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Abstract: This paper investigates the cluster-delay mean square consensus problem of a class of
first-order nonlinear stochastic multi-agent systems with impulse time windows. Specifically, on the
one hand, we have applied a discrete control mechanism (i.e., impulsive control) into the system
instead of a continuous one, which has the advantages of low control cost, high convergence speed;
on the other hand, we considered the existence of impulse time windows when modeling the system,
that is, a single impulse appears randomly within a time window rather than an ideal fixed position.
In addition, this paper also considers the influence of stochastic disturbances caused by fluctuations
in the external environment. Then, based on algebraic graph theory and Lyapunov stability theory,
some sufficiency conditions that the system must meet to reach the consensus state are given. Finally,
we designed a simulation example to verify the feasibility of the obtained results.

Keywords: cluster-delay mean square consensus; multi-agent systems; stochastic disturbances;
impulse time windows; impulsive control

1. Introduction

In today’s era, automation and intelligence are the mainstream directions of technolog-
ical development. As a typical representative among them, multi-agent systems (MASs) [1]
are widely used in epidemiology [2,3], sociology [4,5], engineering circles [6–8], and other
fields with their powerful distributed integration capabilities. In [9,10], a concept called
Holonic MAS was proposed, and subsequent researchers have achieved a series of mean-
ingful results on this basis. As a key subject in the field of distributed collaborative control,
the research on the consensus of MASs has also received increasingly more attention from
the academic community, including group or cluster consensus [11–13], leader-following
consensus [14–16], H∞ consensus [17–19], finite-time or fixed-time consensus [20–22], etc.
In practical applications, MASs are required to simultaneously tend to multiple consensus
states according to different task requirements. Specifically, MASs is divided into multiple
clusters (i.e., subgroups) based on the degree of association between agents, and the states
of all individuals included in each cluster eventually tend to be the same.

In particular, if a virtual state is selected as the consensus state of a certain cluster,
and the remaining clusters’ consensus states are different delay states corresponding to the
virtual state, such a case is called cluster-delay consensus, and it is also a special case of
the group consensus. In [23], for a class first-order nonlinear MASs, the authors proposed
the cluster-delay consensus problem for the first time and studied it through a continuity
control strategy. Furthermore, in [24], a new type of pinning consensus protocol with
intermittent effect was designed to ensure that the system can achieve the cluster-delay
consensus. Moreover, by using the pinning leader-following approach, the cluster-delay
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consensus of first-order nonlinear MASs with aperiodic intermittent communication was
studied in [25]. On the basis of these research work, the cluster-delay consensus problem
with intermittent effects and layered intermittent communication was studied in [26]
through tracking approach. In [27], the authors extend the research work on the first-order
integrator system to more complex second-order system, and investigated the cluster-delay
consensus problem of a class of second-order nonlinear MASs.

However, the above-mentioned works are all based on the continuity control protocol,
which requires the agent to maintain continuous communication with its neighbors. First, it
has higher requirements for communication guarantee capability. Second, it also increases
the control cost. In applications, the agent may not be able to obtain the neighbor’s
information continuously, and the above research results will no longer be applicable.
At this time, it is conservative. Different from the traditional continuous control method,
impulsive control has the advantages of low control cost, high control efficiency, and strong
adaptability. Consequently, it is widely used in the research on leader-following consensus
or group consensus of MASs [28–30]. Therefore, it is necessary to study the cluster-delay
consensus of MASs via impulsive control [31]. In addition, there are some other interesting
control mechanisms, such as the fuzzy control-based on sampled data [32,33], which is
widely used in the consensus or synchronization problems research of MASs. Actually,
the impulsive controller may not accurately act on the system at an ideal fixed impulse
instant, it may be earlier or later. Therefore, the impulse appears randomly within a time
window that is defined as an impulse time window in [34], and the window must be known.
In order to obtain more general results, it is undoubtedly necessary to introduce the concept
of impulse time window into the study of cluster-delay consensus. In general, MASs is
also affected by stochastic disturbances caused by fluctuations in the external environment.
Therefore, it is also necessary to study the cluster-delay consensus of nonlinear stochastic
MASs (SMASs) [35].

Inspired by the above discussion, based on impulsive control strategy, we study
the cluster-delay consensus of a class of SMASs with impulse time windows. The main
contributions are as follows.

