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Abstract: Oxidative damage is one mechanism linking aging with chronic diseases including the
progressive loss of skeletal muscle mass and function called sarcopenia. Thus, mitigating oxidative
damage is a potential avenue to prevent or delay the onset of chronic disease and/or extend healthspan.
Mitochondrial hormesis (mitohormesis) occurs when acute exposure to stress stimulates adaptive
mitochondrial responses that improve mitochondrial function and resistance to stress. For example,
an acute oxidative stress via mitochondrial superoxide production stimulates the activation of
endogenous antioxidant gene transcription regulated by the redox sensitive transcription factor
Nrf2, resulting in an adaptive hormetic response. In addition, acute stresses such as aerobic exercise
stimulate the expansion of skeletal muscle mitochondria (i.e., mitochondrial biogenesis), constituting
a mitohormetic response that protects from sarcopenia through a variety of mechanisms. This review
summarized the effects of age-related declines in mitochondrial and redox homeostasis on skeletal
muscle protein homeostasis and highlights the mitohormetic mechanisms by which aerobic exercise
mitigates these age-related declines and maintains function. We discussed the potential efficacy of
targeting the Nrf2 signaling pathway, which partially mediates adaptation to aerobic exercise, to
restore mitochondrial and skeletal muscle function. Finally, we highlight knowledge gaps related to
improving redox signaling and make recommendations for future research.

Keywords: redox homeostasis; mitohormesis; mitochondrial function; skeletal muscle; aging;
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1. Introduction

In the next half century, the world’s population of individuals aged over 65 years will significantly
increase. The global population of individuals over the age of 65 will likely double from 6.9% to 12.0%
by 2030 [1]. Specifically, in Europe, projections suggest that individuals over the age of 65 years will
comprise of 28% of the population by 2060, compared to 18% in 2013 [2]. Similarly, in the United States,
25.8% of the population will be above the age of 65 years by 2050 [3].

With the growing aging population, researchers and healthcare providers have shifted focus to
extending healthspan (as opposed to the lifespan), or the period of time living free of age-related
chronic diseases, such as diabetes, cardiovascular disease, and Alzheimer’s disease [4,5]. There are
nine underlying mechanisms linking aging with chronic diseases that are highlighted in the review
“Hallmarks of Aging [6].” Targeting these mechanisms to slow aging should mitigate the burden
and duration of chronic diseases, expanding healthspan [7]. Often touted as a beneficial health
behavior, exercise is somewhat underappreciated as a means to target many of the hallmarks of aging
and slow age-related declines in function. However, there is growing appreciation that exercise,
particularly aerobic, is an effective means to extend healthspan [8]. One of the suspected primary
mechanisms by which aerobic exercise confers beneficial health adaptations is through mitohormesis.
Mitohormesis is a term used to describe the response to an acute, sublethal stress, such as oxidative
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stress, that may temporarily impair or damage mitochondria, but ultimately leads to the activation of
adaptive mechanisms that confer stress resistance and improve mitochondrial function [9]. In this
review, we describe the age-related decline in mitochondrial function, the concomitant decline in redox
homeostasis, and their combined deleterious effect on skeletal muscle function. We then discuss the
mitohormetic effect of an acute bout of aerobic exercise as a means to improve redox homeostasis and
mitochondrial function. In addition, we highlight the mitohormetic adaptations to lifelong aerobic
exercise as a means to prevent age-related declines in mitochondrial function and redox homeostasis
to maintain skeletal muscle health with age.

2. Age-Related Decline in Mitochondrial Function

While it is unclear if mitochondrial dysfunction is a cause or a consequence of aging, mitochondrial
dysfunction is indeed a “hallmark” of aging [6]. Two key characteristics of mitochondrial dysfunction
are decrements in ATP production and a concomitant increase in reactive oxygen species (ROS)
production [10]. This review predominantly focuses on these two characteristics; however, it is
important to note that there are several other components of mitochondrial function that are impaired
with age (e.g., mitochondrial dynamics [11,12], calcium handling [13]). Some cross-sectional studies
demonstrate that older adults generally have lower mitochondrial ATP production with chronological
age in skeletal muscle [14–16], whilst others do not [17–19]. Interindividual variability, study design,
and methods utilized to measure mitochondrial function likely contribute to these divergent findings.
When covariates such as physical activity, fitness, and adiposity are controlled for, there is only a weak
inverse correlation between age and mitochondrial function that accounts for less than 5% of variations
observed in maximal oxidative capacity in mitochondria [20]. This relatively minimal contribution of
age to mitochondrial dysfunction emphasizes that dysfunction is not entirely programmed into the
aging process. Rather, it suggests that age-related mitochondrial dysfunction is modifiable through
factors such as health behaviors (diet and exercise). Thus, there is potential for interventions to target
mitochondrial dysfunction and prevent the age-related diseases that arise as a consequence of it.

