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ABSTRACT

Motivation: Inference of identical-by-descent (IBD) probabilities is
the key in family-based linkage analysis. Using high-density single
nucleotide polymorphism (SNP) markers, one can almost always
infer haplotype configurations of each member in a family given
all individuals being typed. Consequently, the IBD status can be
obtained directly from haplotype configurations. However, in reality,
many family members are not typed due to practical reasons. The
problem of IBD/haplotype inference is much harder when treating
untyped individuals as missing.
Results: We present a novel hidden Markov model (HMM) approach
to infer the IBD status in a pedigree with many untyped members
using high-density SNP markers. We introduce the concept of
inheritance-generating function, defined for any pair of alleles
in a descent graph based on a pedigree structure. We derive
a recursive formula for efficient calculation of the inheritance-
generating function. By aggregating all possible inheritance patterns
via an explicit representation of the number and lengths of all possible
paths between two alleles, the inheritance-generating function
provides a convenient way to theoretically derive the transition
probabilities of the HMM. We further extend the basic HMM to
incorporate population linkage disequilibrium (LD). Pedigree-wise
IBD sharing can be constructed based on pair-wise IBD relationships.
Compared with traditional approaches for linkage analysis, our new
model can efficiently infer IBD status without enumerating all possible
genotypes and transmission patterns of untyped members in a
family. Our approach can be reliably applied on large pedigrees with
many untyped members, and the inferred IBD status can be used for
non-parametric genome-wide linkage analysis.
Availability: The algorithm is implemented in Matlab and is freely
available upon request.
Contact: jingli@cwru.edu
Supplementary information: Supplementary data are available on
Bioinformatics online.

1 INTRODUCTION
As one important type of gene mapping approach, family-based
linkage analysis has shown tremendous success in identifying
genes underlying Mendelian diseases. With the development of
new genotyping technologies, there have been two distinct features
arising in new datasets: both the number of genetic markers,
mostly single nucleotide polymorphisms (SNPs), and the number
of untyped individuals within a pedigree have increased drastically.
Traditional linkage methods are exponential either in terms of the
number of markers [i.e. Elston–Stewart (i.e. Elston and Stewart,
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1971)], or in terms of the size of a pedigree [Lander–Green
(Lander and Green, 1987)], therefore cannot efficiently deal with
new data. The problem is much harder for families with many
untyped individuals. Even later approaches (Abecasis et al., 2002;
Geiger et al., 2009; Gudbjartsson et al., 2005; Kruglyak et al.,
1996; Sobel and Lange, 1996) relying on heuristic search or using
various search space reduction techniques cannot solve the problem.
Furthermore, for tightly linked markers, the original assumption
of linkage equilibrium between markers does not hold anymore.
(Abecasis and Wigginton, 2005) address this problem by partitioning
a chromosome into small segments, and assume that there is no
recombination within each segment and SNPs in different segments
are in linkage equilibrium. However, by uniformly partitioning
chromosomes into segments with a fixed segment length, their
approach cannot handle segments with recombinations. In addition,
they basically implement the Lander-Green algorithm (Lander and
Green, 1987), which enumerates all inheritance patterns; therefore,
their approach cannot handle large pedigrees. Keith et al. (2008)
also address linkage disequilibrium (LD) for tightly liked markers
by modeling founder haplotypes as a Markov chain. However,
their method is mainly for nuclear family data with two offsprings.
Recently, we have demonstrated that with high-density SNP data,
(i) we can infer recombination breakpoints with high precision (Li
et al., 2010); (ii) our algorithm (Li and Li, 2009) can efficiently
infer haplotypes and inheritance patterns for large pedigrees; and
(iii) in most cases, inheritance can be uniquely determined for large
pedigrees with large number of SNPs. Experimental results show
that our approach is highly efficient and can also tolerate high
missing rates. However, if there are individuals in the pedigree
that are completely untyped, our approach still needs to enumerate
all transmission patterns and genotypes involving these untyped
individuals, which may end up searching an exponentially large
solution space.

In this article, we address the key problem in linkage analysis
using high-density SNPs and large pedigrees with many untyped
members: IBD inference between any pair of typed members within
a pedigree, by proposing a novel hidden Markov model (HMM)
based approach. Our approach is fundamentally different from
the Lander–Green algorithm, although both are based on HMMs.
Lander–Green algorithm only models the parent–child relationship
and it has to take into account every possible transmission pattern
between a parent–child pair. Instead, our approach can directly
model relationships between any pair of relatives. In our model, the
hidden states are the IBD number between the pair at each locus and
the observable data are the numbers of alleles that are identical-by-
state (IBS) between the pair. Unlike the Lander–Green algorithm,
the probability of identical-by-discent (IBD) change between two
markers for a given pair not only depends on the marker interval

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


[11:27 12/5/2010 Bioinformatics-btq222.tex] Page: i192 i191–i198

X.Li et al.

