localization. Damage
detection using the stored and reconstructed virtual accelerations is shown in Figure 24.
Both methods were capable of detecting all damage levels. For the other data, the results
are shown in Table 5. They can be compared with the results of the whitening algorithm
shown in the first rows of Tables 2–4. MMSE performed slightly better than MD. Whitening
outperformed the two alternative methods, but only slightly. Especially with the raw strain
data, whitening could detect smaller damage than the other two algorithms.
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Figure 24. Damage detection from the stored and reconstructed virtual acceleration signals using
two alternative algorithms and EVS control charts. (a) MD; (b) MMSE. The vertical lines correspond
to the end of training data (blue) and the five damage levels (black).

Table 5. Damage detection and localization using MD and MMSE algorithms. (Acc = acceleration;
raw = raw data; vs = virtual sensor data; rec = stored and reconstructed data). The number in
parentheses is the sensor found by the algorithm.

Data MD
Detection

MMSE
Detection

MMSE
Localization

Acc raw D5 D5 Fail (4)
Acc VS D2–D5 D1–D5 Fail (3)
Acc rec D1–D5 D1–D5 Fail (3)

Strain raw D5 D5 OK (1)
Strain VS D2–D5 D1–D5 OK (1)
Strain rec D1–D5 D1–D5 OK (1)

5. Conclusions

A data-compression technique for storing and reconstructing simultaneously mea-
sured vibration signals in a dense sensor network was proposed. The stored and recon-
structed data were used for damage detection and localization. Data compression and
reconstruction for SHM is the main novelty of this paper.

The first step was to reduce measurement error by applying Bayesian virtual sensing.
The virtual sensors, being more accurate than the physical sensors, replaced the actual
measurements in the subsequent steps. The covariance matrix of the measurement errors
was assumed to be diagonal and known. The measurement errors can also be different
in each sensor, and they can be approximated from the measurement data. However, it is
more difficult to estimate cross-correlated noise (full covariance matrix).

Data compression and reconstruction was done individually for each measurement,
because the dynamic characteristics of the structure could vary between measurements
due to environmental or operational variability, or damage. On the other hand, a full set
of training data from several measurements under different environmental or operational
conditions was used to build a covariance model of the undamaged structure. This model
was applied to novelty detection using whitening transformation and principal component
analysis. The first principal component was assumed to reveal the sensor closest to the
damage location.

Data analysis for damage detection was performed in the time domain. No mathemati-
cal model of the structure nor system identification was needed. Spatial and spatiotemporal
correlation models were compared. Spatiotemporal correlation gave no improvement over
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spatial correlation when all virtual sensors or stored and reconstructed virtual sensors
were used. When raw measurement data or only the stored virtual sensor data were
used, spatiotemporal correlation considerably increased the sensitivity to damage. A
strain sensor had to be located close to damage. Otherwise, damage remained undetected.
Accelerometers were also able to detect remote damage.

The main results are (1) it is more beneficial to store virtual sensor data than physical
sensor data. (2) Less than 8.5% of the total amount of virtual sensor data had to be
stored in the studied example, whereas 37.6% of the physical sensor data had to be stored
for the same accuracy. (3) The stored and reconstructed virtual sensor data were more
accurate than the actual measurements. (4) The accuracy of the reconstructed virtual
sensors was only slightly smaller than that of the Bayesian virtual sensors. (5) The errors of
the Bayesian virtual sensors and, consequently, the reconstruction errors were not the same
even when the measurement errors were equal. (6) Whitening transformation was able
to take the environmental or operational influences into account without measuring the
underlying variables. (7) Damage detection and localization were more reliable with the
stored and reconstructed virtual sensors than with the actual measurements. (8) Damage
localization was successful with either accelerometers or strain sensors, but not both.
(9) Damage localization to a reconstructed virtual sensor was possible. (10) Damage
detection performance was slightly higher using the stored and reconstructed data than all
virtual sensors, but generalization of this result remained questionable and needs further
investigation. Different damage types should be studied with a more complex structure.
Experimental results are also needed to validate the proposed technique.
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