3. Sarcopenia and Its Effect on Overall Health

Sarcopenia was originally characterized in 1989 by Dr. Irwin Rosenberg as the age-related loss
of skeletal muscle mass [21]. Over the past three decades, this definition has evolved to include the
age-related loss of skeletal muscle function [22]. Whilst there is debate on the value of returning
to the strict definition of sarcopenia as loss of muscle mass and establishing new terminology to
characterize age-related muscle dysfunction [23,24], the World Health Organization (WHO) recently
established an ICD-10 code for sarcopenia defined as loss of skeletal muscle mass and function, which
will certainly spur new research and treatment [25]. In this review, we use the term sarcopenia as
defined by the WHO.

Skeletal muscle function (e.g., muscle strength, mass, and overall mobility [22]) has a significant
impact on quality of life and overall health. Sarcopenia increases the risk of disability for men and
women two- and three-fold, respectively, compared to non-sarcopenic individuals [26]. Longitudinal
studies, such as the Health ABC study, also demonstrate that age-related muscle loss predicts the
loss of strength and the incidence of disability [27,28]. Sarcopenia increases the risk of falls three-fold
in adults above the age of 80 years [29]. Lower levels of muscle function and the increased risk of
disability and frailty also hinders recovery from hospitalization, predisposing individuals to admission
to nursing home facilities [30].

While the role of skeletal muscle in the maintenance of quality of life and mobility through aging
is generally appreciated, skeletal muscle also plays a significant role in overall metabolic health and
longevity. Over the past decade, there is greater acknowledgment of the role of skeletal muscle as being
central to substrate metabolism and as an endocrine organ [31]. For example, given the role of skeletal
muscle in glucose metabolism, there is growing speculation that sarcopenia could impair insulin
sensitivity [32] and several prospective studies have indeed linked sarcopenia with increased incidence



Sports 2019, 7, 170 3 of 18

of type 2 diabetes [33–35]. Sarcopenia is associated with the increased risk of developing other chronic
diseases such as cardiovascular disease, which could be mediated by increased inflammatory cytokines
released by skeletal muscle [36–38]. In addition, skeletal muscle function predicts the survival rates
of other diseases such as cancer [39]. While the potential mechanisms by which skeletal muscle and
metabolic health contribute to healthspan continue to be elucidated, it is clear that maintaining skeletal
muscle function imparts health beyond mobility.

4. Skeletal Muscle Mitochondrial Dysfunction and Sarcopenia

Sarcopenia is a multi-faceted syndrome with a multitude of contributing factors. The loss of
skeletal muscle mass is perhaps one of the strongest factors linked to the loss of skeletal muscle
function. Koopman and van Loon highlight that thigh muscle size explains 49% of the variability
in maximal leg press strength [40]. Studies almost always demonstrate that older adults have both
lower skeletal muscle mass and strength than younger adults [28,41–44]. However, it is important to
acknowledge that even when controlling for skeletal muscle size, specific strength is still impaired
with age [41]. These data indicate that other factors besides muscle mass contribute to overall strength
and function, including energetics [45], muscle fiber type [42], innervation [46], redox signaling [47],
and skeletal muscle proteome integrity [48,49]. These “other factors,” provide opportunities to
discover complementary interventions to preserve skeletal muscle function with age, contributing
to overall healthspan. Mitochondrial function plays a significant underlying role in many of these
factors, including maintaining energetics [18], skeletal muscle innervation [50], proteome integrity
(proteostasis) [51], and redox homeostasis [52]. The remainder of this review will focus on the
role of mitohormesis in the maintenance of mitochondrial function and subsequently of skeletal
muscle function.