distance, but also depends on the type of relationship of the pair.
More precisely, the transition probabilities depend on all possible
cases that how recombination events might occur between the two
markers when the pair inherits their genes from their common
ancestors within the pedigree. To derive the transition probabilities
between any types of relationships, we introduce the inheritance-
generating function, which can conveniently aggregate all possible
inheritance patterns between their common ancestors and this pair
of individuals. Actually, our definition of the inheritance-generating
function can explicitly list the number of all possible inheritance
paths and their lengths between a pair of alleles. We also propose an
efficient recursive approach to calculate the function. The transition
probabilities can then be theoretically derived based on the number
and lengths of all inheritance paths. Emission probabilities can be
derived based on their definitions. They only depend on population
allele frequencies and genotyping error rates, but do not depend on
the type of relationship between a pair. We first define our HMM
for a pair of alleles. Based on this basic model, we build the model
for a pair of individuals. We further extend the model to incorporate
population LD or background sharing beyond a pedigree. Finally,
pedigree-wise IBD sharing can be constructed based on pairwise
IBD relationships. Compared with traditional approaches for linkage
analysis (i.e. Elston–Stewart and Lander–Green algorithms), our
algorithm is essentially quadratic in terms of the number of typed
individuals and linear in terms of the number of markers. More
importantly, our new model can efficiently infer IBD status without
enumerating all possible genotypes and transmission patterns of
untyped members in a family. Given the fact that most existing
family data using high-density SNP chips consist of many untyped
individuals, our approach provides an efficient alternative to perform
genome-wide linkage analysis.

We evaluate our approach using small nuclear families, large
multi-generation pedigrees as well as simulated data. Experimental
results show that for siblings with untyped parents, which
corresponds to a saving of 50% of total genotyping costs, our
approach has successfully recovered >90% of IBD changing points
(i.e. recombination breakpoints) with <5% false positives. We also
construct the IBD sharing map of seven typed members in a pedigree
of size 15. Simulation using this pedigree structure shows that for
different types of pairwise relationships, our approach can recover
84.0–87.7% IBD changing points with high precision, while at
the same time, keeping the false positive rate low (4.2–6.8%).
In experiments on two other big pedigrees (size 22 and 23), our
method maintains a locus-by-locus IBD inference error rate <1%.
Comparisons with MERLIN (Abecasis et al., 2002) show that our
algorithm is both more accurate and more efficient in identifying
IBD sharing.

2 METHODS
The main purpose of the proposed method is to infer the IBD sharing
status between any pair of genotyped individuals within a pedigree without
enumerating the genotypes of their untyped ancestors. We achieve this goal
by building an HMM model with the IBS sharing numbers between two
individuals as observed data and their IBD sharing numbers as hidden states.
To derive our model, we first introduce the concept of descent graph and
define an inheritance-generating function between a pair of alleles in a
descent graph. Then we build a basic HMM for a pair of alleles with the
transition probabilities represented by the inheritance-generating function.
We then derive a recursive formula, by taking advantage of the pedigree

A B

Fig. 1. (A) a pedigree structure, drawn in a conventional way. (B) one of its
many possible descent graphs. Each individual has two nodes, representing
paternal and maternal alleles. An edge in the descent graph indicates which
of the two alleles in a parent is transmitted to a child.

structure, to efficiently calculate the inheritance-generating function. The
HMM for a pair of individuals can be constructed by assuming the
independence between two homologous chromosomes within an individual.
We further extend the HMM to handle LD by incorporating IBD sharing at
the population level. Finally, IBD sharing among all typed members within
a pedigree can be constructed based on pairwise IBD sharing.

2.1 Descent graph and inheritance-generating function
A descent graph (Sobel and Lange, 1996) of a pedigree consists of both the
paternal and maternal allele of each individual as its vertices, and one link
between each parent–child pair as its edges. Each edge specifies which of the
two alleles of a parent is transmitted to a child. A descent graph illustrates
one possible inheritance pattern within a pedigree, and by definition, it does
not include genotype information. Figure 1 shows a pedigree and one of its
many possible descent graphs. For any two nodes (i.e. two alleles) a and b in
a descent graph, an inheritance path, denoted as pa,b, is a simple undirected
path that links a and b. It is easy to see that two alleles are IBD (descend
from the same ancestral allele) if and only if there is an inheritance path
between them. For example, in Figure 1, there is an inheritance path (dashed
red line) between the paternal and maternal alleles of individual 11, which
indicates that the two alleles are the copies of the same allele of their common
ancestor (in this case, the paternal allele of member 2). As a descent graph is
a realization of one particular inheritance pattern in a pedigree, for any two
alleles, there is at most one inheritance path.

For any two alleles a and b in a pedigree at a SNP site, we define an
inheritance-generating function:

θa,b(h)=
∞∑

�=0

λ�h
�,

where λ� is the number of all possible inheritance paths of length � between
a and b. Notice that there are only finite number of descent graphs for a
given pedigree; therefore, there are only finite number of inheritance paths
between two alleles and the summation only has finite number of terms.
The generating function actually explicitly lists the numbers of paths of any
lengths over all possible descent graphs of a pedigree. For simplicity, we
drop the subscripts a and b in θa,b(h) when there is no ambiguity.

