Synthesis of $(3 R, 5 R)$-harzialactone A and its ($3 R, 5 S$)-isomer

Gowravaram Sabitha*, Rangavajjula Srinivas, Sukant K. Das
and Jhillu S. Yadav

Full Research Paper

Open Access

Address:
Organic Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India, Fax: +91-40-27160512

Email:
Gowravaram Sabitha* - gowravaramsr@yahoo.com

* Corresponding author

Keywords:
dithiane; harzialactone A; hydroxyl directed reduction; stereoisomer

Beilstein Journal of Organic Chemistry 2010, 6, No. 8. doi:10.3762/bjoc.6.8

Received: 31 August 2009
Accepted: 20 January 2010
Published: 29 January 2010

Associate Editor: J. N. Johnston
© 2010 Sabitha et al; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract

The total synthesis of $(3 R, 5 R)$-harzialactone A (1) and its $(3 R, 5 S)$-isomer (2) is described. Epoxide opening with thioacetal and diastereoselective reductions are used as key reactions.

Introduction

Marine microorganisms such as bacteria, fungi, and microalgae have proved to be a rich source of structurally novel and biologically active secondary metabolites [1]. (+)-Harzialactone A (1), a marine metabolite isolated from the culture broth of a strain of Trichoderma harzianum OUPS-N115 by Numata and co-workers, exhibited antitumor and cytotoxic activities against cultured P388 cells [2]. The absolute configuration of (+)-1 was established based on ${ }^{1} \mathrm{H}$ NMR studies and by its synthesis [3,4]. Harzialactone A (1) (Figure 1) is a synthetic target of considerable interest due to its potent biological activity and unique structure. A few methods for its synthesis have been documented in the literature [3-10] as well as a synthesis of nonnatural (-)-harzialactone A [11]. However, the anti-tumor activity of Harzialactone A coupled with its unique structural architecture prompted us to attempt its synthesis.

The retrosynthesis is depicted in Scheme 1. Harzialactone 1 could be made from $\mathbf{3}$ by successive protecting group trans-

Figure 1: Natural harzialactone A (1), and its ($3 R, 5 S$)-isomer (2).
formations. $\mathbf{3}$ can be made by hydroxyl directed reduction of $\mathbf{4}$ which in turn could be prepared by epoxide 6 opening with dithiane 5.

Results and Discussion

The synthesis of natural $(3 R, 5 R)-1$ was initiated from the known epoxide $\mathbf{6}$, which is commercially available. Treatment of 2-phenylacetaldehyde 7 with 1,3-propanedithiol in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded thioacetal 5 in 90% yield (Scheme 2). The epoxide 6 was coupled with the acyl anion

Scheme 1: Retrosynthesis of harzialactone A (1).
equivalent 5 (1.0 equiv), prepared by metallation at $-78^{\circ} \mathrm{C}$ with 1.0 equiv of n-butyllithium in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to obtain $\mathbf{8}$ in 64% yield. Removal of the dithioketal using $\mathrm{HgCl}_{2} /$ CaCO_{3} in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (4:1)[12] provided the corresponding hydroxyketone $\mathbf{4}$ in 82% yield. Treatment of $\mathbf{5}$ with NaBH_{4} and $\mathrm{MeOBEt}_{2}[13,14]$ stereoselectively formed the syn diol 9 in good yield (80%). The diol 9 was subsequently transformed into the isopropylidene derivative $\mathbf{3}$ by treatment with 2,2-dimethoxypropane and a catalytic amount of PPTS in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$, the acetonide methyl groups resonated at 19.6 and 29.9 ppm indicating a 1,3 -syn-relationship that was further substantiated by the appearance of the quaternary carbon in the downfield region (98.7 ppm). Deprotection of the benzyl group using Li/liq. NH_{3} gave alcohol $\mathbf{1 0}$. Oxidation of alcohol $\mathbf{1 0}$ under Swern conditions and further oxidation of the resulting aldehyde using $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{NaClO}_{2}$ in DMSO $/ \mathrm{H}_{2} \mathrm{O}$ furnished the target hydroxylactone $(3 R, 5 R)-\mathbf{1}$ as reported earlier. The IR absorption at $1774 \mathrm{~cm}^{-1}$ indicates the presence of δ-lactone system.