Mitochondrial function has a significant effect on skeletal muscle function. The Baltimore
Longitudinal Study on Aging, perhaps one of the most comprehensive longitudinal studies that follows
muscle function, aerobic capacity, and mitochondrial function, demonstrated that mitochondrial
dysfunction is a significant factor that accounts for impairments in aerobic capacity (r2 = 0.355), gait
speed (r2 = 0.166), grip strength (r2 = 0.106), and even leg strength (r2 = 0.166) [45]. In fact, models of
sarcopenia have demonstrated that mitochondrial dysfunction precedes the loss of redox homeostasis,
the increase in oxidative damage to contractile proteins, and the decline in skeletal muscle function [53].
Thus, interventions that maintain and/or improve mitochondrial function will subsequently improve
skeletal muscle function. We have previously highlighted the efficacy of targeting mitochondrial
function to improve skeletal muscle proteostasis and function through improvements of energetics and
the mitigation of oxidative damage [51,54]. In this review, we highlighted how mitohormetic responses
elicited through aerobic exercise could resolve age-related impairments in redox homeostasis and
mitochondrial function to maintain skeletal muscle function.

5. Redox Circuits and Redox Homeostasis

Reactive oxygen species (ROS), in acute and sublethal doses, are beneficial and confer health effects
through a variety of mechanisms. However, there is an age-related increase in chronic ROS production
which diminishes both stress resistance (prevention of a tipping point from adaptive to maladaptive
response) and resilience (adaptive response and return to homeostasis) [55]. This unmitigated increase
in ROS disrupts the redox signaling pathways necessary to defend against and adapt to oxidative
challenges. As a consequence, unmitigated ROS causes oxidative damage of cellular components,
including proteins and lipid membranes [56]. Age-related increases in oxidative stress disrupt redox
homeostasis (i.e., the culmination of redox signaling circuits involved in sensing, signaling, and
adapting to a stress) and promote the accumulation of oxidative damage both of which eventually
lead to cellular dysfunction in muscle and other tissues. As a consequence, impaired redox signaling
and oxidative damage predispose aged individuals to chronic diseases such as diabetes, Alzheimer’s
disease, and sarcopenia [57]. Increased ROS production in skeletal muscle leads to the oxidative
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damage of proteins, such as contractile proteins, which compromises proteome integrity [49,58].
Moreover, oxidative damage to mitochondria impairs their capacity to generate ATP [59], which in turn
impairs processes critical to maintaining the proteome (proteostasis) and myocellular function [53].
Thus, targeting redox homeostasis and mitigating oxidative damage have the potential to improve
skeletal muscle function.

Redox homeostasis, the maintenance of many redox circuits, is impaired with age. In its simplistic
form (Figure 1a–d), a redox circuit is comprised of a signal (Figure 1a), a redox sensor (Figure 1b), the
activation of a response pathway (Figure 1c), and the functional outcome of the response (Figure 1d) [55].
In a broad sense, a bout of stress leads to an increase in a stress signal (indicated by an increase in the
y-axis of Figure 1a), which then leads to the modification of a sensor to an activated state (increase
in y-axis of Figure 1b). The activation of the sensor leads to the stimulation of a response pathway
(Figure 1c), which then leads to functional improvements (Figure 1d).

To serve as an example of a redox circuit, we will walk through a redox circuit involving the Nrf2
(nuclear factor erythroid 2-related factor 2) signaling response pathway, which is responsible for the
expression of antioxidant enzymes in response to ROS and other stressors. The redox circuit functions
in this manner: hydrogen peroxide (Figure 1a, the signal) oxidizes cysteine residues (Figure 1b, the
sensor) of the Nrf2/Keap1 complex, which leads to activation of the transcription factor Nrf2 (Figure 1c,
the response pathway), and an increase in cellular antioxidant enzymatic capacity (Figure 1d, the
functional outcome) [60]. The increased antioxidant capacity of the cell subsequently counterbalances
the elevated production of ROS (return to baseline in Figure 1a), and it improves the overall function
(elevated function in Figure 1d).