2.2 HMM for a pair of alleles
The structure of the two-state HMM for a pair of alleles is illustrated
in Figure 2, with only transition probabilities labeled. Notice that this is
actually a linear chain that generates a pair of haplotypes. We first derive
transition probabilities using the generating function defined above. Then we
will briefly discuss the derivation of emission probabilities. The transition
probability from the state IBD to itself (Fig. 2) basically means that if two
alleles ai and bi at locus i are IBD, what is the probability that two alleles
ai+1 and bi+1 at locus i+1 on the same haplotypes are IBD. We denote
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Fig. 2. The basic two-state HMM model labeled by transition probabilities.

this probability as ψ(i,i+1)
�=P(ai+1

ibd= bi+1|ai
ibd= bi). Given ai and bi are

IBD, there may be many possible inheritance paths from different descent
graphs connecting them. We assume that ψ(i,i+1) is not equal to zero if and
only if the realized inheritance path at locus i+1 is the same as the realized
inheritance path at locus i, which basically means there are no recombination
events along the inheritance path between these two loci. This assumption
essentially ignores the case that multiple ‘coincident’ recombination events
between two adjacent loci result in no IBD changes, the probability of which
is extremely small given the high density of SNP markers available today.

To derive ψ(i,i+1), we first calculate the probability of the occurrence
of a specific inheritance path p of length � between two alleles in a
randomly generated descent graph based on a pedigree structure, denoted
as �(p). An inheritance path of length � involves � transmissions. As these
� transmissions are independent and a parent transmits to a child one of
his/her two alleles at an equal probability of 1/2, we have �(p)= (1/2)�.
As the inheritance paths between two alleles are mutually exclusive (i.e.
at most one path can occur in one descent graph), the probability that a
and b are IBD equals the summation of the probabilities of all inheritance

paths: P(a
ibd= b)=∑

p(�(p))=∑∞
�=0λ�(

1
2 )�=θ( 1

2 ), which happens to be the

inheritance-generating function θ(h) evaluated at h= 1
2 . Given that there

is an inheritance path pai,bi of length � between alleles ai and bi at
locus i, the probability that this inheritance path remains unchanged at
a neighboring locus i+1 for alleles ai+1 and bi+1 requires that there is
no recombination on any of the � transmissions involved in pai,bi when
we neglect the possibility of double recombinations. As the transmissions
are independent, this probability, denoted as φ(p,i,i+1), can be computed
as φ(p,i,i+1)= (1−�)�, where � is the recombination fraction between
these two neighboring loci, which can be calculated using Haldane’s (or any
other) mapping function based on the marker interval genetic distance. The
transition probabilityψ(i,i+1) is just the weighted average of the probability
φ(p,i,i+1) of each possible inheritance path:

ψ(i,i+1)=
∑

p(�(p) ·φ(p,i,i+1))
∑

p(�(p))

=
∑∞
�=0[λ�( 1

2 )� ·(1−�)�]
∑∞
�=0λ�(

1
2 )�

= θ( 1
2 ·(1−�))

θ( 1
2 )

.

The transition probability from state IBD to state Non-IBD is simply
1−ψ(i,i+1). Similarly, we have

P(ai
ibd�= bi)=1−P(ai

ibd= bi)=1−θ( 1

2
),

P(ai+1
ibd= bi+1)=θ( 1

2
).

At the same time, we have

P(ai+1
ibd= bi+1) = P(ai+1

ibd= bi+1|ai
ibd= bi)P(ai

ibd= bi)

+P(ai+1
ibd= bi+1|ai

ibd�= bi)P(ai
ibd�= bi).

By simple algebraic calculation, we have

P(ai+1
ibd= bi+1|ai

ibd�= bi)= (1−ψ(i,i+1))θ( 1
2 )

1−θ( 1
2 )

,

P(ai+1
ibd�= bi+1|ai

ibd�= bi)= 1−2θ( 1
2 )+ψ(i,i+1)θ( 1

2 )

1−θ( 1
2 )

.

Therefore, all transition probabilities can be calculated using the inheritance-
generating function. Assuming no genotyping errors, the emission
probabilities can be simply derived. Given the two alleles are IBD, they
must be IBS. If the two alleles are not IBD, there is still a chance that they
are IBS. The probability is simply the probability of observing two alleles
of the same type, which is p2 +q2, where p and q=1−p are population
allele frequencies. A notation table is provided in Supplementary Material to
summarize the variables defined here.

2.3 Recursive calculation of the inheritance-generating
function

As shown in the previous subsection, the calculation of the transition
probabilities relies on the calculation of the inheritance-generating function.
However, in order to calculate the inheritance-generating function by the
definition, one needs to enumerate all possible descent graphs and all
possible inheritance paths between a pair of alleles, the number of which
is exponentially large. In this subsection, we derive θa,b(h) between any two
nodes a and b in the node set of a descent graph (i.e. two alleles with known
parental source) using a recurrence relationship. For simplicity, we will drop
h in θa,b(h) from now on. Denote pA (mA) the paternal (maternal) allele of
an individual A. If a and b are the same allele from the same person, then
θa,b =1. If a and b are the paternal and maternal alleles of the same person
A, then the number of paths between a and b is simply the summation of all
inheritance paths between alleles of A’s father F and alleles of its mother M
with increased length by 2:

θa,b = h2 ·(θpF ,pM +θpF ,mM +θmF ,pM +θmF ,mM ).