• In this paper, the cluster-delay consensus problem of MASs is studied based on the
concept of the impulse time window for the first time. From this perspective, our
contribution is mainly reflected in solving the problem of how to reasonably preset
the impulsive time sequence under the new application background. In other words,
setting the corresponding impulse time window layout according to our research
results can ensure that MASs achieve cluster-delay consensus under the action of
non-fixed position impulsive control signals.

• This paper studies the cluster-delay mean square consensus problem of MASs based
on the uncertainty model for the first time, and gives a sufficient mean square consen-
sus criterion through the Itô formula, which deepens and expands the current research
jobs to a certain extent.

The organization of the rest of this paper is shown below. Section 2 introduces
the commonly used symbols and the content of algebraic graph theory. In Section 3,
the research problem is described and the corresponding system model is constructed.
In Section 4, the corresponding consensus criterion is derived through the analysis method.
Then, numerical simulation is given in Section 5 to verify the validity of the obtained
results. Section 6 summarizes the work of the full text.

2. Notation and Preliminaries

The symbols R, Rm×n, and N denote the sets of real numbers, m× n matrices, and
natural numbers, respectively. Rn denotes n-dimensional Euclidean space. N+ denotes the
set of positive integers. Symbols |x| and ‖x‖ represent the absolute value and the Euclidean
norm for x ∈ R and x ∈ Rn, respectively. The Kronecker product and the Kolmogorov
operator are denoted by ⊗ and L, respectively. For $ ∈ Rm×n, ($)T and λmax($) denote
the transpose and the maximal eigenvalue of the matrix $, respectively. E(·) denotes the
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mathematic expectation of corresponding variable. Let w(t) be the Wiener process with
m-dimensional, which defined on the complete probability space (Ω,F , {Ft}t≥0, P) with
filtration {Ft}t≥0. diag(·) represents a diagonal matrix.

Consider a class of MASs of N agents, and the system’s communication topology can
be denoted by digraph G = (D, E , A) without self-circulation, where D = {D1, . . . ,DN} is
the set of nodes, E = {(Dj,Di) : i, j = 1, . . . , N} ⊂ D ×D is the set of edges, A = [aij] is
the weighted adjacency matrix with order N× N. If Di receives the state information of Dj,
the weight of edge (Dj,Di) is greater than 0, for convenience, let aij = 1. Otherwise, aij = 0.
The degree matrix is denoted by D = diag(di, i = 1, . . . , N), where di = ∑N

j=1,j 6=i aij. Then,

L = D − A = [lij] denotes the Laplacian matrix, where lij =

{
−aij, i 6= j
−∑N

j=1,j 6=i lij, i = j . If

MASs contains a leader D0, then the connection matrix is denoted by C = diag(c1, . . . , cN).
When agent i receives the leader’s information, for convenience, let the weight of edge
(D0,Di) be ci = 1. Otherwise, ci = 0. If all agents can receive the leader’s information, the
leader is called a globally reachable node (i.e., C is an N-dimensional identity matrix).

Similar to the work in [23], we give the explanation and description of the following
concepts in advance to facilitate the understanding of the cluster-delay consensus. If MASs
is divided into multiple clusters labeled by D̂1,. . .,D̂Q, respectively, and let the index sets
of Q clusters be D̂1 = {1, 2, · · · , m1}, . . ., D̂ī = {m1 + m2 + · · ·+ mī−1 + 1, . . . , m1 + · · ·+
mī−1 + mī}, . . ., D̂Q = {m1 + m2 + · · · + mQ−1 + 1, . . . , N}, where N = m1 + · · · + mQ,
ī ∈ {1, 2, · · · , Q}, Q ∈ N+, mī ∈ N+. If the i-th agent belongs to a certain cluster, let the
subscript of the index set of the cluster be î, that is, i ∈ D̂î and î = 1, . . . , Q. As for why
these concepts are introduced, we will describe them in detail in the following part.

3. Problem Description and Model Construction

We consider a first-order nonlinear SMASs composed of N agents, the i-th agent’s
dynamic is defined by

dxi(t) =[ f (t, xi(t)) +Axi(t)− ρî
(
Sî(t)− S1

(
t− τî

))
+ ui(t)]dt + ξ(t, xi(t))dw(t),

(1)

where xi(t) ∈ Rn is the state vector (or displacement state vector in some physical systems),
A is a known constant matrix, f : R × Rn → Rn is a continuous nonlinear function,
ui(t) ∈ Rn is the control input, Sî(t) ∈ Rn is the state vector of the virtual leader of the
cluster where the i-th agent belongs, S1

(
t− τî

)
is the delay state of the virtual leader of the

first cluster, τî is the time delay, and τ1 = 0, ρî is the coupling strength, ξ : R×Rn → Rn×m

stands for the noisy intensity function.Besides, w(t) is an m-dimensional Wiener process
defined on the complete probability space (Ω,F , {Ft}t≥0, P) with filtration {Ft}t≥0 which
satisfies the usual conditions (i.e., F0 contains all P-null sets and Ft is right continuous),
and wi(t) and wj(t) are independent of each other when i 6= j.