Age-Related Impairment in Redox Homeostasis and Its Consequence in Skeletal Muscle

With age, in a seemingly paradoxical manner, there is an increase in baseline antioxidant enzyme
expression (Figure 1g, response pathway) in response to unmitigated elevated levels of ROS (Figure 1e,
signal) and increased cysteine oxidation (Figure 1f, sensor). However, due to desensitization to
the signal and increased sensor activation [55], the impaired redox circuit fails to elicit a functional
adaptation or enhance antioxidant capacity (Figure 1h) [61]. This is partially due to the fact that Nrf2
activity decreases with age [62,63]. In some cases, the stress fails to improve or, instead, impairs
function. As a consequence, because there is no functional adaptation, the increased concentration of
ROS is unresolved and instead it progressively increases (Figure 1e).

While there is still much to elucidate regarding the desensitization of redox circuitry, a modeling
paper published in 2018 suggested that persistently elevated levels of stress or inflammation lead
to “molecular habituation”, which leads to the desensitization of essential adaptive pathways [55].
Elevated levels of ROS (the signal) impair redox signaling by disrupting the initiation (via a sensor) of an
adaptive response to the stress, thereby impairing the ability to functionally adapt to the stress [64,65].
Aged individuals have higher resting levels of ROS production, and they also have an impaired ability
to acutely increase ROS to elicit an adaptive response [62,66].

As an example, glutathione (GSH) and oxidized glutathione (GSSG) are an essential redox
(sensor) pair that helps to buffer increases in oxidants and activate adaptive responses to stress.
As the ratio between GSSG/GSH shifts towards a greater oxidized state (i.e., the ratio increases), the
sensor stimulates adaptive mechanisms. However, with age, the impaired ability to resolve oxidative
stress [62,64] (Figure 1a→Figure 1e) leads to the constitutive oxidation (signal) of the GSSG/GSH
redox pair (Figure 1b→Figure 1f) [61,67]. In this case, elevated GSSG/GSH constantly attempts to
stimulate pathways to mitigate the stress; however, the capacity to respond to the signaling is also
diminished with age (Figure 1c,d→Figure 1g,h). The impaired adaptive response (e.g., decline in
the Nrf2 signaling response) to a stress would lead to a decline in the production of enzymes, such
as glutathione synthetase and glutathione reductase, which are responsible for the maintenance of
GSSG/GSH redox homeostasis. As a result, the ability to restore the GSSG/GSH ratio (sensor) to a
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normal redox state (i.e., a more reduced state), so that it can adequately detect changes in ROS (signal)
and elicit a response (adaptation), is impaired [67].

Figure 1. A normal and impaired redox circuit responding to acute stress. At the onset of a stress, the
signal (e.g., ROS) increases (a), which causes activation of its respective sensor (b). In turn, an adaptive
response pathway is activated (c), which elicits an improvement in cellular function (d) resolving
both the stress signal and modified sensor to pre-stress levels. In addition, the adaptive response
triggers improved function that is sustained well after the stress (d). With age, however, resting stress
levels are elevated (e), which leads to greater signal stimulation pre-stress (f). However, the adaptive
mechanisms are impaired and desensitized, such that these elevated levels of stress are not lowered.
Consequentially, upon stress of a similar magnitude (e), the magnitude of sensor activation is smaller
(f), which limits the adaptive response to the stress (g). As a result, the diminished response fails to
improve functional capacity in response to a stress (h). In some cases, in an impaired redox circuit, the
acute stress impairs cellular function. The left column shows an example of a redox circuit involving
the Nrf2/Keap1 response pathway.
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It is important to note that the redox signaling pathway involving Nrf2 is just one example of
an age-related impairment in a discrete redox circuit. There are a multitude of other redox circuits,
only a few of which we address, that contribute to overall redox homeostasis (e.g., the unfolded
protein response (UPR) [68]; the protein phosphorylome in response to redox modulation [69]) and
have different roles than the Nrf2 signaling pathway in maintaining redox and protein homeostasis.
These redox circuits all share a similar theme in that progressive, age-related disruption leads to
dysfunction of the circuit and consequentially leads to decrements in function.