If the two alleles a and b are from two different individuals A and B, and A
and B do not share common ancestors within the pedigree, then θa,b =0. If
A and B have common ancestors and without loss of generality, assuming A
is not an ancestor of B and a is A’s maternal allele, then every inheritance
path from a to b goes through A’s mother M,

θa,b =h ·(θpM ,b +θmM ,b).

When a is A’s paternal allele, a similar function can be defined. To give
an example, suppose that we have already obtained θp9,p10 =0, θp9,m10 =
4h5, θm9,p10 =2h3, θm9,m10 =2h3 in Figure 1. By applying the recurrence
relationship, we get

θp11,m11 =h2(θp9,p10 +θp9,m10 +θm9,p10 +θm9,m10 )

=4h5 +4h7.

The result indicates that there are four distinct inheritance paths of length
5 and four distinct inheritance paths of length 7 between the paternal
and maternal alleles of individual 11 among all possible descent graphs.
The inheritance-generating function can be used to calculate the kinship
coefficient that measures the degree of relatedness between two individuals.
The kinship coefficient between two individuals A and B can be obtained by
evaluating the following path-generating function at 0.5,

1

4
(θpA,pB (h)+θpA,mB (h)+θmA,pB (h)+θmA,mB (h))

∣∣∣∣
h=0.5

The proposed recursive calculation of the path-generation function is also
inspired by some kinship calculation methods (Karigl, 1981; Thompson,
1986; Wright, 1922).

2.4 HMM for a pair of individuals
Denote I(a,b) the number of IBD sharing between two alleles a and b, i.e.
I(a,b)=1 if they are IBD and I(a,b)=0 otherwise. Between two individuals
A and B, the number of IBD sharing is defined as I(A,B)=max(I(pA,pB)+
I(mA,mB),I(pA,mB)+I(mA,pB)). The four alleles of two individuals have a
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Fig. 3. IBD sharing states between two individuals. Righthand side are the
states not considered in this study.

total of 15 different combinations of IBD sharing status as shown in Figure 3.
When ignoring the IBD sharing between paternal and maternal alleles of
an individual and there are seven distinct combinations (Fig. 3, left). For
simplicity, we only consider these seven states in this study and they are
the hidden states of the HMM for a pair of individuals. Notice that it is
possible to derive a HMM using all 15 states, but the derivation of transition
probabilities gets more involved. For human pedigrees, this approximation
will not cause many problems because in general human pedigree structures
are not too complex.

Denote the state vector s= (I1,I2,I3,I4), where I1 = I(pA,pB),I2 =
I(pA,mB),I3 = I(mA,pB),I4 = I(mA,mB). Each state is uniquely represented
by one state vector. Given a small inter-marker distance, it is rare opportunity
for more than one recombination to occur, so we only allow transitions
between states themselves and transitions between neighboring states, i.e.
states that differ at most one allele IBD sharing status, ‖s−s′‖≤1. Therefore,
Figure 3 (left) actually represents our HMM structure for a pair of individuals,
with one additional transition from each state to itself omitted. Conditional
on the pair being in state s at locus i, the probability that they are in state s′ at
locus i+1, denoted as f (s′|s), is essentially the product of two independent
HMM chains described in section 2.2. That is, f (s′|s)=P(I ′

j |Ij)P(I ′
k |Ik),

where 1≤ j,k ≤4 are two independent coordinates in the 4D vectors of s
and s′, which means the two alleles in Ik are different from the two alleles in
Ij , and the two alleles in Ik (Ij) are the same as those in I ′

k (I ′
j ). P(I ′

j |Ij) and
P(I ′

k |Ik) are the transition probabilities described in Figure 2. The transition
probabilities of our model (Fig. 3, left)

P(s′|s)= f (s′|s)∑
t:‖t−s‖≤1 f (t|s)

,

for all ‖s−s′‖≤1, are proportional to the conditional probabilities f (s′|s).
It is worthy of mention that though we ignore inbreeding, our method
can still be applied to looped pedigrees because the IBD between paternal
and maternal alleles does not affect the IBD sharing number between two
individuals. However, for looped pedigrees, P(I ′

j |Ij) and P(I ′
k |Ik) might not

be independent and such derived probability P(s′|s) is an approximation of
the actual probability. We will show later in the experiments that our method
works well for both inbreeding and non-inbreeding families. We are currently
exploring the extension of the algorithm to all 15 identity states.