Assumption 1. Each agent has a communication connection with the virtual leader of the cluster
to which it belongs, and the first cluster’s virtual leader has a communication connection with the
virtual leaders of all other clusters.

Different from continuous control strategy, the following impulsive controller is
designed.

ui(t) =
+∞

∑
k=1

δ(t− tk)(K(α
N

∑
j=1

aij(xj(t)− S ĵ(t)

− (xi(t)− Sî(t)))− β(xi(t)− Sî(t)))),

(2)

where δ(t) is the Dirac function, K is an impulsive gain matrix, α ∈ (0, 1) and β ∈ (0, 1) are
the coupling strengths, {tk} satisfies 0 ≤ t0 < · · · < tk and limk→+∞ tk = +∞, xi(t) is right
continuous at each tk, i.e., limh→0+ xi(tk + h) = xi(tk), k ∈ N+.
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Remark 1. In [23], the continuity control protocol was designed as ui(t) = −kî(si(t)− s1(t−
τî))− σi(xi(t)− sî(t)) + ∑j/∈Vî

lij(xj(t)− xi(t)). It is easy to see that the i-th agent needs to
continuously obtain the state information of its neighbors j to update the control signal so that
the control cost, as well as the communication burden, are higher. In other words, once the
communication between agents cannot be maintained continuously, the above-mentioned controller
will lose its effectiveness. However, the impulsive controller is shown in (2) only acts on the
system at a series of discrete-time points, which reduces the control cost and the communication
volume effectively in the control process. Therefore, the impulsive control mechanism is suitable for
some actual environments with a limited communication load, and its adaptability is stronger. In
addition, when the state error between the agent and its leader is large, the agent’s state will have
a large instantaneous jump via the impulsive control, so the response speed is faster than that in
other methods.

For the impulsive control mechanism, we need to preset an impulsive time sequence
and assume that the impulse acts on the system at these given ideal moments. However,
due to the limitations of physical equipment and objective environments, in practical
applications, the real instant of impulse appearance is earlier or later than the ideal moment.
In [34], the authors proposed a concept called impulse time window to describe this
common phenomenon, as shown in Figure 1, where Zl

k and Zr
k are the left and right

end points of the k-th window, respectively, tk is the real impulsive control moment,
t0 ≤ Zl

1 < t1 < Zr
1 < Zl

2 < · · · . It can be seen from Figure 1 that impulse appears
randomly in the window, and each window corresponds to only one impulse.

r

kZl

kZ
t

kt1

l

kZ
1kt 1

r

kZ
1

l

kZ 1kt 1

r

kZ

Figure 1. Impulse time windows on the time axis.

We introduce the corresponding virtual leaders into each cluster of SMASs, and their
dynamic equations are described by

dSy(t) = [ f (t, Sy(t)) +ASy(t)− ρy(Sy(t)− S1(t− τy))]dt + ξ(t, Sy(t))dw(t), (3)

where y = 1, . . . , Q.

Remark 2. Because our research object is a SMASs without real leaders, in order to facilitate group
control, we assign corresponding virtual leaders to each cluster in the system. Note that to make it
easier to construct an error system, the virtual leader and the follower agent have the same dynamics.
As the follower agents in each cluster need to reach their respective consensus states, the number of
virtual leaders is the same as the number of clusters in the system. At the same time, suppose there
is a coupling relationship of state information between some virtual leaders, as shown in Figure 2.

Let ey(t) = Sy(t)− S1(t− τy), e(t) = (eT
1 (t), · · · , eT

Q(t))
T , F(t, ey(t)) = f (t, Sy(t))−

f (t− τy, S1(t− τy)), F̄(t, e(t)) = (FT(t, e1(t)), · · · , FT(t, eQ(t)))T , ξ̃(t, ey(t)) = ξ(t, Sy(t))
− ξ(t− τy, S1(t− τy)), ξ̄(t, e(t)) = (ξ̃T(t, e1(t)), · · · , ξ̃T(t, eQ(t)))T . Then, according to (3),
we can get the following error system.

de(t) = [(IQ ⊗ In)F̄(t, e(t)) + (IQ ⊗A)e(t)− (Λ⊗ In)e(t)]dt + ξ̄(t, e(t))dw(t), (4)

where Λ = diag
(
ρ1, ρ2, · · · , ρQ

)
.