In aged skeletal muscle, because redox circuitry is impaired, the ability to resolve oxidative stress
is diminished. It is likely there are subsequent effects that lead to skeletal muscle dysfunction with
age. From an energetic perspective, excessive oxidative stress and oxidative damage contribute to
mitochondrial dysfunction, which likely impairs the ability of the muscle to generate sufficient ATP
for muscle contractions [70]. Unmitigated and sustained increases in ROS also damages proteins,
including proteins responsible for contractions [48,71]. Mitochondrial dysfunction also impairs the
UPR, thereby hindering a proteostatic mechanism to repair damaged proteins and maintain proteome
integrity [72]. The accumulation of damaged proteins impairs the contractile machinery responsible for
force production and transduction [41,73,74]. Disruption of the redox homeostasis also deleteriously
affects muscle regeneration and skeletal muscle precursor differentiation [75]. In all, the unmitigated,
elevated levels of ROS, combined with impaired redox signaling, lead to the accumulation of damaged
cellular components and muscle dysfunction. Therefore, efforts to maintain or repair redox signaling
with age are necessary to restore skeletal muscle function.

6. Mitohormesis as a Mechanism to Restore Redox Homeostasis

The term mitohormesis was first proposed in 2006 referring to the notion that sublethal
mitochondrial stress can stimulate a robust cellular response that improves mitochondrial and overall
cellular function [76]. For example, acute exposure to an oxidative stress can elicit a mitohormetic
response characterized by improved protein folding and prevention of the age-related collapse of
proteome integrity [77]. Mitohormesis is likely a critical mechanism that contributes to healthspan
extension. For example, sublethal stresses that extend lifespan and health, such as caloric restriction
or rapamycin treatment, also improve mitochondrial function mediated partially through increased
mitochondrial turnover [78–80]. Mitohormesis likely contributes to health benefits by upregulating
antioxidant enzymes [81], increasing mitochondrial biogenesis [79,81], enhancing mitochondrial
function [82], and improving redox homeostasis [81]. To date, aerobic exercise training is one of the
best examples of mitohormesis, where repeated acute bouts of stress elicit beneficial effects on health
and function [83].

6.1. Mitohormesis, Aerobic Exercise, and Healthspan Extension

Aerobic exercise has seemingly innumerable benefits on overall health that are well-documented
in comprehensive reviews [84–88]. Perhaps one of the most potent effects of aerobic exercise training
is on cardiorespiratory fitness (i.e., VO2max) [89]. Cardiorespiratory fitness is one of the strongest
predictors of mortality. Given that individuals with higher cardiorespiratory fitness live longer than
those with average or below average cardiorespiratory fitness, aerobic exercise training is one of the
few established healthspan extending interventions practiced in humans to date [8,90–92]. In skeletal
muscle, aerobic exercise training enhances mitochondrial function [93,94], stimulates skeletal muscle
hypertrophy [88], and maintains strength and function throughout life [95,96]. Aerobic exercise
protects from age-related chronic diseases such as Alzheimer’s disease [86], cancer [97], cardiovascular
disease [98], diabetes [99], and many more [8]. These health benefits are conferred partially through
mitohormetic effects of an aerobic exercise bout, where transient increases in ROS lead to cellular
responses that protect skeletal muscle from damage and dysfunction (Figure 2).
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Figure 2. Mitohormetic effects of acute aerobic exercise. While there are broad effects of aerobic exercise
that extend beyond mitohormesis, there are several mechanisms in which an acute stress improves
health and skeletal muscle function. Through the stress response pathways indicated here, aerobic
exercise stimulates myofibrillar protein synthesis, antioxidant expression, and mitochondrial biogenesis,
as well as enhancing protein folding capacity. This translates broadly to improved redox homeostasis,
mitochondrial function, and proteostasis. Altogether, these adaptive responses translate to enhanced
skeletal muscle health and function.

6.2. Mitohormetic Effects of a Bout of Aerobic Exercise

The onset of exercise stimulates the generation of ROS from a variety of sources within skeletal
muscle that is essential for muscle contraction [100]. For example, NADP(H) oxidases located in
the sarcoplasmic reticular membranes, plasma membranes, and t-tubules, generate superoxide.
The superoxide generated stimulates depolarization and calcium release necessary for muscle
contraction [100]. Depleting ROS impairs force production whereas increased ROS production (up to
the tipping point from adaptation to maladaptation) actually increases force production [101]. Therefore,
ROS are necessary for adequate skeletal muscle function. In addition, a bout of aerobic exercise
acutely imposes a cellular oxidative stress by transiently increasing ROS emission by simultaneously
stimulating electron flux and decreasing ADP sensitivity [102]. It is important to point out that
exercise-induced increases in ROS emission are transient, which is in contrast to the elevated, and often
unmitigated, ROS production associated with aging. In fact, with sedentary aging, there is a diminished
capacity to acutely elicit ROS emission during exercise [103], which impairs muscle contractile force and
the adaptive redox circuits that impart cytoprotective effects [59,100,104]. However, aerobic exercise
training seems to maintain and/or restore redox circuitry.