Denote G(a,b) the number of IBS between two alleles a and
b, i.e. G(a,b)=1 if they are IBS and G(a,b)=0 otherwise. The
number of IBS between two individuals A, B: G(A,B)=max(G(pA,pB)+
G(mA,mB),G(pA,mB)+G(mA,pB)), i.e. the number of the same type of
alleles between these two genotypes. To derive the emission probabilities,
we separate the seven states into three classes according to their number of
IBD, because the emission probabilities of G(A,B) only depend on I(A,B)
and different states with the same I(A,B) will have the same emission
probabilities. Similarly to the derivation of emission probabilities of the
basic model in section 2.2, the probability distribution of the IBS number
G(A,B) between two individuals given their IBD sharing number I(A,B) can
be specified directly based on their definitions, which is shown in Table 1. In
practice, one also needs to take into account the effect of missing genotypes

Table 1. Emission probability of an IBS number (G) given an IBD number
(I), where p and q=1−p are population allele frequencies

G I P(G|I)

0 0 2p2q2

1 0 4p3q+4pq3

2 0 p4 +q4 +4p2q2

0 1 0

1 1 2pq

2 1 p2 +q2

0 2 0

1 2 0

2 2 1

and genotyping errors. We leave the details about emission probabilities after
considering missing/errors in Supplementary Material.

Given the transition probabilities, the emission probabilities and the IBS
numbers between two individuals from their observed genotypes, we can use
the Viterbi algorithm to decode the most likely IBD sharing status between
any pair of individuals within a pedigree. For each pair of individuals,
standard dynamic programming for Viterbi is O(mK2), where m is the number
of SNPs and K is the number of states (a constant). There are a total of
O(n2) pairs of individuals for a family of n individuals, so the overall time
complexity is O(n2m).

2.5 Incorporating background IBD sharing
Since the human being is a relatively young species, even between two
seemingly unrelated individuals, one can still observe long segments of IBS
regions. From one perspective, this can be attributed to the LD between
SNPs. From another perspective, this is essentially due to the unobserved
relatedness in history among humans. This type of background sharing
coupled with IBD sharing within a pedigree will lead to biased inference
of true IBD status. However, it is impossible to explicitly model this type
of relatedness because the relationship of individuals beyond the pedigree
is generally unknown and they may have been separated by many meioses
and may have multiple common ancestors. Recently, Purcell et al. (2007)
proposed a model to approximate the relativeness for ‘unrelated’ individuals,
which also use an HMM. To address this problem for members within a
pedigree, we extend our model by adding a background IBD (Bg-IBD) state
to fit the hidden relatedness between two individuals beyond the relatedness
that is observed through the available pedigree structure.

We first extend the basic two-state allelic HMM in Figure 2 to a three-state
allelic model by adding the Bg-IBD state (Fig. 4). The transition probability
from IBD state to itself stays the same. Both the states Bg-IBD and the
state Non-IBD imply that the two alleles are not IBD within the pedigree.
Therefore, the transition probabilities from these two states to the state IBD
is the same. From the perspective of the state IBD, transitions to states Bg-
IBD and Non-IBD imply that recombination events break the inheritance
path between the two alleles. We assume that the transition probabilities to
Bg-IBD and Non-IBD are just proportional to the probabilities of observing
Bg-IBD and Non-IBD. By applying these restrictions and also utilizing the
relationship between marginal and transition probabilities, we have

P(Bg-IBDi+1|IBDi)= (1−P(IBDi+1|IBDi))P(Bg-IBD)

P(Bg-IBD)+P(non-IBD)
,

P(non-IBDi+1|IBDi)= (1−P(IBDi+1|IBDi))P(non-IBD)

P(Bg-IBD)+P(non-IBD)
,

P(IBDi+1|Bg-IBDi)=P(IBDi+1|non-IBDi)

= (1−P(IBDi+1|IBDi))P(IBD)

P(Bg-IBD)+P(non-IBD)
.
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Fig. 4. The three-state transition model of the IBD status between two alleles
a and b.

Fig. 5. The complete transition model of IBD sharing states between two
individuals. Solid lines indicate actual IBD and dashed lines indicate Bg-IBD.

If we take P(Bg-IBD) and P(Bg-IBDi+1|Bg-IBDi) as parameters to
fit the background effect, the above transition probabilities as
well as P(Non-IBDi+1|Bg-IBDi), P(Bg-IBDi+1|Non-IBDi) and
P(Non-IBDi+1|Non-IBDi) can be calculated based on them. Intuitively,
P(Bg-IBD) represents the kinship between the two individuals beyond the
pedigree and P(Bg-IBDi+1|Bg-IBDi) represents the number of meioses
they are apart on each of the possible inheritance paths connecting them.
In our experiments, we vary the number of meioses k and use (1−�)k

to approximate P(Bg-IBDi+1|Bg-IBDi), where � is the recombination
fraction and can be calculated using Haldane’s mapping function based on
the marker interval genetic distance. P(Bg-IBD) will be estimated directly
from the model.

To incorporate Bg-IBD sharing into the HMM between a pair of
individuals, we modify the model structure in Figure 3 by adding one more
state for each original state labeled as I(A,B)=1 and adding three more
states for each original state labeled as I(A,B)=2. Following the argument
in Section 2.4, transition probabilities for such a model can be derived from
the above allelic HMM in Figure 4. The complete transition model is shown
in Figure 5.