Next, based on (1) and (2), we have the system model with impulse time windows
as follows.



Entropy 2021, 23, 1033 5 of 14



dxi(t) =[ f (t, xi(t)) +Axi(t)− ρî(Sî(t)− S1(t− τî))]dt + ξ(t, xi(t))dw(t), t ∈ [t0, Zl
1]

∪ [Zl
k, tk) ∪ (tk, Zr

k],

∆xi(t) =xi(t)− xi(t−)

=K(α
N

∑
j=1

aij(xj(t−)− S ĵ(t
−)− (xi(t−)− Sî(t

−)))− β(xi(t−)− Sî(t
−))), t = tk.

(5)

Let x̂i(t) = xi(t)− Sî(t), f̆ (t, x̂i(t)) = f (t, xi(t))− f
(
t, Sî(t)

)
, ξ̆(t, x̂i(t)) = ξ(t, xi(t))

− ξ
(
t, Sî(t)

)
. Then, error system (6) can be obtained as

dx̂i(t) = [ f̆ (t, x̂i(t)) +Ax̂i(t)]dt + ξ̆(t, x̂i(t))dw(t), t ∈ [t0, Zl
1] ∪ [Zl

k, tk) ∪ (tk, Zr
k],

∆x̂i(t) =x̂i(t)− x̂i(t−)

=K(α
N

∑
j=1

aij(x̂j(t−)− x̂i(t−))− βx̂i(t−)), t = tk.

(6)

Let x̂(t) = (x̂T
1 (t), . . . , x̂T

N(t))
T , F̆(t, x̂(t)) = ( f̆ T(t, x̂1(t)), · · · , f̆ T(t, x̂N(t)))T ,

ξ̂(t, x̂(t)) = (ξ̆T(t, x̂1(t)), · · · , ξ̆T(t, x̂N(t)))T . Therefore, system (6) can be rewritten as
dx̂(t) =[(IN ⊗A)x̂(t) + (IN ⊗ In)F̆(t, x̂(t))]dt + ξ̂(t, x̂(t))dw(t), t ∈ [t0, Zl

1] ∪ [Zl
k, tk)

∪ (tk, Zr
k],

x̂(t) =Ωx̂(t−), t = tk,

(7)

where Ω = INn − (βIN + αL)⊗ K, IN and INn are the identity matrices with N-order and
Nn-order, respectively.

Remark 3. In [23–26], the authors have adopted continuity control strategies to study the cluster-
delay consensus problem of deterministic MASs. Obviously, this control method will greatly
increase control costs and risks [36]. In contrast, this paper is characterized in that the influence of
stochastic disturbances is considered, and what is more, it adopts a more advantageous impulsive
control strategy. Therefore, the results obtained in this paper are suitable for actual scenarios in
the presence of stochastic disturbances and limited communication load. Compared with the work
in [31], the system model researched in this paper is more complicated, that is, the concepts of
stochastic disturbances and impulse time window are introduced in the construction of the model
and the controller, respectively. When the impulse signal appears jitter or drift, the obtained results
effectively solve the problem of how to preset the impulse time sequence. In addition, compared with
the research work related to the impulse time window, this paper studies the cluster-delay consensus
problem of a class of nonlinear SMASs for the first time, and our work is mainly to explore the
feasibility of combining these two different research fields. Although the authors considered the
influence of random noises in [35,37], the continuity control strategy they applied may bring a
great communication burden to the actual control. In this regard, by applying impulsive control
mechanism, our paper avoids this problem well.

For the subsequent consensus analysis, we give the following necessary lemma,
assumption, and definitions.

Lemma 1 ([38]). For vectors x, ŷ ∈ Rn and constant σ > 0, we can get xT ŷ + ŷTx ≤ σxTx +
σ−1ŷT ŷ.

Assumption 2. ∀xi, xj ∈ Rn, there exist Lipschtiz constants φ and φ̂ such that ‖ f (t, xi) −
f (t, xj)‖ ≤ φ‖xi − xj‖ and ‖ξ(t, xi)− ξ(t, xj)‖ ≤ φ̂‖xi − xj‖.
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Definition 1 ([23]). The SMASs with (3) and (5) are said to reach cluster mean square consensus,
if there exist the solutions of (3) and (5) such that limt→+∞ E(‖x̂i(t)‖2) = 0, where x̂i(t) =
xi(t)− Sî(t).