At a molecular level, aerobic exercise acutely stimulates the generation of ROS and it activates a
multitude of redox circuits related to stress adaptation [105] (e.g., AMPK [106], MAP kinases [107],
and NFkB [108]) (Figure 2). ROS (the signal) also modify the activity of protein phosphatases (in
this case, a sensor) that regulate the phosphorylation of proteins responsible for activating adaptive
responses to muscle contraction [69]. Acute exercise also stimulates the UPR, another redox circuit,
through increasing the protein folding demand [109,110]. Altogether, these redox circuits mediate the
mitohormetic effect of acute exposure to stress imposed by a bout of exercise. For example, a bout
of exercise stimulates Nrf2 activation in skeletal muscle which, as discussed, leads to the expression
of antioxidant and other cytoprotective enzymes, as well as the enzymes responsible for improving
mitochondrial and cellular function. The stimulation of AMPK through exercise-induced energetic
and oxidative stress also stimulates mitochondrial biogenesis [111–113]. Acute activation of the UPR
through exercise-induced oxidant stress also improves protein folding capacity and enhances the
mechanisms related to proteostasis [114]. These examples of mitohormetic adaptation elicited through
a bout of aerobic exercise highlight how aerobic exercise training extends the healthspan by maintaining
skeletal muscle function and protecting against other age-related diseases (Figure 2). However, it is
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unclear whether age or redox dyshomeostasis blunts specific components of the adaptive response to a
bout of aerobic exercise. Nonetheless, the benefits of aerobic exercise persist throughout the lifespan.

6.3. Mitohormetic Adaptations from Aerobic Exercise Training

Aerobic exercise training protects from age-related dysfunction and disease in a variety of ways
that could be, at least in part, mediated through mitohormetic responses (Figure 2). For example,
aerobic exercise training results in increased endogenous antioxidant defenses. ROS generated during
exercise activate the transcription factor Nrf2, leading to the transcription of genes encoding much
of the endogenous antioxidant network [115]. In turn, these enhanced endogenous antioxidant
defenses mitigate the age-related increase in chronic oxidative stress and guard against dysfunction
related oxidative damage [116]. There is also evidence to suggest that the activation of Nrf2 also has
“crosstalk” promoting mitochondrial biogenesis [117]. Indeed, the stress imposed by exercise training
has long been recognized as the most robust stimulus for mitochondrial biogenesis, increasingly
recognized as redox-sensitive adaptation [102,118,119], resulting in enhanced mitochondrial function
throughout age [120,121]. As a result of improved mitochondrial capacity, energetics seem to be more
capable of investing in costly proteome maintenance, collectively called proteostatic mechanisms [51].
Aerobic exercise also increases myofibrillar protein synthesis to maintain the skeletal muscle contractile
proteome [95] and contractile force [96], contributing to protection against age-related declines in
strength and function. In summary, the mitohormetic response to aerobic exercise leads to cellular
adaptations that translate to functional improvements that protect against age-related disease (e.g.,
sarcopenia) and extend healthspan.

7. Targeting Nrf2 as a Complementary or Alternative Approach to Restore Redox Homeostasis

Whilst exercise remains the most effective intervention to maintain and improve health, adherence
to exercise guidelines remains remarkably low both in the United States (less than 10%) and Europe
(less than 50%) [122,123]. Therefore, alternative and/or complementary therapies with better adherence
rates could be utilized to maintain or increase healthspan. Given the detrimental role of age-related
increases in chronic ROS production (as opposed to transient increases in ROS from a bout of exercise)
on health, there has been emphasis on antioxidant supplementation to mitigate the age-related increases
in oxidative stress to prevent, delay the onset of, and mitigate the severity of chronic diseases [124].
In this portion of the review, we highlight approaches that attempt to restore redox homeostasis and/or
reduce oxidative stress.