2.6 Constructing pedigree-wise IBD sharing
By decoding the seven-state HMM shown in Figure 3, we can obtain not
only the IBD number between two individuals, but also the IBD relationship
between four alleles. However, one should notice that the inferred IBD state
between alleles could be arbitrary, even when the inferred IBD number is
correct. This is because the states of IBD sharing number 1 are symmetric
and may not be distinguishable (e.g. for a pair of siblings, the paternal and
maternal assignments are interchangeable). Therefore, in order to build the
global IBD sharing map from all pairwise IBD relationships, we need a post-
processing step. In our current implementation, for each locus, we simply
enumerate all possible ways of allele grouping and check its consistency
with all pairwise relationships. If there are no consistent grouping, which
means errors have occurred when decoding some pairwise IBDs, we simply
drop this SNP. If there are more than one consistent groupings, we randomly

Fig. 6. IBD sharing between two siblings. The dotted bar indicates the
density of markers of IBS number 0, 1 and 2. The bold line is the pedigree
IBD sharing number and the thin line is the Bg-IBD sharing number.

select one. We notice that there are rooms for further improvement and we
will investigate more efficient combination approaches in the future.

3 EXPERIMENTAL RESULTS
We test the proposed method using two real datasets and one
simulated dataset. The first real dataset consists of 112 nuclear
families each with two parents and two children. We assume that
the genotypes of both parents are not available and infer the
IBD status for each pair of siblings. We then compare the results
of IBD changing breakpoints with the recombination breakpoints
inferred by our previous algorithm Mendelian constrained maximum
likelihood (MML) (Li et al., 2010) using genotypes of both parents
and children. The second dataset is a pedigree of size 15, among
which only seven members are typed. We infer IBD sharing between
all pairwise relatives (other than parent–child pairs) and generate a
pedigree-wise IBD sharing map. To evaluate the correctness of our
approach on big pedigrees, we generate simulated datasets using the
same pedigree structure and missing pattern.

For the sib-pair data, we have 32 250 SNP markers on
chromosome 6 genotyped using Illumina 500K chips. The total
region contains 170 million base pairs with the average marker
interval distance about 5 kb. Missing genotype rate is 0.12% and
typing error rate (as reflected by Mendelian inconsistency) is 0.11%.
Figure 6 shows the IBS status, the inferred IBD status and Bg-
IBD status between a randomly selected pair of siblings. The dotted
bar indicates the density of markers of IBS number 0, 1 and 2, at
that chromosomal location. The bold blue line and the thin red line
indicate the inferred IBD number and Bg-IBD number, respectively.
Along the chromosome, the Bg-IBD number changes much more
frequently than the pedigree IBD number. This result is consistent
with the fact that Bg-IBD is generated by long inheritance paths with
many meioses. Therefore, the shared segments are much smaller
compared with lengths of the IBD segments within a pedigree. We
notice that the centromere region around 60 Mb has no markers,
which forms a gap of 3 million base pairs. This will cause our
method to create some unexpected IBD status jumps. We ignore
any IBD status change around the centromere region.

To systematically evaluate the correctness of inferred IBD sharing
regions of all sibling pairs, we compare our result with that inferred
by our previous algorithm MML (Li et al., 2010), which is a
Mendelian law-based method and use genotypes of both parents and
children. MML infers the inheritance pattern by using Mendelian
constraints between parents and children. It achieves high accuracy
on dense SNP data, when all members of a pedigree are genotyped.
From 112 families with two siblings, MML infers 322 paternal
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Table 2. Error rates under different Bg-IBD levels (100–400 meioses)

No. of meioses 100 200 300 400

False positive 23/768 36/812 83/875 111/912
0.030 0.044 0.095 0.122

False negative 112/857 81/857 65/857 56/857
0.131 0.095 0.076 0.065

A total of 857 recombinations are detected by the Mendelian law and are used as the
reference. False positives are recombinations reported by our method but not in the
reference. False negatives are the recombinations in the reference but missed by our
method.

and 535 maternal recombination events. For the proposed method,
recombination positions can be obtained from the IBD status change
points. By setting the Bg-IBD level to be 200 meioses apart, the
new approach infers 812 recombination breakpoints, among which
776 are consistent with the results of MML. The remaining 36
breakpoints are due to background effect but are falsely classified
as IBD sharing within pedigrees. The approach misses 81 out of
all 857 breakpoints. These breakpoints are caused by changes in
the inheritance pattern in the pedigrees but are falsely classified as
Bg-IBD sharing. By setting the Bg-IBD level to be more meioses
apart, we can increase the sensitivity of the method in detecting
recombination. However, doing so will reduce the specificity, and
vice versa. Table 2 presents the false positive rates and false negative
rates by setting the Bg-IBD level to be 100, 200, 300, 400 meioses
apart.