Definition 2 ([23]). The SMASs with (3) are said to reach delay mean square consensus, if there
exist the solutions of (3) such that limt→+∞ E(‖ey(t)‖2) = 0, where ey(t) = Sy(t)− S1(t− τy).

Definition 3. The SMASs with (3) and (5) are said to reach cluster-delay mean square con-
sensus, if there exist the solutions of (3) and (5) such that limt→+∞ E(‖x̂i(t)‖2) = 0, and
limt→+∞ E(‖ey(t)‖2) = 0, where x̂i(t) = xi(t)− Sî(t) and ey(t) = Sy(t)− S1(t− τy).

Remark 4. As mentioned above, for ease of understanding, we have provided three different
definitions of consensus. Obviously, only when the given conditions in Definitions 1 and 2 are
met at the same time, Definition 3 related to cluster-delay consensus needed in this paper can be
established. In other words, Definition 3 includes Definitions 1 and 2, and Definitions 1 and 2 are
independent of each other. This also facilitates the step-by-step proof of the following consensus
analysis part.

4. Consensus Analysis

In this section, based on the Lyapunov stability theory and combined with the Itô
formula, we conduct a theoretical analysis of the cluster-delay consensus problem of the
uncertain MASs and give the corresponding consensus criterion. The core idea of the proof
is to transform the consensus problem of the original system into the stability analysis
problem of the error system. According to Definition 3, the work of this part needs to be
divided into two parts, namely, the proof of cluster mean square consensus and delay mean
square consensus.

Theorem 1. Under Assumptions 1–2, for the involved scalars σ > 0, φ > 0, and φ̂ > 0
satisfying the following conditions (1)–(2), if there exist the solutions of (3) and (5) such that
limt→+∞ E(‖x̂i(t)‖2) = 0, and limt→+∞ E(‖ey(t)‖2) = 0, then the SMASs with (3) and (5) will
achieve cluster-delay mean square consensus.

(1) There exists a constant ϑ > 1 such that ln(ϑλ∗) + ρ̂
(

Zl
k+1 − Zl

k

)
≤ 0, where

λ∗ = λmax
(
ΩTΩ

)
, Ω = INn − (βIN + αL) ⊗ K, ρ̂ = γ + σ + σ−1φ2 + φ̂2, and γ =

λmax
(

IN ⊗
(
A+AT)).

(2) There exists a negative definite matrix IQ ⊗A−Λ⊗ In such that ρ̃ = σ + σ−1φ2 + φ̂2 +
2λmax

(
IQ ⊗A−Λ⊗ In

)
< 0, where Λ = diag

(
ρ1, ρ2, · · · , ρQ

)
.

Proof. (a): cluster mean square consensus
Construct the following Lyapunov function:

V(t, x̂(t)) = x̂T(t)x̂(t). (8)

The stochastic derivative of (8) is derived by the Itô formula along the trajectory of sys-
tem (7) as follows.

dV(t, x̂(t)) = LV(t, x̂(t)) + 2x̂T(t)ξ̂(t, x̂(t))dw(t), (9)

LV(t, x̂(t)) =2x̂T(t)[(IN ⊗A)x̂(t) + (IN ⊗ In)F̆(t, x̂(t))] + trace[ξ̂T(t, x̂(t))ξ̂(t, x̂(t))]. (10)

According to Assumption 2 and Lemma 1, from (10), we have

2x̂T(t)(IN ⊗A)x̂(t) ≤ γV(t, x̂(t)), (11)

2x̂T(t)(IN ⊗ In)F̆(t, x̂(t))
≤ σx̂T(t)x̂(t) + σ−1 F̆T(t, x̂(t))F̆(t, x̂(t))
≤
(
σ + σ−1φ2)V(t, x̂(t))

(12)
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and
trace[ξ̂T(t, x̂(t))ξ̂(t, x̂(t))] ≤ φ̂2V(t, x̂(t)). (13)

For t ∈ [tk−1, tk), assume that ∆t is a small enough positive constant such that t + ∆t ∈
(tk−1, tk), then one has

EV(t + ∆t, x̂(t + ∆t))− EV(t, x̂(t)) =
∫ t+∆t

t
ELV(s, x̂(s))ds. (14)