The synthesis of $(3 R, 5 S)-2$ was also accomplished in an identical manner from 4 (Scheme 3). The substrate hydroxyl directed asymmetric reduction with $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}[15,16]$ was performed at $0{ }^{\circ} \mathrm{C}$ to afford the anti diol $\mathbf{1 1}$ as the major product, which was converted into stereoisomer ($3 R, 5 S$)-2 via acetonide 12, deprotection of benzyl group to give 13, and further functional group transformations by use of the same reagents and conditions as those described for the conversion of $\mathbf{1 0}$ into $\mathbf{1}$. The IR absorption at $1775 \mathrm{~cm}^{-1}$ confirms the presence of δ-lactone in $(3 R, 5 S)$-2

The anti relationship of two hydroxyl groups was studied in compound 12. In the ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2}$, the acetonide methyl groups resonated at 24.9 and 34.2 ppm indicating a 1,3-antirelationship that was further substantiated by the appearance of the quaternary carbon in the downfield region (100.5 ppm) [7].

In conclusion, a stereoselective synthesis of natural (+)($3 R, 5 R$)-harzialactone A and its nonnatural stereoisomer $(3 R, 5 S)$ has been accomplished.

Scheme 2: Synthesis of natural harzialactone A (1).

Scheme 3: Synthesis of (3R,5S)-harzialactone A (2).

Supporting Information

Supporting Information File 1

Experimental section and analytical data.
[http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-6-8-S1.doc]

Acknowledgements

R. S. thanks CSIR, S. K. D thanks UGC, New Delhi for the award of fellowships.

References

1. Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, P. R. Nat. Prod. Rep. 2004, 21, 1-49. doi:10.1039/b305250h (and references cited therein).
2. Amagata, T.; Usami, Y.; Minoura, K.; Ito, T.; Numata, A. J. Antibiot. 1998, 51, 33-40.
3. Mereyala, H. B.; Gadikota, R. R. Tetrahedron: Asymmetry 1999, 10, 2305-2306. doi:10.1016/S0957-4166(99)00245-1
4. Mereyala, H. B.; Joe, M.; Gadikota, R. R. Tetrahedron: Asymmetry 2000, 11, 4071-4081. doi:10.1016/S0957-4166(00)00389-X
5. Ikota, N. Heterocycles 1991, 32, 521-528. doi:10.3987/COM-91-5669
6. Kumar, J. S. R.; Datta, A. Tetrahedron Lett. 1999, 40, 1381-1383. doi:10.1016/S0040-4039(98)02614-8
7. Kiyooka, S.; Goh, K.; Nakamura, Y.; Takesue, H.; Hena, M. A. Tetrahedron Lett. 2000, 41, 6599-6603. doi:10.1016/S0040-4039(00)01124-2
8. Moreau, X.; Campagne, J. Tetrahedron Lett. 2001, 42, 4467-4469. doi:10.1016/S0040-4039(01)00753-5
9. Kotkar, S. P.; Suryavanshi, G. S.; Sudalai, A. Tetrahedron: Asymmetry 2007, 18, 1795-1798. doi:10.1016/j.tetasy.2007.07.031
10. Kumar, A. N.; Bhatt, S.; Chattopadhyay, S. Tetrahedron: Asymmetry 2009, 20, 205-209. doi:10.1016/j.tetasy.2009.01.009
11. Jian, Y.-J.; Wu, Y.; Li, L.; Lu, J. Tetrahedron: Asymmetry 2005, 16, 2649-2651. doi:10.1016/j.tetasy.2005.07.003
12. Corey, E. J.; Bock, M. G. Tetrahedron Lett. 1975, 16, 2643-2646. doi:10.1016/S0040-4039(00)75203-8
13. Hanamoto, T.; Hiyama, T. Tetrahedron Lett. 1988, 29, 6467-6470. doi:10.1016/S0040-4039(00)82375-8
14. Chen, K. M.; Hardtmanna, G. E.; Prasad, K.; Pepc, O.; Shapinro, M. J. Tetrahedron Lett. 1987, 28, 155-158. doi:10.1016/S0040-4039(00)95673-9
15. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578. doi:10.1021/ja00219a035
16. Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27, 5939-5942. doi:10.1016/S0040-4039(00)85367-8

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at:
doi:10.3762/bjoc.6.8