To further analyze this phenomenon, we examine the difference of
the lengths of IBD sharing intervals between those inferred as actual
IBD and those inferred as background sharing. If we set the Bg-IBD
level to be 200 meioses apart, the length distribution of intervals is
shown in Figure 7. The average length of IBD regions is 37.5 Mb (SD
4.1 Mb), while the average length of Bg-IBD regions is 362 kb (SD
357 kb). Though these two distributions are quite distinguishable,
they still have overlapped tails. Some short segments of pedigree
IBD sharing will be inferred as background sharing and some long
segments of Bg-IBD sharing will be inferred as real IBD sharing. If
we increase the number of meioses for the background effect, we will
shift its distribution leftward to be more distinct from the pedigree
effect. This will increase the sensitivity while reduce the specificity
of the method. The situation is reversed, if we reduce the number of
meioses to shift the background effect distribution rightward to be
more mixed with the pedigree effect. We are currently researching
the problem how to automatically fit the Bg-IBD.

We further apply the approach on a family with 15 members
(Fig. 8, Family 1), among which only 7 members are genotyped
using Affymetrix array 6.0 (∼1 million SNPs). We investigate a
region of 35 Mb on chromosome 22 with 11 554 markers. The
missing rate is 2.74% and the typing error rate (as reflected by
Mendelian inconsistency) is 2%. Figure 9 shows the IBD sharing
between two members (9 and 10) of the family with segments of
IBD sharing at each end of the chromosome. By analyzing the IBD
sharing between all pairs of the seven genotyped individuals in this
family, we can reconstruct the global IBD sharing graph as shown
in Figure 10, where alleles linked by lines are IBD. In this example,
the IBD alleles between individuals 9, 10 and 11 are linked together
without enumerating the transmissions from their ancestors. We can
observe the changes of inheritance patterns from one chromosomal

Fig. 7. Length distributions of IBD and Bg-IBD intervals. The chart puts
both distributions together with x-axis on a logarithmic scale. The left-
hand curve is from Bg-IBD intervals and the right-hand curve is from IBD
intervals.

Fig. 8. Families 1, 2 and 3. Gray-colored individuals are not genotyped.
Black-colored individuals are diseased and white-colored individuals are
normal.

Fig. 9. IBD sharing between members 9 and 10 of Family 1. The layout of
the figure is the same as the layout of Figure 6.

region to another, which can be used for non-parametric linkage
analysis. In this example, the first region (16.1–18.2 M) is consistent
with the dominant model of the disease.

The global IBD map suggests that there is an IBD sharing between
the paternal and the maternal alleles of member 9 extending from
42 to 46 Mb, an IBD sharing between the paternal and maternal
alleles of member 10 extending from 19 to 35 Mb (dashed red
line in Fig. 11). This is indeed the case because both regions have
consecutive homozygous genotypes. We further analyze the nuclear
family formed by members 9 and 10 and their children using MML
and compare recombination breakpoint positions inferred by the two
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Fig. 10. Global IBD sharing graphs for different chromosomal regions.
Alleles connected by an arc or arrow are IBD.

Fig. 11. Comparison of recombination positions inferred by the proposed
method and by the Mendelian law. Numbers are shown in the unit
of megabase pair. Shaded areas are the regions where the parents are
homozygous.

Table 3. Accuracy in identifying IBD breakpoints for different pairs of
individuals of Family 1

Family 1 10–11 12–13 11–12 9–10

False positive 0.068 0.043 0.046 0.042
False negative 0.124 0.123 0.134 0.160
Precision 187kb 193kb 238kb 287kb
Inheritance path 4h2 4h2 +8h7 4h3 +4h6 4h5

IBD breakpoints are chromosomal locations where the IBD sharing number between
two individuals changes. The precision value shows the average distance between an
actual breakpoint and the inferred one.

approaches (Fig. 11). In this case, both algorithms identify nine
recombination events. Among them, both approaches accurately
identify four breakpoints with high precision. All the other five
breakpoints are in the two extended homozygous regions of
members 9 and 10, neither methods can localize the recombination
positions precisely because of the ambiguity. We can still infer
the number of recombination events occurring in such a region by
comparing the transmission patterns before and after the region. We
annotate the homozygous regions of both parents as shaded areas
in Figure 11 and indicate the inferred number of recombinations in
each region.

To evaluate the reliability of the inferred IBD relationship for
different types of relationships, we further generate a simulated
dataset to mimic the same pedigree (Fig. 8, Family 1) using
the same genotype missing rate, typing error rate and the same

Fig. 12. Locus-by-locus IBD inference error for different relatives in
Families 1, 2 and 3.