By (11)–(14), we can obtain

D+EV(t, x̂(t)) = ELV(t, x̂(t)) ≤ ρ̂EV(t, x̂(t)). (15)

When t ∈
[
t0, Zl

1

)
and t ∈

[
Zr

k, Zl
k+1

)
, from (15), we have

EV
(

Zl
1, x̂
(

Zl
1

))
≤ EV(t0, x̂(t0)) exp

(
ρ̂
(

Zl
1 − t0

))
, (16)

EV(Zl
k+1, x̂(Zl

k+1)) ≤ EV(Zr
k, x̂(Zr

k)) exp(ρ̂(Zl
k+1 − Zr

k)). (17)

Let k = 1. For t ∈
[

Zl
1, t1

)
, it holds that

EV
(
t−1 , x̂

(
t−1
))
≤ EV(t0, x̂(t0)) exp(ρ̂(t1 − t0)). (18)

When t = tk, one has

EV(tk) = E
(

x̂T(t−k )ΩTΩx̂
(
t−k
))
≤ λ∗EV

(
t−k , x̂

(
t−k
))

. (19)

Thus, from (19), we have

EV(t1, x̂(t1)) ≤ λ∗EV
(
t−1 , x̂

(
t−1
))

. (20)

For t ∈
(
t1, Zr

1
)
, we can get

EV(Zr
1, x̂(Zr

1) )

≤ EV(t1, x̂(t1)) exp(ρ̂(Zr
1 − t1))

≤ λ∗EV
(
t−1 , x̂

(
t−1
))

exp(ρ̂(Zr
1 − t1))

≤ λ∗EV(t0, x̂(t0)) exp(ρ̂(Zr
1 − t0)).

(21)

When t ∈
[

Zr
1, Zl

2

)
, by (17) and (21), it follows that

EV
(

Zl
2, x̂
(

Zl
2

))
≤ EV(Zr

1, x̂(Zr
1)) exp

(
ρ̂
(

Zl
2 − Zr

1

))
≤ λ∗EV(t0, x̂(t0)) exp

(
ρ̂
(

Zl
2 − t0

))
.

(22)

Let k = 2. When t ∈
[

Zr
2, Zl

3

)
, it yields

EV(Zl
3, x̂(Zl

3)) ≤ (λ∗)2EV(t0, x̂(t0)) exp(ρ̂(Zl
3 − t0)).

By analogy, for t ∈
[

Zl
k, Zl

k+1

)
, if there exists a constant ϑ > 1 such that ln(ϑλ∗) +

ρ̂
(

Zl
k+1 − Zl

k

)
≤ 0, then we have
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EV(t, x̂(t)) ≤ (λ∗)kEV(t0, x̂(t0)) exp(ρ̂(t− t0))

≤ EV(t0, x̂(t0)) exp
(

ρ̂
(

t− Zl
k

))
λ∗ exp(ρ̂(Zl

k − Zl
k−1)) · · · λ

∗ exp(ρ̂(Zl
1 − t0))

≤ 1
ϑk EV(t0, x̂(t0)) exp

(
ρ̂
(

t− Zl
k

))
.

(23)

From (23), it can be seen that EV(t, x̂(t)) → 0 when t → ∞. That is, limt→∞ E(‖xi(t)−
Sî(t)‖

2) = 0. Therefore, the SMASs with (3) and (5) can achieve the cluster mean
square consensus.

(b): delay mean square consensus
Construct the following Lyapunov function:

V(t, e(t)) = eT(t)e(t). (24)

The stochastic derivative of (24) is derived by the Itô formula along the trajectory of
system (4) as follows.

dV(t, e(t)) = LV(t, e(t)) + 2eT(t)ξ̄(t, e(t))dw(t), (25)

LV(t, e(t)) =2eT(t)[(IQ ⊗A−Λ⊗ In)e(t) + (IQ ⊗ In)F̄(t, e(t))]

+ trace[ξ̄T(t, e(t))ξ̄(t, e(t))].
(26)

Similar to (12) and (13), we have

2eT(t)
(

IQ ⊗ In
)

F̄(t, e(t))
≤ σeT(t)e(t) + σ−1 F̄T(t, e(t))F̄(t, e(t))
≤
(
σ + σ−1φ2)V(t, e(t)).