7.1. Directly Scavenging ROS with Exogenous Antioxidants

Exogenous antioxidant supplements are compounds that can directly scavenge ROS, such as
vitamin C and vitamin E. As oxidative stress emerged as a contributor to aging and disease, the
potential for exogenous antioxidant supplementation as a means to mitigate excessive oxidative stress
became a research focal point. However, several studies have demonstrated that exogenous antioxidant
supplementation has deleterious effects on health and it may even block the mitohormetic effects of
aerobic exercise.

Since exogenous antioxidants can directly scavenge ROS, they can also disrupt adaptive signaling
pathways induced by ROS. This becomes apparent when observing the effects of supplementing
aerobic exercise with vitamins C and E [125,126]. As discussed, aerobic exercise elicits an acute increase
in ROS concentrations that stimulate redox signaling pathways, mitochondrial biogenesis, and other
adaptive mechanisms that increase cardiorespiratory fitness [94]. However, supplementation with an
exogenous antioxidant prevents the increase in ROS released from muscle contractile activity, which then
abrogates the signaling pathways involved in the mitohormetic adaptation [125]. Beyond adaptation
to exercise, a meta-analysis reveals that exogenous antioxidant supplementation provides no protection
against chronic disease or mortality from chronic diseases [127]. This is likely due to the fact that
exogenous antioxidants disrupt the redox signaling that is necessary for normal physiologic function
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and adaptation [128]. However, supplements that target endogenous antioxidant production to
mitigate oxidant stress, whilst simultaneously allowing physiologic redox signaling to occur, may be
more efficacious in eliciting beneficial adaptations and restoring redox homeostasis.

7.2. Upregulation of Endogenous Antioxidants

Aerobic exercise, as discussed, is a potent stimulator of endogenous antioxidant upregulation,
resulting in the transcription of endogenous antioxidants, such as SOD1 and SOD2, which is mediated by
the activation of transcription factors, such as Nrf2 [70,116,129]. As opposed to exogenous antioxidant
supplements, there are compounds, which are often comprised of phytochemical components, that
enhance cellular antioxidant capacity by upregulating the expression of antioxidant enzymes, such as
SOD1 and catalase. As discussed, exogenous antioxidant supplements seem to abrogate important
redox signaling leading to beneficial adaptations, because they directly scavenge oxidants. In contrast,
enhancing endogenous antioxidant capacity permits redox signaling whilst simultaneously preventing
ROS from reaching a tipping point in which a stress becomes maladaptive [130].

Recent research has demonstrated that the upregulation of endogenous antioxidants has beneficial
effects on skeletal muscle function and overall organismal health. Phytochemical Nrf2 activators are
one approach used to upregulate endogenous antioxidants. Nrf2 activators stimulate the translocation
of Nrf2 into the nucleus leading to the transcription of the endogenous antioxidant genome [60].
As opposed to exogenous antioxidant supplements, Protandim, an Nrf2 activator, has been shown
to extend the median lifespan in male heterogenous mice [131]. Our lab has demonstrated that
treatment with Protandim protects coronary endothelial cells and cardiomyocytes from oxidative
stress challenges [132,133]. Again, in contrast to exogenous antioxidant supplements, treatment with
Protandim also enhanced proteostatic mechanisms and permitted the mitohormetic adaptations to
physical activity [134]. Finally, our lab has demonstrated that treatment with a similar phytochemical
Nrf2 activator enhanced the proteostatic maintenance of skeletal muscle contractile proteins in
sedentary, healthy older adults [135]. Together, these findings suggest that Nrf2 activators may
improve skeletal muscle quality and help maintain muscle function with age. Other Nrf2 activators,
such as sulforaphane, demonstrate similar results, including improved mitochondrial and skeletal
muscle function [136–138]. Moreover, other compounds that improve redox homeostasis through other
mechanisms also seem to enhance skeletal muscle function. For example, SS31 is a peptide that protects
cardiolipin, a phospholipid necessary for the maintenance of mitochondrial supercomplexes, and it
improves mitochondrial function by increasing energetic capacity and reducing aberrant generation of
mitochondrial ROS. Treatment with SS31 in old mice results in improvements mitochondrial function,
redox homeostasis, and skeletal muscle function [139,140]. Thus, improving redox homeostasis, either
by enhancing endogenous antioxidant capacity or decreasing ROS emission, appears to be a promising
target to maintain skeletal muscle homeostasis throughout age.