marker map on chromosome 22. We randomly assign haplotypes to
founders of the pedigree and assume random transmission of these
haplotypes to descendants with possible recombinations at each
meiosis. Recombination is modeled at a rate of 1cM/Mb assuming
a Poisson distribution. The haplotypes used in the founders are
generated from other families in the same study using the haplotype
inference method MML (Li et al., 2010). We run the simulation
1000 times and compare the inferred IBD sharing regions with the
actual IBD sharing regions for each pair of individuals. Results of
some representative pairs, including 10 and 11 (siblings of untyped
parents), 12 and 13 (siblings of typed parents), 11 and 12 (aunt and
nephew) and 9 and 10 (distant relatives) are presented in Table3,
with the inheritance path between all pairs of alleles in each pair of
individuals in the last row, which gives the degree of relatedness of
each pair of individuals. We collect the breakpoints between IBD
and Non-IBD regions and compare the inferred regions with the
actual ones. For different types of pairs, the approach has similar
false positive and false negative rates. Though for more distant
related pairs, false negative rate gets slightly higher. This is due to
the fact that for distant-related pairs, their pedigree IBD sharing is
more likely to be mixed with the background sharing. The precision
value shows the average distance from an inferred breakpoint to
the actual breakpoint. It exhibits the same trend that the inferred
IBD boundaries are more ambiguous if two individuals are more
distant related. In general, the proposed method detects ∼85% of the
breakpoints between IBD and Non-IBD regions. About 5% of the
reported breakpoints are false positives, mainly caused by Bg-IBD
sharing and/or genotyping errors. Supplementary Figure S1 shows
some typical errors in inferred IBD regions. We also run simulations
on two big pedigrees of 23 and 22 members (Families 2 and 3,
Fig. 8). All these families are from the same study as Family 1.
Figure 12 shows the locus-by-locus IBD inference accuracy. The
average error rate is <1% for all related pairs of different kinships,
which is much lower than the error rates of breakpoints. This is due
to the fact that the misclassified IBD segments are short ones near
the overlapping tails of IBD and Bg-IBD (Fig. 7) such that they
do not contribute much to the overall locus-by-locus discrepancies.
The locus-by-locus error rate is lower for distant-related individuals
and again this is because distant relatives have shorter shared IBD
segments.

We compare the IBD inference accuracy of our program (Ped-
IBD) with MERLIN (Abecasis et al., 2002). Both Ped-IBD and
MERLIN can be configured to output the posterior probabilities
of IBD 0, 1 and 2 at each locus, and we take the IBD number of
the highest probability as their inferences. For dense SNP markers,
the highest probability is usually close to 1, so the inference is quite
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Fig. 13. Comparison of IBD inference accuracy of Ped-IBD and MERLIN
for persons of different kinships in Family 1.

Table 4. Running time (in seconds) for different marker numbers (10−10k)
and pedigree structures (Families 1, 2, 3), compared with MERLIN

No. of markers Ped-IBD MERLIN

1 2 3 1 2 3

10 0.17 0.41 0.84 0.08 6.14 89
20 0.20 0.70 1.40 0.19 16.86 63
50 0.55 1.34 2.43 0.39 39.98 251
100 0.93 2.54 4.67 0.89 76.70 –
10k 91 252 456 95 – –

The sizes of these families are 15(7), 23(11) and 22(17), the numbers in the parenthesis
are typed individuals.

deterministic. Figure 13 shows the locus-by-locus error rates for
pairs of individuals of different kinships in Families 1. Ped-IBD has
better accuracy than MERLIN for all types of related pairs especially
on siblings with untyped parents and distant-related individuals.
Table 4 presents the running time of Ped-IBD and MERLIN on
Family 1, 2 and 3 and on different marker numbers. Ped-IBD is
implemented in Matlab and we use the precompiled Linux version of
MERLIN. We run both programs on a Dell PowerEdge 2900 Server
with Xeon E5430 Dual Processor and 32G memory. Ped-IBD shows
a time complexity pattern linear to marker numbers and quadratic to
the number of typed individuals. MERLIN slows down significantly
on big families and consume exponentially more memory. We are
not able to obtain results from MERLIN in certain categories due
to insufficient memory. These results show the advantage of our
approach in both accuracy and efficiency over traditional linkage
analysis methods.

4 DISCUSSION
Traditional linkage analysis models the transition of inheritance
vectors from one locus to another as a complex multiple-state
Markov chain and derive the probability of IBD sharing. Given
the current density of SNP markers, the inheritance pattern of a
pedigree can usually be fixed by applying the Mendelian law of
inheritance, which basically means that one can almost ‘observe’
IBD sharing states. However, the use of Mendelian law requires
that all or most members of a family should be genotyped, which
is not practical for studies involving large pedigrees. To avoid
enumerating the genotypes of the untyped members, we extract
the inheritance information between two individuals by tracing
all possible inheritance paths between them. By doing so, we

can directly model the IBD sharing status between any pair of
individuals without considering the actual transmission across their
ancestors. From the pairwise IBD relationship, we can build the
global IBD sharing map of the whole pedigree for genotyped
members. We use our method to infer the recombination positions
in nuclear families with two siblings. Our method detects >90%
of the recombination positions and has <5% false positive reports.
Experiments on large pedigrees show that the method is accurate
in identifying IBD and Non-IBD boundaries in both closely and
distantly related individuals. We further incorporate the Bg-IBD
state into our HMM model to deal with background LD between
markers. By adjusting the background IBD level, we can tune the
sensitivity and specificity of the method accordingly. Regardless,
long segments of pedigree IBD sharing are always safely recovered
in most cases. We also compare our algorithm with MERLIN and it
shows that our method has both better accuracy and efficiency. By
partitioning the chromosome into regions of different inheritance
patterns, we can generate statistics for assessing the linkage of a
chromosomal region with the disease. Based on the inferred IBD,
we will further incorporate linkage analysis into our model.
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