(27)

and
trace

[
ξ̄T(t, e(t))ξ̄(t, e(t))

]
≤ φ̂2V(t, e(t)). (28)

Furthermore, one has

2eT(t)
(

IQ ⊗A−Λ⊗ In
)
e(t) ≤ 2λmax

(
IQ ⊗A−Λ⊗ In

)
V(t, e(t)). (29)

In the same way, we can get the following inequality similar to (14).

EV(t + ∆t, e(t + ∆t))− EV(t, e(t)) =
∫ t+∆t

t
ELV(s, e(s))ds. (30)

According to (27)–(30), we can obtain

D+EV(t, e(t)) = ELV(t, e(t)) ≤ ρ̃EV(t, e(t)). (31)

From (31), one has
EV(t, e(t)) ≤ EV(t0, e(t0)) exp(ρ̃(t− t0)). (32)

At this time, if matrix IQ ⊗A−Λ⊗ In is negative definite and its maximum eigenvalue
satisfying ρ̃ < 0, then it can be known from (32) that EV(t, e(t)) → 0 when t → ∞. That
is, limt→∞ E(‖Sy(t)− S1(t− τy)‖2) = 0. Consequently, the SMASs with (3) can reach the
delay mean square consensus.

According to parts (a) and (b), we can say that the SMASs with (3) and (5) can reach
the cluster-delay mean square consensus. This completes the proof.

Remark 5. By condition (1), we have Zl
k+1 − Zl

k ≤
− ln(ϑλ∗)

ρ̂ , where parameters λ∗ < 1 and ρ̂

can be obtained by simple calculations. Without loss of generality, ϑ can be equivalently regarded as
an adjustable variable that satisfies ϑλ∗ < 1. Obviously, the artificial preset of the impulse time
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windows and the selection of the value of ϑ influence each other. When the interval between adjacent
impulse time windows is designed to be larger, this means that ϑ needs to be larger to ensure that
ϑλ∗ < 1 holds. At this time, it can be seen from (23) that the convergence speed of the error system
will decrease. Reflected in the actual control, the impulsive interval may become larger due to the
above-mentioned design changes, and the number of impulses within a certain period of time will be
reduced, resulting in a slower system convergence speed, and vice versa.

Remark 6. We know thatA is a known real matrix, and its value depends on the inherent dynamic
behavior of SMASs. In other words, for a particular system, the value of A cannot be adjusted.
Therefore, to satisfy condition (2), we can only adjust the diagonal matrix Λ composed of virtual
coupling strengths ρ1, · · · , and ρQ. According to condition (2), we can see that the stronger the
coupling strengths are, the easier the inequality ρ̃ < 0 is satisfied. At the same time, the delay
mean-square consensus of SMASs may be realized faster.

Remark 7. Different from the general literature, the proof method in this paper combines the
characteristics of multiple current methods and has been successfully applied to the study of the
SMASs’ cluster-delay mean square consensus problem. In a sense, this is an extension of current
research methods. Moreover, how to construct the dynamic equation of the virtual leaders, how
to design an impulsive controller and adjust its parameters, how to design a reasonable impulse
time sequence, and how to design a reasonable simulation program to verify the effectiveness of the
research method are challenging jobs. In addition, through the above research, we can reasonably
preset the impulse time sequence to avoid the possible adverse effects of the digital signal’s jitter or
drift on the system when the MASs are facing stochastic disturbances. In practical applications, the
target MASs studied in this paper can be cluster drones flying in formation, numerous unmanned
vehicles on the road, or a network of multiple power stations.

5. Numerical Simulation

Next, we design a simulation example to verify the validity of the obtained results.

Example 1. Consider a first-order nonlinear SMASs composed of 9 agents, and its topology graph
is shown in Figure 2. In order to easily identify the state trajectory of each agent in the simulation
diagram, we choose a class of one-dimensional variable as the agent’s state, namely, n = 1.

Cluster1

Cluster2 Cluster3

1S

5

2S

4

6

1

2 3

7

8 9

3S

ˆ 1,  1,2,3i i 

ˆ 2,  4,5,6i i  ˆ 3,  7,8,9i i 

Figure 2. Multi-agent systems with virtual leaders.