8. Gaps and Future Directions

While the study of aerobic exercise on health and aging is decades old, the paradigm in which
aerobic exercise exerts a mitohormetic effect is relatively new [83]. Given the multitude of effects of
aerobic exercise [141], it is difficult to isolate the specific set of mechanisms by which aerobic exercise
improves redox signaling and homeostasis. The relationship between exercise intensity/duration and
the adaptive response to that bout, or to a series of bouts, remains unclear. There is particular difficulty
in measuring the magnitude of stress that a single bout of exercise imposes and the magnitude of the
mitohormetic effect. Establishing this relationship is further complicated when tailoring a bout of
aerobic exercise for a given individual’s preexisting health, fitness level, level of redox homeostasis, and
age. Measuring the degree of oxidation of known redox pairs (e.g., a sensor like glutathione/oxidized
glutathione) or the protein phosphorylation (another sensor) before and immediately after exercise
may assist in establishing the link between exercise intensity and the mitohormetic effect. However,
the invasive nature of these measures (i.e., the requirement of multiple biopsies) and the meticulous
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adherence to tissue harvesting and treatment required to accurately measure these effects are quite
prohibitive [69,142].

While both adaptation and the health benefits of both acute and long-term aerobic exercise are
well understood, it is less clear how the mitohormetic response of a single bout of aerobic exercise
changes with prolonged training. Given that aerobic exercise training increases antioxidant enzymatic
capacity, does the mitohormetic effect of the same bout of exercise diminish with repeated bouts? Does
the amount of ROS necessary to elicit the same mitohormetic effect increase as training progresses?
In that context, questions arise as to whether there is a point where aerobic exercise training has a
minimal or negligible mitohormetic effect, and it is instead necessary to maintain redox homeostasis.

Finally, work is required on the efficacy of increasing endogenous antioxidant capacity to enhance
the mitohormetic effect of exercise, as well as to maintain or improve redox signaling with age.
As highlighted, exogenous antioxidant supplementation seems to abrogate many of the mitohormetic
effects of exercise. However, there appears to be some additive effect of improving cellular antioxidant
capacity to exercise, as demonstrated by our work in which Nrf2 activators enhanced mitochondrial
proteostasis in active rats [134] and increased proteostatic mechanisms in the skeletal muscle of older
adults [135]. However, it remains unclear how a Nrf2 activator affects redox homeostasis. One would
hypothesize that this may decrease the resting ROS concentration (signal), improve sensitivity to a
stress (sensor), and enhance the adaptive response and functional outcome to that stress. However,
these questions remain unanswered. Moreover, there is a lack of evidence on whether long-term
treatment with Nrf2 could prevent or delay the onset of age-related redox derangements. Thus,
further investigation is required into the field of targeting redox dysregulation to maintain skeletal
muscle function with an Nrf2 activator. Moreover, it is necessary to conduct further research into
how Nrf2 activators interact with aerobic exercise, a known mitohormetic intervention that restores
redox homeostasis.

9. Conclusions

Extending healthspan will decrease the health and economic burden of age-related chronic
diseases such as sarcopenia and improve quality of life throughout the aging process. Targeting the
mechanisms that are characteristic of age (i.e., the hallmarks of aging) presents an opportunity to
mitigate age-related disease and extend the healthspan. Redox homeostasis, which is comprised
of multiple redox circuits, involves sensing and adapting to stress. With age, redox homeostasis is
impaired, leading to oxidative damage of mitochondria and skeletal muscle dysfunction. Mitohormesis
is a mechanism that elicits beneficial adaptation that can restore redox homeostasis and protect skeletal
muscle from mitochondrial dysfunction and oxidative damage. A bout of aerobic exercise exerts
a mitohormetic effect that results in the maintenance and improvement in mitochondrial function,
antioxidant capacity, and proteostatic mechanisms (Figure 2). In turn, aerobic exercise training prevents
the age-related decline in skeletal muscle function and extends the healthspan. Future directions should
continue to elucidate the mechanisms in which exercise confers adaptation and restores homeostasis.
Additionally, alternative or complementary interventions are necessary to maintain or restore redox
homeostasis as a means to maintain skeletal muscle function and healthspan.
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