Let the initial states x1(t0) = 1, x2(t0) = 10, x3(t0) = −12, x4(t0) = −3, x5(t0) = −16,
x6(t0) = 5, x7(t0) = 15, x8(t0) = −7, x9(t0) = 9, S1(t0) = −1, S2(t0) = −6, and
S3(t0) = 3. Let functions f (t, xi(t)) = xi(t) sin(tan t), f

(
Sy(t), t

)
= Sy(t) sin(tan t), and

ξ(t, xi(t)) = 0.16| cos(t)|xi(t). Obviously, we can choose Lipschtiz constants φ = 1 and
φ̂ = 0.16. Furthermore, let A = 1, α = 0.2, β = 0.8, K = diag(0.3, · · · , 0.3), ρ2 = ρ3 = 20,
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τ2 = 0.2, and τ3 = 0.3. Based on the above parameters, we have λ∗ = 0.6111, γ = 2.
We can choose parameters ϑ = 1.2 and σ = 1. Then, it can be calculated according to
condition 1) in Theorem 1 that Zl

k+1 − Zl
k ≤ 0.103. In addition, it is clear that the matrix

IQ ⊗A−Λ⊗ In is negative definite and satisfies the condition ρ̃ < 0.
Finally, for convenience, we designed a class of layout of the impulse time windows

as shown in Figure 3. Specifically, we stipulate that the width of each window in the figure
is 0.05 and that the impulse appears in the center point of each window. In other words,
∀k ∈ N+, we have Zl

k+1 − Zl
k = 0.05 and tk+1 − tk = 0.05.

1 r l

k kZ Z
t

kt1

l

kZ 1kt 1r l

k kZ Z 1kt 1

r

kZ

0.05 r l

k kZ Z
ITW

Figure 3. Design layout of impulse time window (ITW).

Based on the above work, Figures 4–6 are obtained by Matlab platform as follows.
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Figure 4. State trajectory of each agent under impulsive control.
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Figure 5. The state error trajectory for each agent in clusters.
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Figure 6. The error trajectories between S2(t), S3(t) and their virtual leaders’ states when
ρ2 = ρ3 = 20.

According to Figure 4, we can find that the MASs are divided into three clusters,
and the states of the three agents in each cluster gradually tend to a common state (i.e.,
the virtual leader’s state). Correspondingly, the state error between each agent and its
virtual leader also gradually tends to 0, as shown in Figure 5. Thus, the cluster mean
square consensus of system (5) can be achieved. Obviously, it can be seen from Figure 6
that system (3) has achieved the delay mean square consensus. In summary, based on the
impulse time windows, the cluster-delay mean square consensus of the SMASs with (3)
and (5) can be realized.

We know that by adjusting the size of the impulsive interval during the simulation
process and observing the impact of this operation on the speed of the multi-agent systems
to achieve cluster mean square consensus, it can verify the dynamic relationship between
the selection of parameter ϑ and the preset layout of the impulse time windows. We assume
that there exists a parameter 1 < ϑ < 1.2 such that Zl

k+1 − Zl
k = 0.12 and tk+1 − tk = 0.12,

and Figure 7 is obtained. By Figure 7, as described in Remark 5, it takes longer for SMASs to
achieve cluster mean square consensus. Thus, the discussions in Remark 5 are reasonable.
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Figure 7. The state error trajectory for each agent in clusters.
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To verify the correctness of the theoretical analysis in Remark 6, we increase the value
of the coupling strengths. That is, let ρ2 = ρ3 = 30, and Figure 8 is obtained. According
to Figure 8, it can be found that the two error trajectories in the figure can approximately
converge to 0 at about 0.15. This convergence speed is obviously faster than that in Figure 6.
Therefore, the obtained results in Remark 6 are correct.
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Figure 8. The error trajectories between S2(t), S3(t) and their virtual leaders’ states when ρ2 = ρ3 = 30.

6. Conclusions

Based on the discrete impulsive control strategy, this paper studies the cluster-delay
mean square consensus problem of a class of SMASs with impulse time windows. Ac-
cording to the algebraic graph theory and Lyapunov stability theory, sufficient consensus
criteria are given, and the obtained results are more general than the existing work. More-
over, according to the obtained conditions, the upper bound of the interval between the
left endpoints of the two adjacent windows can be derived, which is conducive to the
reasonable setting of the windows, so as to ensure that the cluster-delay consensus of
SMASs in the mean square sense can be realized. Finally, a simulation example is designed
to analyze and verify the feasibility of the relevant results. However, the research work in
this paper still has some shortcomings. For instance, the dynamic model of each agent is
homogeneous, and there are fewer objective factors considered in the system. Due to the
wide application of heterogeneous MASs in practical applications, it is necessary to extend
existing research work to heterogeneous MASs. In addition, considering the influence
of factors such as time delay and switching topology in this paper is also a meaningful
direction for work in the future.
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